Evaluating the potential gain of auditory and audiovisual speech predictive coding using deep learning

Thomas Hueber1, Eric Tatulli1, Laurent Girin1,2, Jean-Luc Schwartz1

1Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France.
2Inria Grenoble Rhône-Alpes, France.

Keywords: Predictive coding, computational model, speech, deep learning

Abstract

Sensory processing is increasingly conceived in a predictive framework in which neurons would constantly process the error signal resulting from the comparison of expected and observed stimuli. Surprisingly, few data exist on the accuracy of predictions that can be computed in real sensory scenes. Here, we focus on the sensory processing of auditory and audiovisual speech. We propose a set of computational models based on artificial neural networks (mixing deep feed-forward and convolutional networks) which are trained to predict future audio observations from present and past audio or
audiovisual observations (i.e. including lip movements). Those predictions exploit purely local phonetic regularities with no explicit call to higher linguistic levels. Experiments are conducted on the multispeaker LibriSpeech audio speech database (around 100 hours) and on the NTCD-TIMIT audiovisual speech database (around 7 hours). They appear to be efficient in a short temporal range (25-50 ms), predicting 50 to 75% of the variance of the incoming stimulus, which could result in potentially saving up to 3/4 of the processing power. Then they quickly decrease to almost vanish after 250 ms. Adding information on the lips slightly improves predictions, with a 5 to 10% increase in explained variance. Interestingly the visual gain vanishes more slowly, and the gain is maximum for a delay of 75 ms between image and predicted sound.

1 Introduction

1.1 The predictive brain

The concept of ”predictive brain” has progressively emerged in neurosciences in the 50s (Attneave, 1954; Barlow, 1961). It assumes that the brain is constantly exploiting the redundancy and regularities of the perceived information, hence reducing the amount of processing by focusing on what is new and eliminating what is already known. After half a century of experimental developments, the predictive brain has been mathematically encapsulated by Friston and colleagues into a powerful framework based on Bayesian modeling (Friston, 2005), assimilating such concepts as perceptual inference (Friston, 2003), reinforcement learning (Friston et al., 2009) and optimal control (Friston, 2011). In this framework, it has been proposed that the minimization of free energy
—a concept coming from thermodynamics— could provide a general principle associ-
atating perception and action in interaction with the environment in a coherent predictive
process (Friston et al., 2006; Friston, 2010). A number of recent neurophysiological
studies confirm the accuracy of the predictive coding paradigm for analyzing sensory
processing in the human brain, e.g. (Keller and Mrsic-Flogel, 2018).

Actually, predictive coding is a general methodological paradigm in information
processing that consists in analyzing the local regularities in an input data stream in or-
der to extract the predictable part of these input data. After optimization of the coding
process, the difference signal (i.e., prediction error) provides an efficient summary of the
original signal. Technically, this can be cast in terms of minimum description lengths
(MDL) (Grünwald et al., 2005) and accompanying (variational) free energy minimiza-
tion. The predictive brain is conceived as an inference engine with a fixed structure
whose parameters are tuned to provide optimal predictions, that is predictions of in-
coming signals from past ones optimizing mutual information between both sets. This
principle was formerly introduced by (Barlow, 1961) in terms of redundancy reduction.

The information processing system can then focus on the difference between input
data and their prediction. In a very general manner, whatever the processing system,
there are two main advantages to processing the difference signal over directly process-
ing the input signal. First, if the prediction is efficient, the difference signal is generally
of (much) lower energy than the original signal, which leads to energy consumption
saving in subsequent processes and resource saving for representing the signal with a
given accuracy (e.g. bitrate saving in an audio or a video coder). In short, this reduces
the “cost” of information processing. Second, there is a concentration of novelty /
unpredictable information in the difference signal, which is exploitable for, e.g., the de-
tection of new events. Because of these advantages, predictive coding has been largely
exploited in technological applications, in particular in signal processing for telecom-
munications (Gersho and Gray, 1992; Jayant and Noll, 1984).

1.2 Predictions in speech

Speech involves different linguistic levels from the acoustic-phonetic level and up to
the lexical/syntactic/semantic and pragmatic levels. Each level of language process-
ing is likely to provide predictions (Manning and Schütze, 1999), and globally, auto-
matic speech recognition (ASR) systems are based on statistical predictive models of the
structure of speech units in the acoustic input (Jelinek, 1976; Rabiner, 1989; Deng and
Li, 2013). Generative grammar traditionally conceives linguistic rules as providing the
basis of language complexity at all levels (Jackendoff, 2002), and the existence of cor-
relations between linguistic units at various ranges has been the focus of a large number
of scientific research, e.g. (Kaplan and Kay, 1994; Berent, 2013) for phonology, (Heinz
and Idsardi, 2011) for lexicon or syntax, (Oberlander and Brew, 2000; Altmann et al.,
2012) for semantics in textual chains. The search for dependencies between linguistic
units at various scales may also be related to the more general framework describing
long-term dependencies in symbolic sequences (Li, 1990; Li and Kaneko, 1992; Ebel-
ing and Neiman, 1995; Montemurro and Pury, 2002; Lin and Tegmark, 2017).

These different levels of prediction in speech correspond to different temporal scales,
ranging from a few tens/hundreds of ms for the lowest linguistic units (i.e. phoneme/syllable)
up to few hundreds of ms or s for the highest ones (i.e. word/phrase/utterance). In the
human brain, exploiting these different levels is done by hierarchically organized com-
putational processes which correspond to a large network of cortical areas, as described
in a number of recent review papers, e.g. (Friederici and Singer, 2015). In this network,
fast auditory/phonetic processing is supposed to occur locally in the auditory cortex
(Superior Temporal Sulcus/Gyrus, STS/STG) while slower lexical access and syntac-
tic processing involve information propagation within a larger network associating the
temporal, parietal and frontal cortices (Hickok and Poeppel, 2007; Giraud and Poeppel,
2012; Friederici and Singer, 2015).

