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,U Synthesis of Flexible Rotor-Magnetic 
Bearing Systems 

Kenzo Nonami and Takayuki Ito 

Abstruct- The p synthesis design method was evaluated for 
a flexible rotor magnetic bearing system with a five-axis-control 
system using both simulations and experiments. After modeling 
the full-order system using the finite element method, we obtained 
a reduced-order model in the modal domain by truncating the 
flexible modes. After choosing appropriate weighting functions 
with respect to frequency, we designed the p-synthesis control 
system using the Lr-toolbox in MATLAB. We then carried out 
simulations of the control system for a flexible rotor magnetic 
bearing system with a five-axis-control system and obtained 
good performance. Next, we conducted experiments to verify the 
robustness of the controllers on a test rig during initial levitation. 
The controllers provided robust stability and performance over 
a wide range of parameter variations in the test rig. 

I. INTRODUCTION 
CTIVE magnetic bearings ( A M B ’ s )  use electromagnetic A force to provide noncontact support for rotors in high- 

speed rotating machinery. When applied to a rotor systems, 
magnetic bearings have the advantage of being contactless, 
of allowing high speed rotation and providing active vibration 
control. It is therefore necessary to use an asymptotically stable 
and robust controller for magnetic bearing to support rotor 
systems. Most controllers in use today were designed using 
proportional-integral-derivative (PID) strategy. However, it is 
not easy to satisfy the requirements for robust performance 
using PID control. Of course, modern control theory for multi- 
input and multioutput (MIMO) systems can be applied to 
magnetic bearing systems as a form of advanced control. 
However, modern control theory cannot treat the uncertainty 
inherent in the mathematical models used to design control 
systems. Thus, robust control theory has attracted considerable 
attention for designing systems to control magnetic bearings 
[11-1121. 

The p synthesis method may be used to design controllers 
that provide robust stabilities and performance. Unfortunately, 
p synthesis involves an iterative and nonconvex numerical 
procedure known as D-K iteration [3], [4]. 

Previously Fujita et al. obtained good experimental results 
for a flexible beam magnetic suspension system [14]. Fujita 
et al. also presented the very similar research work for a 
magnetic bearing system [ 151. Their control system design 
approach is also very similar to that presented in this paper. 
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Though the results of Fujita et al. show almost the same: 
performance for the H ,  controller and p controller, the results; 
of our experiments show drastically different performance. The: 
p controller exhibits significantly greater robustness to mass; 
variations than the H ,  controller. It seems that the strong 
robustness is caused by the high gain of the p controller in1 
the lower frequency range. 

In this paper, p synthesis is applied to a flexible rotor- 
magnetic bearing system to examine its performance robust-. 
ness and to compare it to that of H ,  control. We obtained1 
excellent results with D-K iteration and found that the static: 
stiffness of the magnetic bearing increases with each succes-. 
sive D-K iteration. Tests were also conducted to determine the 
stability robustness of the controllers with respect to added 
rotor mass. Successful rotor levitation was achieved up to 
a 29% mass increase for the ITm controller, while the p, 
synthesis controller could levitate with up to a 73% variation. 

11. MODELING OF FLEXIBLE 
ROTOR-MAGNETIC BEARING SYSTEMS 

The dynamics of the flexible rotor magnetic bearing system 
will be described in this section. For simplicity, the analysis is; 
performed only in the X direction and all the coupling effects; 
among the different axes and iioncollocation are ignored. For 
the test rig considered, the rotor can be modeled using seven 
mass stations, as shown in Fig. 1. 

A. Flexible Rotor Dynamics 

method as follows: 
The 14th-order model is obtained using the finite element 

where q = [x181xz8zx383x484x5~~x~~~x~8~]T and x,, 8, 
( i  = 1, . . . .7) represent the displacement and angle of mass 
stations of the rotor, respectively, 2 3  and 2-5 represent the 
displacements of the electromagnet locations, MO is the rotor 
mass matrix, and KO is the rotor stiffness matrix. 