Importantly, Arnal and Giraud have identified rapid cortical circuits which seem
to provide predictions at low temporal ranges in the human brain (Arnal and Giraud,
2012). They propose that the predictions in time (“when” would something impor-
tant happen) are based on a coupling between low-frequency oscillations driven by the
syllabic rhythm in the “delta-theta” channel of neural firing (around 2-8 Hz) and mid-
frequency regulation in the “beta” channel of neural firing (12-30 Hz). The “what”
information would combine top-down predictions conveyed by the beta channel with
analysis of the sensory input providing prediction errors to be conveyed to higher
centers in a bottom-up process through the “gamma” channel (30-100 Hz). Such lo-
cal gamma-theta-beta auditory structures typically operate at relatively short temporal
scales (up to a few hundreds of ms) characteristic of phonetic processes and likely to
operate at the level of auditory cortical areas in the STS/STG region (Gagnepain et al.,
2012; Mesgarani et al., 2014). These local circuits mostly operate without lexical and
post-lexical processes that would require both larger temporal scales and longer cortical
loops.
To our knowledge, such predictions occurring at the acoustic-phonetic level have never been quantified. Still, it is of real importance to evaluate what is the nature and amount of phonetic predictions that can be made locally in the speech input. The present paper is focused on the quantitative analysis of temporal predictions in speech signals at a phonetic, sub-lexical level, using state-of-the-art machine learning models.

1.3 Predictions in speech coding systems

In essence, the largest and historically prominent family of computational models for speech signal predictions is found in speech coding techniques for telecommunications. The vast majority of standardized predictive speech codecs apply prediction of a speech signal waveform sample from a linear combination of the preceding samples in the range of about 1 ms. This is the basis of the famous linear predictive coding (LPC) technique and LPC family of speech coders (Markel and Gray, 1976). The predictor coefficients are calculated over successive so-called “short-time frames” of signal of a few tens of ms (typically 20-30 ms), every 10-20 ms. Globally, LPC techniques may be related to the general principle of MDL minimization mentioned in the introduction, where the MDL model is the set of prediction coefficients (Kleijn and Ozerov, 2007).

The prediction power of the LPC technique within a single short-term frame has been largely quantified in the speech coding literature. However, this literature has quite poorly considered the prediction of speech at the level of one to several short-time frames ahead (i.e. a few tens to a few hundred ms, or in other words, an intermediary time scale in between the speech sample level and the lexical level). This is mostly due to constraints on latency in telecommunications. For example, only a very few
studies have applied some form of predictive coding on vectors of parameters encoding a short-term speech frame. This has been done using differential coding (Yong et al., 1988), recursive coding (Samuelsson and Hedelin, 2001; Subramaniam et al., 2006), or Kalman filtering (Subasingha et al., 2009). Yet, these approaches are limited to 1-step frame prediction. A few other “unconventional” studies (Atal, 1983; Farvardin and Laroia, 1989; Mudugamuwa and Bradley, 1998; Dusan et al., 2007; Girin et al., 2007; Girin, 2010; Ben Ali et al., 2016) have proposed “long-term” speech coders, which aim at exploiting the speech signal redundancy and predictability over larger time spans, typically in the range of a few hundreds of ms. However, these methods actually implement a joint coding of several short-term frames (basically, by using trajectory models or projections), but do not apply any explicit prediction of a frame given past frames. In short, to the best of our knowledge, no study has yet attempted to systematically quantify the predictability of the acoustic speech signal at the phonetic to syllable time scale (i.e. one to several short-term frames). A first objective of the present work is to address this question thanks to a (deep) machine learning approach that will be presented later.

1.4 Visual potential contribution to phonetic predictions in speech

Importantly, the visual input can also convey relevant information for acoustic-phonetic predictions. As a matter of fact, pioneer studies such as (Besle et al., 2004; Van Wassenhove et al., 2005) showed that the visual component of an audiovisual speech input (e.g. 1

Such coders are limited to speech storage since interactive communication is not feasible with the resulting high latency.
“ba”) could result in decreasing the first negative peak N1 in the auditory event-related potential pattern in Electroencephalographic (EEG) data. Peak decrease has been related to the ability of the visual input to provide predictive cues likely to suppress the auditory response displayed in N1. The potential predictive role of vision is supported by behavioral data showing that vision of the speaker’s face may indeed provide cues for auditory prediction, e.g. (Sánchez-García et al., 2011; Venezia et al., 2016).

It has been claimed that the predictive aspect of visual speech information might be enhanced by the fact that there is often an advance of image on sound in natural speech (Chandrasekaran et al., 2009). Actually, this remains a matter of controversy (Schwartz and Savariaux, 2014). Still, studies on audiovisual speech coders capable to exploit correlation between audio and visual speech are extremely sparse (though see pioneering studies in (Rao and Chen, 1996) and (Girin, 2004)). Hence, here also, no systematic quantification of the potential role of the visual input in the predictive coding of speech stimuli has been realized yet. Providing such a quantification, using a machine learning approach, is the second objective of the present study.

1.5 Our contribution: modeling and assessing “mid-term” predictability in acoustic and audiovisual speech

The goal of the present study is to quantify what is really predictable online from the speech acoustic signal and the visual speech information (mostly lips movement). To this aim, we propose to use a series of computational models based on artificial (deep) neural networks which are trained to predict future acoustic features from past information. We focus on “mid-term” prediction, that is a prediction at the level of sequences
of multiple consecutive short-term frames (i.e. from 25 ms to 450 ms in our experiments), and with no explicit access to lexical or post-lexical information. Depending on the representation (audio or audiovisual), different network architectures such as feed-forward neural networks and convolutional neural networks are used to learn sequences of acoustic and visual patterns. In order to generalize the network speech prediction capabilities across many different speakers, these networks are trained on large multispeaker audio and audiovisual speech databases. More specifically, we use the LibriSpeech corpus (Panayotov et al., 2015) which is one of the largest publicly available acoustic speech database, and the NTCD-TIMIT corpus (Abdelaziz, 2017), which is one of the largest publicly available audiovisual speech database.

The choice of a statistical framework based on deep learning was motivated by its ability to build successive levels of increasingly meaningful abstractions in order to learn and perform complex (e.g. non-linear) mapping functions. By combining different types of generic layers (e.g. fully-connected, convolutional, recurrent, etc.) and training their parameters jointly from raw data, deep neural networks provide a generic methodology for feature extraction, classification and regression. Deep learning-based models have led to significant performance improvement in many speech processing problems, e.g. acoustic automatic speech recognition (ASR) (Abdel-Hamid et al., 2014), speech enhancement (Wang and Chen, 2018), audiovisual and visual ASR (Mroueh et al., 2015; Wand et al., 2016; Tatulli and Hueber, 2017), articulatory-to-acoustic mapping (Bocquelet et al., 2016) and more generally for tasks involving speech-related biosignals (Schultz et al., 2017). Thus, deep-learning models are here considered as providing an accurate evaluation of the amount of information and regularities
present in the auditory and visual inputs and likely to intervene in speech predictive coding in the human brain. Though substantially different from biological neural networks, artificial deep neural networks provide a computational solution to cognitive questions and may thus provide some insights on the nature of biological processes (Kell et al., 2018).

The proposed computational models of predictive speech coding enabled us to address the following questions:

- How much of the future speech sounds can be predicted from the present and the past ones? What is the temporal range at which acoustic-phonetic predictions may operate and how much of past information do they capitalize on for predicting future events?

- If the visual input (i.e. information on the speaker’s lip movements) is added to the acoustic input (i.e. the speech sound), how much gain can occur in prediction, and what temporal window of visual information is typically useful for augmenting auditory predictions? Crucially, can audiovisual predictions confirm the assumption that visual information would be available prior to auditory information in the predictive coding of speech, and by what temporal amount?

2 Materials and methods

2.1 Database

Two publicly available datasets were used in this study. The first one is the LibriSpeech corpus which is derived from read audiobooks from the LibriVox project (Panayotov
et al., 2015). In the present study, we used the “train-clean-100” subset of LibriSpeech which contains 100.6 hours of read English speech, uttered by 251 speakers (125 female speakers and 126 male speakers). The second dataset is the NTCD-TIMIT dataset (Abdelaziz, 2017) which contains audio and video recordings of 59 English speakers each uttering the same 98 sentences extracted from the TIMIT corpus (Garofolo et al., 1993) (i.e. 5,782 sentences in total, representing around 7 hours of speech). NTCD-TIMIT contains both clean and noisy versions of the audio material. In the present study, only the clean audio signals were used. As for the video material, NTCD-TIMIT provides a post-processed version of raw video sequences of the speaker’s face focusing on the region of interest (ROI) around the mouth. This includes cropping, rotation, and scaling of the extracted ROI so that the mouths of all speakers approximately lie on the same horizontal line and have the same width. Each ROI image is finally resized as a 67×67 pixels 8-bit grayscale image (Abdelaziz, 2017).

Librispeech is here the favored dataset for quantifying the auditory speech prediction from audio-only input. Experiments conducted on the NTCD-TIMIT corpus aim more specifically at quantifying the potential benefit of combining audio and visual inputs (over audio-only input) for such prediction. In spite of its reduced size compared to Librispeech (around 7 hours and 59 speakers vs. 100 hours and 251 speakers), it remains one of the largest publicly available audiovisual datasets of continuous speech.

2.2 Data preprocessing

For the LibriSpeech corpus, no specific preprocessing of the audio signal was done. As concerns the NTCD-TIMIT corpus, each audiovisual recording was first cropped in
order to reduce the amount of silence before and after each uttered sentence. Temporal boundaries of silence portions were extracted from the phonetic alignment file provided with the dataset. In order to take into account anticipatory lip gestures, a safe-margin of 150 ms of silence was kept intact before and after each recorded sentence.

A sliding window was used to segment each waveform into short-term acoustic frames. A classical frame length of 25 ms was used in our study (i.e. 400 samples at 16 kHz). Importantly, a frame shift of 25 ms was chosen in order to avoid any overlap between consecutive frames (i.e. the frame shift was set equal to the frame length). This aimed at preventing the introduction of artificial correlation due to shared samples which could introduce some bias in the mid-term prediction (i.e. the prediction of a speech frame given the preceding ones).

The discrete Fourier transform (DFT) was applied on each frame to represent its spectral content. The overall process is referred to as the Short-Term Fourier Transform (STFT) analysis and the resulting signal representation is the STFT (complex-valued) spectrogram. In the present study, a 512-point Fast Fourier Transform (FFT) was used to calculate each DFT (each 400-sample short-term frame was zero-padded with 112 zeros, and was then applied a Hanning analysis window). Only the 257 first coefficients in the frequency dimension, corresponding to positive frequencies, are retained. Then, we computed the log-magnitude of the STFT spectrogram (on a dB scale), and re-scaled the resulting values to the range $[0, -80]$ dB, for each sentence of the dataset (the maximum value over each sentence was set to 0 dB and all values below -80 dB were set to -80 dB). Finally, the short-term speech spectrum was converted into a set of so-called Mel-frequency cepstral coefficients (MFCC). Such coefficients were ob-
tained (i) by integrating subbands of the log power spectrum using a set of 40 triangular filters equally spaced on a nonlinear Mel frequency scale, (ii) converting the resulting 40-dimensional Mel-frequency log-spectrum into a 13-dimensional vector using the discrete cosine transform (DCT). The resulting representation for a complete utterance (a sequence of frames) is referred to as the MFCC spectrogram.

MFCC coefficients are widely used in many fields such as Automatic Speech Recognition (ASR) (Rabiner, 1989) and music information retrieval (e.g. classification of musical sound) (Kim et al., 2010). MFCC analysis can be seen as a high-level biologically-inspired process related to psychoacoustics (i.e. simulating the cochlear filtering). Moreover, MFCC analysis leads to a compact representation of the short-term speech spectrum, which may be of significant interest in the context of statistical learning since it may limit the number of free model parameters to estimate. All the above audio analysis procedures were performed using the Librosa Python open-source library (McFee et al., 2018) (release 0.6.0).