B. Actuator Dynamics 

expression 
The attractive force due to an electromagnet is given by the 

N(io + i )  
I x o + x  -+- 
P bo 

2 
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Fig. I. Model of flexible rotor-magnetic bearing system 

where P is the attractive force, KO is the permeability of free 
space, A i s  the air gap area of one pole, B is the magnetic 
flux density, N is the number of winding turns, i o  is the bias 
current, xo is the nominal gap length, i is the control current, z 
is the rotor displacement, 1 is the length of the ferro magnetic 
path, and P is the permeability of the bearing iron. Using 
Taylor series expansion for small values of i and we obtain 
the following attractive force with linear terms: 

Uncertainty 

P e po - k 1 X  + kzi = po + p (3) Fig. 2. Plant and closed-loop system having multiplicative uncertainty. 

where 

and p0 is the bias attractive force. Considering the pair of at- 
tractive forces, the magnetic force P due to the electromagnet 
along the radial direction X can be modeled as the following 
equation: 

P' = PI - P2 = -2k1z + 2kzi (4) 

C. Plant Dynamics 

attractive forces given in (4). This results in 
The flexible rotor shown in Fig. 1 is acted upon by the 

( 5 )  MOij + Koq = Fp' + D 
where 

I T  0 0 0 0 1 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0  

F = [  

P; = 2k1x3 - 2k2il:  forces of the left AMB 
P: = 2k125 - 2k2ir :  forces of the right AMB 

P' =[Pi PklT 

and D represents forces due to the parameter uncertainty and 
external disturbance. 

The bias attractive forces and the control forces in ( 5 )  can 
be separated as follows: 

MO4 + Kq Fii + D ( 6 )  
where PI and Pz are the top and bottom magnetic forces, 
respectively. Equation (4) expresses the net actuator force. where we have the equation shown at the bottom of the page. 

2 = [il i,]T K = KO + K, 
Ki=d iag (O 0 0 0 -2kl 0 0 0 -2kl 0 0 0 0 0) 

0 0 0 0 - 2 k ~ 0 0 0  0 0 0 0 0  
0 0 0 0  0 0 0 0 - 2 k ~ 0 0 0 0 0  Fi = 
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Fig. 4. Equivalent block diagram with linear fractional transformation. 
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Fig. 5.  Frequency weighting functions and error. 

Using the modal analysis technique, we can choose the 
following normalized modal matrix 

q = @[. (7) 

Equation (6) can now be transformed to the following form 
in modal coordinates: 

where 

7 , . . . . . . . . . . . . . . . . . .  --. . . . . . . . . . . . . . . . . . .  .T 

............................................................ maX.~.mum..~ngul~r..va1Ue ............................. 4 i 

Frequency (rad/s) 

Fig. 6.  Maximum singular value and ,U bounds of H w  controller. 
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Fig. 7. Maximum singular value and p bounds of p1 controller. 

and where A is the damping matrix. The damping rati'o 
C is determined empiricallly. The state equation of tlhe 
electromagnetic-mechanical system is given by 

where 

(9') 

If the rotor displacement is measured at the magnetic bearings, 
the output equation is 

where 

D. Reduced-Order Model 

Because this MIMO system is originally unstable in (an 
open loop, the control objective is to levitate the rotor and 
achieve stability. In this case, there are only two unstable 
rigid modes, and all of the flexible modes are stable. Since 
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Fig. 8. Maximum singular value and p bounds of pz controller. 
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it is difficult to design and execute a controller based upon 
a high-order model of a flexible system, the construction of 
a reduced-order model is highly desirable. Here, a reduced- 
order model is constructed by truncation of the higher order 
modes in modal coordinates. In this case, the state equation 
and the output equation including the ith order mode may be 
written as follows: 

kT = A7.ic, + B,u + D, 

y = C,x, = [icy i c 5 y  (1 1) 

where 

From the standpoint of stabilizing the rigid body modes, 
we may consider a reduced-order model in which not only 
the rigid body modes but also the first bending mode are 
retained {i = 3 in (1 l ) ] .  In addition, the closed-loop system 
must maintain the robust stability without spillover caused by 
ignored high-frequency modes. 

111. p SYNTHESIS THEORY 

The background, framework, and control system design 
procedure of p synthesis are given in [3], [4], and [13]. 

Time [SI 

Hm control 
(a) 

I I 

Fig. 10. Simulated impulse response 

Consider a model which has multiplicative uncertainty as 
indicated in Fig. 2. Regardless of whether the uncertainty is 
on the output side or on the input side, the same situation 
is obtained except that the order of the multiplication of G 
and K is changed. In H ,  control, the stability conditions are 
based on the small gain theorem. In this case, the maximum 
singular value of A is limited and the structure of A is a full 
complex matrix. That is, there are uncertainties even among 
nondiagonal elements. The weighting function for the robust 
stability of the mixed sensitivity problem tends to be larger 
than necessary. Moreover, in the nominal performance, no 
uncertainties are taken into consideration in the performance. 
These two problems may be said to be problem of H ,  
control. 
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Fig. 11. Rotor test rig. 