As concerns the video sequences (for the NTCD-TIMIT corpus), a linear interpolation across successive images in the pixel domain was performed in order to adjust the video frame rate (originally 30 fps) to the analysis rate of the audio recordings (i.e. 40 Hz). Each 67×67 pixels frame was then resized to 32×32 pixels using linear interpolation. 8-bit integer pixel intensity values were divided by 255 in order to work with normalized values in the $[0, 1]$ range. Video analysis was performed using the openCV2 Python open-source library (Bradski, 2000) (release 3.4.0.12).
2.3 Computational models of speech prediction from audio-only data

Task: Let us denote x_t a D_x-dimensional (column) vector of spectral audio features, which is in the present study a 13-dimensional vector of MFCC coefficients. The frame index t is an integer and corresponds to time tH where $H = 25$ ms is the frame spacing (see previous section). The predictive coding problem using past audio information can be formulated as computing:

$$\hat{x}_{t+\tau_f} = f(x_t, x_{t-1}, ..., x_{t-\tau_p})$$ \hspace{1cm} (1)

where \hat{x} denotes an estimated (predicted) value of x, and τ_f and τ_p denote a time lag in the future and in the past, respectively (in number of frames). In summary, τ_f labels the depth into the future of the prediction, based upon a sequence of past observations from the current time step t to $t - \tau_p$. These time indices correspond to 25 ms of clock time. We propose to model the non-linear predictive function f by an artificial (deep) neural network, as described below.

Architectures: To process the MFCC spectrograms, we use a standard feed-forward deep neural network (FF-DNN). An FF-DNN is composed of a cascade of fully-connected layers: Each neuron of a given fully-connected layer performs a non-linear transformation of a weighted sum of its inputs, which are the outputs of the previous layer. In the case of a regression task (as we consider here with prediction, and as opposed to classification), the last (output) layer is directly the weighted sum of its inputs, i.e. it has a linear activation function. To process the portion of MFCC spectrogram composed of frames $t - \tau_p$ to t, the latter has to be vectorized, i.e. concatenated into a single larger
vector, and (1) is here reformulated as:

\[\hat{x}_{t+\tau_f} = f_{\text{FF-DNN}}([x_t^T x_{t-1}^T \ldots x_{t-\tau_p}^T]^T), \]

(2)

where \(T \) denotes vector transpose.

General methodology for model training: All parameters (i.e. weights) of FF-DNNs are learned from data, usually by stochastic gradient descent and backpropagation. Briefly, this consists in iterating the following process: (i) evaluating a loss function which measures the average discrepancy between the prediction of the network and the ground-truth value for a subset of the training data (called mini-batch), and (ii) calculating the gradient of this loss function with respect to all the network weights, starting from the output layer and back-propagating it through all the hidden layers, (iii) updating all weights using the gradient in order to decrease the loss function. This process is applied over all mini-batches of the training data, and repeated a certain number of times called epochs, until the loss function no more significantly evolves.

In addition to this general process, three strategies are often used to prevent model overfitting and accelerate training convergence: (i) early stopping which consists in monitoring the loss function on a validation dataset and stopping the training as soon as its value stops decreasing after a given number of epochs; (ii) batch normalization which consists in applying a transformation so that the inputs to each layer have zero mean and unit variance (Ioffe and Szegedy, 2015); (iii) dropout which consists in not updating a random fraction of neurons in a given layer during training. In our study, we combined those three processes.
Model selection and training: As in many modeling studies based on deep learning, complex architectures require to set a large number of hyperparameters, mostly related to the sizing of the network, a process known as model selection. It also requires to set several training settings. An extensive search for the optimal combination for these hyperparameters and settings is out of range. Therefore, we optimized only some of them on a subset of each database. We tested combinations of 1, 2, 3 and 4 layers with either 128, 256, or 512 neurons each. This converged to the same architecture for the two datasets, with 3 groups of 256-neuron fully-connected layers. This model is represented in Fig. 1(a). All models were trained using the Adam optimizer (a popular variant of the stochastic gradient descent) (Kingma and Ba, 2014), on mini-batches of 256 observations. The Leaky ReLU was used as activation function (for the neurons of the hidden layers). It is defined as \(f(x) = \alpha x \) for \(x < 0 \) and \(f(x) = x \) for \(x \geq 0 \) (with \(\alpha = 0.03 \) in our experiments). The mean squared error (MSE) was used as loss function. In each experiment, 66\% of the data (randomly partitioned) were used for training, the remaining 33\% were used for test. 20\% of the training data were used for validation (early-stopping). The number of epochs in early-stopping was set to 10.

After model selection, the optimal set of hyperparameters and the same training settings were then used to train and evaluate the final computational models of speech prediction from audio-only data. Two separate series of experiments were conducted. On the one hand, these models were trained and evaluated using the entire “train-clean-100” subset of the LibriSpeech corpus (around 100 hours, 251 speakers). On the other hand, they were trained and evaluated on the audio data of the entire NTCD-TIMIT audiovisual corpus (around 7 hours, 59 speakers). The latter series of experiments were
mostly done for comparison with their audiovisual counterpart.

Technical implementation of all models was performed using the Keras open-source library (Chollet et al., 2015) (release 2.1.3). All models were trained using GPU-based acceleration.

Figure 1: Selected architectures for the audio model and for the visual model. (a) FF-DNN model for processing MFCC spectrograms; (b) CNN model for predicting an MFCC vector from a sequence of lip images. In (b) the red cube represents the 3D filters of the convolutive layers. The dotted rectangles indicate the subnetworks to be used in the audiovisual model (see Fig 2).

2.4 Computational models of speech prediction from both audio and visual data

Task: Let us denote I_t the lip image at frame t (in our case a 32×32 pixels grayscale image). The predictive coding problem using both audio and visual past information can be formulated as:

$$\hat{x}_{t+\tau_f} = f(x_t, I_t, x_{t-1}, I_{t-1}, \ldots, x_{t-\tau_p}, I_{t-\tau_p}).$$ \hspace{1cm} (3)
Architectures: Integration of audio and visual speech information has been largely considered for automatic audiovisual speech recognition (Potamianos et al., 2003; Mroueh et al., 2015) and also (though much less extensively) for other applications such as speech enhancement (Girin et al., 2001) and speech source separation (Rivet et al., 2007). Basically, the general principle is that integration can be processed at the input signal level (concatenation of the input data from each modality, aka *early integration*), at the output level (combination of the outputs obtained separately from each modality, aka *late integration*), or somewhere in between those extremes (after some separate processing of the inputs and before final calculation of the output, aka *mid-level integration*) (Schwartz et al., 1998). Artificial neural networks provide an excellent framework for such multimodal integration, since it can be easily implemented with a fusion layer receiving the inputs from different streams and generating a corresponding output. Moreover, the fusion layer can be placed arbitrarily close to the input or to the output.

In the present study, we propose a computational model of auditory speech from both audio and visual inputs based on artificial neural networks. We adopt the mid-level fusion strategy which enables to benefit from (i) the design and training of the audio (FF-DNN) network used for predictive coding based on audio only input presented in the previous section, and (ii) the design and training of a visual model dedicated to process the lip images.

A convolutional neural network (CNN) (LeCun et al., 2015) was used as the core of this visual model. A CNN is a powerful network architecture well-adapted to process 2D data for classification and regression. It can extract a set of increasingly meaningful representations along its successive layers. It is thus widely used in image and video...
processing, e.g. object detection (Szegedy et al., 2015), gesture recognition (Baccouche et al., 2012; Ji et al., 2013; Karpathy et al., 2014; Simonyan and Zisserman, 2014), or visual speech recognition (Noda et al., 2014; Tatulli and Hueber, 2017).

Technically, a CNN is a deep (multi-layer) neural network classically composed of one or several convolutional layers, pooling layers, fully-connected layers and one output layer. In a nutshell, a convolutional layer convolves an input 2D image with a set of so-called local filters, and then applies a non-linear transformation to the convolved image. The output is a set of so-called feature maps. Each feature map can be seen as the (non-linear) response of the input image to the corresponding local filter. One important concept in the convolutional layer is weight sharing which states that the parameters of each filter remain the same whatever the position of the filter in the image. This allows the CNN to exploit spatial data correlation and build translation-invariant features. A pooling layer then downsamples each feature map in order to build a scale-invariant representation. For example a so-called max-pooling layer outputs the max value observed on sub-patches of a feature map. The convolutional + pooling process can be cascaded several times. A CNN generally ends up with a series of fully-connected layers which have the same function as in a standard feed-forward deep neural network, as described in Section 2.3. Note that in a CNN, the first fully-connected layer usually operates over a vectorized form of the downsampled feature maps provided by the last pooling layer.

We thus first designed and trained such a visual CNN for efficient visual speech feature extraction from speaker’s lip images. Its architecture is represented in Fig. 1(b). This visual CNN maps a sequence of speaker’s lip images into the corresponding future
MFCC vector. Because we process a sequence of \((\tau_p + 1)\) images, the 2D convolution is extended to a 3D convolution including the temporal dimension, as illustrated by the red cube in Fig. 1(b). Then, the convolutional + pooling layers of the visual CNN and the fully-connected layers of the MFCC FF-DNN were selected. These subnetworks were merged using a fully-connected fusion layer, which is followed by other usual layers. The whole resulting network regressing audio and visual data into audio data is represented in Fig. 2. Each portion of present/past MFCC spectrogram and associated sequence of lip images are mapped into an output predicted (future) MFCC vector. This audiovisual model was anew trained with the audiovisual training data.

![Selected architecture for the audiovisual model.](image)

Figure 2: *Selected architecture for the audiovisual model.* Audio and visual pre-trained subnetworks from Fig 1 are merged using a 256-neuron fully-connected fusion layer.

Model selection and training: As concerns the CNN model processing the speakers’ lip images (used to initialize the audiovisual model), we tested 1, 2 or 3 groups of convolutional/pooling layers. As often done in computer vision tasks involving CNNs (e.g. (Noda et al., 2014)), the number of filters was incremented in each layer, e.g. 16 for the first layer, 32 for the second, 64 for the third. Filters of size \(3 \times 3, 5 \times 5, 10 \times 10\)
were tested. The pooling factor was fixed to 2×2.

For the audiovisual model (i.e. the one jointly processing audio and visual data to predict audio), we used the subnetworks of the selected audio and visual networks, and we only varied the number of fully-connected layers $N_{FC} \in \{1, 2, 3\}$, with either 256 or 512 neurons each.

The selected visual CNN has 3 groups of convolution+pooling layers, with 16, 32 and 64 filters of size $3 \times 3 \times (\tau_p + 1)$, and a single 256-neuron fully-connected layer, as represented in Fig. 1(b). Finally, the audiovisual model merges the subnetworks from the selected audio and visual models, using a 256-neuron fully-connected fusion layer, as represented in Fig. 2.

Finally, after model selection, both the visual-only model of Fig. 1(b) and the audiovisual model of Fig. 2 were (separately) trained on the entire NTCD-TIMIT dataset. In each experiment, the settings of the training were very similar to the ones used for training the MFCC spectrogram FF-DNNs (use of the Adam optimizer, use of 66% of the dataset for training, test on the remaining 33%, validation with early-stopping on 20% of the training data, etc).

2.5 Metrics

Two metrics were used to assess the prediction performance of the different models: (i) the mean squared error (MSE) between the predicted audio vector and the corresponding ground-truth audio vector (this MSE was also used as loss function to train the different models), and (ii) the weighted explained variance (EV) regression score, evaluating the proportion to which the predicted coefficients account for the variation
of the actual ones.

For each pair \((\tau_p, \tau_f)\) of “past context lag” and “prediction lag”, the MSE is first defined per MFCC coefficient (indexed by \(d\)) and per test sentence (indexed by \(k\)) as:

\[
MSE_{\tau_p,\tau_f,k,d} = \frac{1}{T_k - \tau_f - \tau_p} \sum_{t=\tau_p+1}^{T_k-\tau_f} \left(\hat{x}_{k,d,t+\tau_f} - x_{k,d,t+\tau_f} \right)^2 ,
\]

where \(T_k\) is the number of audio vectors (i.e. the number of acoustic short-term frames) in sentence \(k\), and \(\hat{x}_{k,d,t}\) and \(x_{k,d,t}\) are the \(d\)-th entry of respectively the predicted and ground-truth vectors at frame \(t\) for the \(k\)-th sentence. Then it is averaged across MFCC coefficients and across sentences:

\[
MSE_{\tau_p,\tau_f,k} = \frac{1}{D} \sum_{d=1}^{D} MSE_{\tau_p,\tau_f,k,d},
\]

\[
MSE_{\tau_p,\tau_f} = \frac{1}{N_{test}} \sum_{k=1}^{N_{test}} MSE_{\tau_p,\tau_f,k},
\]

where \(D = 13\) and \(N_{test}\) is the number of test sentences. Assuming a Gaussian distribution of the errors, a 95\% confidence interval of \(MSE_{\tau_p,\tau_f}\) is defined as:

\[
CI_{MSE}^{\tau_p,\tau_f} = MSE_{\tau_p,\tau_f} \pm \frac{1.96}{\sqrt{N_{test} - 1}} \sigma(MSE_{\tau_p,\tau_f,k}),
\]

where \(\sigma(.)\) denotes the empirical standard deviation evaluated over the set of test sentences.

The weighted explained variance (EV) regression score is defined as:

\[
EV_{\tau_p,\tau_f} = \frac{1}{N_{test}} \sum_{k=1}^{N_{test}} \sum_{d=1}^{D} w_{\tau_p,\tau_f,k,d} EV_{\tau_p,\tau_f,k,d},
\]

with

\[
EV_{\tau_p,\tau_f,k,d} = 1 - \frac{Var \left\{ \hat{x}_{k,d,t+\tau_f} - x_{k,d,t+\tau_f} \right\}}{Var \left\{ x_{k,d,t+\tau_f} \right\}},
\]
and

\[
w_{tp, \tau_f, k, d} = \frac{\text{Var} \{ x_{k,d,t+\tau_f} \}}{\sum_{d' = 1}^{D} \text{Var} \{ x_{k,d',t+\tau_f} \}},
\]

(10)

where \(\text{Var} \) denotes the empirical variance evaluated along the time dimension (the different frames of a sentence). For each sentence, the contribution of the \(d \)-th coefficient to the explained variance is weighted by the normalized variance of each individual coefficient (see Equation 10). This avoids a coefficient with very low variance to yield a very large (negative) EV value for that coefficient, which would pollute the average EV value.

The weighted EV is within the interval \([-\infty, 1]\). A value close to 1 indicates that the error between a predicted and ground truth data is small compared to the ground truth data itself, hence a strong correlation between them. This corresponds to a large prediction gain (larger than 1). An EV value close to 0 generally indicates a poor correlation and a very weak prediction gain (close to 1). Negative EV values indicate that the error is larger than the ground truth data, hence very inefficient predictions.

Note that, in contrast to the EV, the MSE is not weighted and not normalized in any way. Therefore, it is expected to be more sensitive than the EV to potential differences in datasets (e.g. recording material, waveform scaling to avoid clipping, etc.) This means that EV values can be more easily compared across our two datasets than MSE values.

Both MSE and EV are strongly related to a key metric of the predictive coding theory, which is the prediction gain (Gershø and Gray, 1992; Markel and Gray, 1976). Indeed, the latter is defined as the ratio of the ground truth signal power and the predic-
tion error power (i.e. the MSE):

\[
G_{\tau_p,\tau_f,k,d} = \frac{\sum_{t=\tau_p+1}^{T_k-\tau_f} (x_{k,d,t+\tau_f})^2}{\sum_{t=\tau_p+1}^{T_k-\tau_f} (\hat{x}_{k,d,t+\tau_f} - x_{k,d,t+\tau_f})^2} = \frac{\sum_{t=\tau_p+1}^{T_k-\tau_f} (x_{k,d,t+\tau_f})^2}{(T_k - \tau_f - \tau_p)MSE_{\tau_p,\tau_f,k,d}}.
\]

(11)

The lower the MSE the higher the prediction gain. Moreover, in the case where both ground truth signal and predicted signal are zero-mean, we have:

\[
EV_{\tau_p,\tau_f,k,d} = 1 - \frac{1}{G_{\tau_p,\tau_f,k,d}}.
\]

(12)

Therefore, the higher the prediction gain, the closer to 1 the expected variance. Those relations are given here for each MFCC coefficient and each sentence. Depending on how averaging across coefficients and sentences is performed, they can become more intricate after averaging. In the present study, we define an average prediction gain such as:

\[
G_{\tau_p,\tau_f} = \frac{1}{1 - EV_{\tau_p,\tau_f}}.
\]

(13)

3 Results and discussion

The prediction performances of the audio models trained and evaluated on LibriSpeech are presented in Fig. 3. The prediction performances of both audio and audiovisual models trained and evaluated on NTCD-TIMIT are presented in Fig. 4. Note that in this section we express the time lags \(\tau_p\) and \(\tau_f\) in ms for convenience of discussion. For example, \(EV_{75,50}\) denotes the weighted explained variance obtained when predicting a 25-ms audio frame 50 ms in the future, looking 75 ms in the past, i.e. using the current frame and the three previous past frames.
3.1 Speech prediction from audio data

General trends The results show that it is indeed possible to predict, to a certain extent, the spectral information in the acoustic speech signal in a temporal range of 200 ms following the current frame. As expected the accuracy of such predictions decreases rapidly when the temporal horizon τ_f increases. This evolution more or less follows a logarithmic shape for MSE_{τ_p,τ_f} and an exponential decay towards 0 for EV_{τ_p,τ_f}. These general trends are observed on both datasets (LibriSpeech and NTCD-TIMIT). The audio-only predictive models trained on the large-scale LibriSpeech corpus are globally slightly more accurate than the ones trained on the smaller dataset NTCD-TIMIT.
Figure 4: **Prediction performance of the audio and audiovisual models using NTCD-TIMIT**: Mean square error with 95% confidence interval (represented by the error bars) (left) and explained variance regression score (right).

This is likely due to the better generalization capacity of the networks when the dataset is larger (in terms of number of speakers and speech material per speaker).

At $\tau_f = 25$ ms, the weighted explained variance is about 0.75 for the audio-only model trained on LibriSpeech and about 0.65 for the one trained on NTCD-TIMIT (e.g. for $\tau_p = 75$ ms, $EV_{75,25} = 0.67$ on NTCD-TIMIT and $EV_{75,25} = 0.76$ on LibriSpeech; compare cyan solid lines in Fig. 3 and Fig. 4). This corresponds to an average predictive coding gain G_{τ_p,τ_f} around 2.8 and 4, respectively. This provides a rough estimate of the factor by which the power of the error signal (input minus predicted) to transmit by neural processes is reduced compared to the original input. It thus provides some quan-
tification of the amount of biological energy that the system might gain in exploiting a short-range (25 ms) predictive process.

At $\tau_f = 50$ ms, the weighted explained variance is about 0.5 on LibriSpeech (e.g. $EV_{50,50} = 0.51$) and about 0.4 on NTCD-TIMIT (e.g. $EV_{50,50} = 0.41$), which corresponds to an average prediction gain between 1.7 and 2. For the audio-only models trained on LibriSpeech, prediction becomes poor above $\tau_f = 250$ ms: The explained variance goes below 0.1 and keeps on decreasing towards 0. For models trained on NTCD-TIMIT, the performance degradation occurs a bit sooner: The explained variance goes below 0.1 for τ_f between 100 ms and 150 ms and prediction keeps on decreasing towards 0. Again, the difference between the results obtained with the two datasets is likely due to their difference in size and thus to the resulting difference in generalization properties of the corresponding models. Nevertheless, these results provide a rather coherent estimation of the temporal window in which acoustical predictions are available, typically around the duration of a syllable.

Impact of past information Another aspect of acoustic prediction concerns the role of the temporal context. Unsurprisingly, adding one context frame to the current one provides significant improvement in the prediction of the next frame for both datasets (e.g. $EV(0, 75) = 0.28$ and $EV(25, 75) = 0.33$ on LibriSpeech, $EV(0, 75) = 0.17$ and $EV(25, 75) = 0.22$ on NTCD-TIMIT). Adding a second context frame is also beneficial for the large LibriSpeech corpus (e.g. $EV(50, 75) = 0.36$) though more marginally for the smaller NTCD-TIMIT corpus (e.g. $EV(50, 75) = 0.23$). Such past information may enable the model to evaluate speech trajectories and extract relevant information
on the current dynamics, related e.g. to formant transitions, known to be crucial in speech perception. Adding a third frame of past context ($\tau_p = 75$ ms) only marginally improves prediction, but only for τ_f larger than about 75 ms and only for LibriSpeech data. Adding a fourth past frame ($\tau_p = 100$ ms) provides no further gain. While being related to a different task, such results may be compared to classical ones in automatic speech recognition, where adding first and second derivatives of the spectral parameters is classically considered as the optimal choice for reaching the best performance.

Prediction accuracy per class of speech sound A fine-grained analysis of the prediction accuracy for five major classes of speech sounds is presented in Fig. 5 (this analysis was conducted on the NTCD-TIMIT dataset for which phonetic alignment is available).

![Figure 5: Prediction accuracy per class of speech sound](image)

Figure 5: Prediction accuracy per class of speech sound: MSE for $\tau_f \in [25, 50, 75]$ ms and $\tau_p = 75$ ms; audio-only predictive model trained on the NTCD-TIMIT dataset.

Interestingly, the prediction accuracy at $\tau_f = 25$ ms is in a comparable range for vowels, fricatives, nasals and semivowels but is significantly lower for plosive sounds
(i.e. plosives exhibit a significantly larger MSE, see Fig. 5). This may be explained by
the difficulty to predict the precise timing of the occlusion release within the plosive
closure, and to predict the shape of the corresponding short-term spectrum from pre-
release signal. This pattern is also visible but decreased for predictions at $\tau_f = 50$ ms
and $\tau_f = 75$ ms, probably due to a ceiling effect of the prediction power at these tem-
poral horizons.

3.2 Speech prediction from audio and visual data

The performance of visual-only models (i.e. predictive models of acoustic speech that
rely only on lip images, trained and tested on the NTCD-TIMIT corpus) is presented in
Fig. 6 (left).

![Graph showing performance of visual-only and audiovisual models]

Figure 6: Performance of the visual-only and audiovisual models using NTCD
TIMIT: Explained variance obtained when considering only the visual modality (left)
and difference of explained variance between audio and audiovisual models (right).

As expected, the information provided by the visual modality is real though limited.
For example, the best performance obtained at $\tau_f = 0$ ms is $EV_{75,0} = 0.37$ only, which corresponds to a prediction gain of 1.59. This result can be put in perspective with respect to the literature on automatic lip-reading (also known as visual speech recognition) where a typical performance of a visuo-phonetic decoder which does not exploit any high-level linguistic knowledge (via statistical language models) is between 30% and 40% (i.e. 60-70% phone error rate). Similarly to the audio-only models, adding past context frames to the current one provides significant improvement in the prediction accuracy. Most of this improvement is observed when considering past information at $\tau_p = 25$ ms, i.e. one additional lips image. Adding another past context frame (i.e. $\tau_p = 50$ ms) only marginally improve prediction, and going to 3 past frames does not provide further improvement.

Interestingly, the performance of visual-only models decreases relatively slowly in comparison with the rapid decrease in prediction accuracy for the audio models (for the NTCD-TIMIT dataset) in the same range of time lags. For example, for $\tau_f = 50$ ms we have $EV_{50,50} = 0.32$, and for $\tau_f = 75$ ms we have $EV_{50,75} = 0.25$. However, on average, visual modality does not seem to convey useful information above $\tau_f = 100$ ms (e.g. at $\tau_f = 150$ ms, $EV_{50,150} = 0.06$). These results may contribute to the debate in the neuroscience literature on the fact that the lip movements could be in advance on the sound, because of anticipatory processes in speech production (see, e.g., (Chandrasekaran et al., 2009; Golumbic et al., 2013)). The prediction of the spectral parameters from the lip information is maximal for the frame synchronous with the current input lip image (i.e. $\tau_f = 0$ ms) (or for the next frame ($\tau_f = 25$ ms) only for $\tau_p = 50$ ms) and then decreases smoothly with time. This is not in agreement with a
stable advance of lips on sound.

As illustrated in Fig. 4, combining audio with visual information improves the prediction over using audio only (compare solid lines with dashed lines). The gain is small but real, increasing the weighted explained variance by up to 0.1 depending on τ_f and τ_p. In order to better illustrate the dynamics of the gain brought by the visual input, we displayed in Fig. 6 (right) the difference of weighted explained variance between audiovisual models and audio-only models. Importantly, results show a peak in the gain provided by the visual input for $\tau_p = 75$ ms. Therefore, even if there is no systematic lead of lips on sounds, there is a temporal window between 50 ms and 100 ms where the use of visual information is most helpful.

Qualitative evaluation All the above-presented quantitative results were averaged over many test sentences and speakers. Here, we finally discuss from a qualitative point of view the accuracy of the predicted spectral content at the utterance level. An example of a prediction errors at $\tau_f = 100$ ms using either an audio-only or audiovisual predictive model is shown in Fig. 7.

As concerns the audio-only model (see blue in plot (g)), peaks in prediction errors are mainly observed either at the vowel onset of consonant-vowel sequences (e.g. [d-iy], [l-(hh)-er]) or at the onset of the consonant of vowel-consonant sequence (e.g. [erm], [er-t]) for which the precise initiation of the trajectory after a period of relative stability is hardly predictable. As concerns the audiovisual model, the average gain is accompanied by a large range of variations, leading to fluctuations between large gains and large losses provided by lip movements. A substantial gain from the visual
Figure 7: Example of prediction errors for $\tau_p = 75$ ms and $\tau_f = 100$ ms using an audio-only vs. an audiovisual model (a) original audio waveform with phonetic segmentation (with TIMIT phonetic labels) for sentence *sil100* recorded by speaker 57M of NTCD-TIMIT corpus, (b) corresponding lip image stream (downsampled to 15 fps to improve figure readability), (c) evolution of MSE_{τ_p,τ_f} over the utterance for both audio and audiovisual predictive models.

Input may occur when the speaker produces preparatory lip gestures before beginning to speak as in the [s] onset after the silence at the beginning of the utterance. Visible though poorly audible gestures as the closure for [m] in [l-ey-m] also lead to a visual gain in prediction. Another source of gain could be related to a co-articulation effect, when lips anticipate the upcoming vowel as during the first [d] in the utterance where the stretching gesture starts before the onset of the [iy]. Conversely, cases of error increase due to the visual input concern occurrences of non-visible tongue gestures, e.g. intensity decrease in the vowel [uw] due to displacement of the tongue apex in the dental region in the following [nd] cluster around 0.4 s that is detected in the auditory stream but not in the visual stream.
3.3 A database of prediction errors for future neurocognitive experiments

A number of recent neurophysiological experiments have tested the existence and characteristics of predictive patterns in the audio and audiovisual responses to speech in the human brain (see, e.g., (Van Wassenhove et al., 2005; Arnal et al., 2009; Tavano and Scharinger, 2015; Ding et al., 2016) and a recent theoretical review of predictive processes (Keller and Mrsic-Flogel, 2018)). Importantly, these experiments lack a ground truth basis on the natural predictive structure of audio and audiovisual speech, which can lead to misinterpretations or over-generalizations of observed patterns (Schwartz and Savariaux, 2014). The present study could provide an interesting basis for future studies, providing a quantitative knowledge on the amount of “predictability” available in the physical signals considered in the simulations. The source code used to format the data, train and evaluate both audio and audiovisual predictive models on LibriSpeech and NTCD-TIMIT datasets, as well as all simulation results, have been made publicly available on https://github.com/thueber/DeepPredSpeech (for source code) and https://zenodo.org/record/3528068 (for data, simulation results on NTCD-TIMIT and pre-trained models, DOI: 10.5281/zenodo.1487974). We believe that such results could be of interest for future neurophysiological experiments aiming at testing neural predictions in speech processing in the human brain.
Conclusion

In the general framework of predictive coding in the human brain, the present study aimed at quantifying what is really predictable online from the speech acoustic signal and the visual speech information (mostly lip movements). We proposed a set of computational models based on artificial (deep) neural networks which were trained to predict future audio observations from past audio or audiovisual observations. Model training and evaluation were performed on two large and complementary multi-speaker datasets, respectively for audio and audiovisual signals, both publicly available. The key results of the present study are:

- It is possible to predict the spectral information in the acoustic speech signal in a temporal range of about 250 ms. At 25 ms, prediction enables to reduce the power of the signal to transmit by neural processes (i.e. the error signal instead of the input signal) by a factor up to 4. But the accuracy of the prediction decreases rapidly with future time lag (e.g. with average prediction gain obtained on the larger of our two tested datasets around 2 (EV ≈ 0.5) at 50 ms (with \(\tau_p = 75 \) ms), 1.6 at 75 ms (EV=0.37) and almost 1 (EV=0.05), i.e. no gain, at around 350 ms).

- The information provided by the visual modality is real but limited. Prediction accuracy of the predictive model based on visual-only information does not evidence a stable advance of lips on sound (as sometimes stated in the literature). The maximum average gain provided by the visual input in addition to the audio input is about +0.1 of explained variance and is obtained for a prediction at 75 ms.

- Best prediction accuracy is obtained when considering 50 to 75 ms of past context,
for both audio and audiovisual models.

- Plosives are more difficult to predict than other types of speech sound.

This study hence provides a set of quantitative evaluations of the amount of auditory and audiovisual predictions at the phonetic level, likely to be exploited in predictive coding models of speech processing in the human auditory system. These evaluations are based on a specific class of statistical models based on deep learning techniques. Of course, it can be envisioned that the amount of regularities in the speech signal might be actually larger than what has been captured by deep learning techniques in the present study. Still, the large amount of data exploited here, and the acknowledged efficacy of deep learning techniques, make us confident that the estimations provided in this work constitute a reasonable estimation of the order of magnitude of possible regularities captured by statistical models.

As stated in the Introduction, predictive coding should operate at a number of higher stages in speech neurocognitive processing, related to lexical, syntactic and semantic/pragmatic levels exploiting wider temporal scales. The present study should hence be considered as just a first stage in the analysis of predictive coding in speech processing. It provides a baseline along which further studies on higher-level predictive stages can be evaluated quantitatively, comparing the amount of additional predictions that can occur from linguistic models to this audiovisual phonetic reference. Future work will focus on the integration of this linguistic level in a more complete neurocognitive architecture for speech predictive coding.
Acknowledgments

This work has been supported by the European Research Council under the European Community Seventh Framework Programme (FP7/2007-2013 Grant Agreement no. 339152, Speech Unit(e)s).

References

Schwartz, J.-L. and Savariaux, C. (2014). No, there is no 150 ms lead of visual speech on auditory speech, but a range of audiovisual asynchronies varying from small audio lead to large audio lag. *PLoS Computational Biology*, 10(7):e1003743.