Fig. 12. Rotor modeshapes and natural frequencies with indicated bearing and sensor locations 

In p synthesis, the design problem is as shown in Fig. 3. 
The p synthesis framework consider a system with structured 
uncertainty A and attempts to find a p controller which 
achieves robust stability, nominal performance, and robust 
performance simultaneously. Fig. 3 can be rearranged to yield 
Fig. 4. In this case, M is given as 

where 

S = ( I  + GK)-l, T = G K ( I +  GK)-l (13) 

are given. From (1 2), the transfer function from 'U to e is W1T. 
which is precisely the robust stability condition itself, namely 



508 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 4, NO. j, SEPTEMBER 1996 

Host computer 

Fig. 13. Configuration of DSP-based control system 

TABLE I 
PARAMETER VALUES 

Parameter 71 Value 

0.03 kg 
0.15 kg 
1.0 kg 
0.5 kg 
1.0 kg 
0.0 kg 
0.09 kg 

0.09 m 
0.09 m 
0.091 m 

L6 0.091 m 

Parameter Value 

Diameter 

Bias current io 1 3.OA ~ 

0.3 

0 0.1 0.2 0.3 0.4 

Time[ sec] 

without load (0%) 

(4 

Bias attractive 
force 

Damping ra ti0 
(i=l, ..., 14) 

Permeability of 

Permeability o f  
free space 

0 0.1 0.2 0.3 0.4 

Time[sec] 

with load of 0.8kg (15%) 

(b) 

Fig. 14. Levitation time history with HO” control, two-axis control. 
In addition, the transfer function from 20 to z is WzS, which 
is nothing but the nominal performance itself, namely 

l l ~ Z S l l m  < 1. (15) 

In point of fact, p synthesis is not only achieves these two 
performances but also imposes the following condition as 
robust performance: 

__ SUP l l~u(M,A)l lm 51. (16) 
g(a)51 

Here, F,, is the linear fractional transformation and is defined 
by 

& ( M ,  A) = Mzz + M2iA(I - MiiA)plMiz. (17) 

However, it is virtually impossible to find conditions that 
will satisfy (16). Therefore, consider the following expression 
instead of (16): 

PLa(M) < 1 (18) 

where, p a ( M )  < 1 is defined by 

p a ( M )  is called a structured singular value. The denomi- 
nator of (1  9) indicates the smallest perturbation that causes 
“instability” in the constant matrix feedback loop. As the 
structured singular value is inverse, as shown in (19), the 
smaller p means that the limit of destabilization increases 
for parameter variations, and the closed-loop system provides 
stronger robust performance. It is known that p a ( M )  has the 
following relation: 

where D is the scaling matrix. Since p ~ a ( M )  cannot typically 
be computed, we calculate the upper bound inf F(DMD)-’. 

Iv. DESIGN OF p CONTROL SYSTEM 

We designed the control system using D-K iteration to 
find an approximate solution. The fourth-order system is 
used for control system design as reduced-order model G(s ) .  
The rotor has the first bending critical speed at 290 Hz 
(17 400 r/min) and the second at 690 Hz (41 400 r/min) as 
shown in Fig. 12. The operating speed of this rotor is about 
35000 r/min (583 Hz) between the first bending mode and 
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Fig. 15. Levitation time history with f i j  control, two-axis control. 

0 0.1 0.2 0.3 0.4 

Time[ sec] 
with load of 2.5kg (45%) 

i:b) 

Levitation time history wit!h 112 control, two-axis control. Fig. 16. 

the second bending mode. This means this test rotor is a 
typical flexible rotor. Fig. 5 shows the frequency weighting 
functions Wl and Wz the error introduced by approximating 
the full-order model by the reduced-order model. We have 
chosen the weighting functions of and taking into account 
above mentioned facts. However, a considerable number of 
"cut and try" iterations were required to pick Wl and Wz. 
Using the weighting functions Wl(s), W ~ ( S )  shown in Fig. 5 ,  
a 12th-order generalized plant P ( s )  was determined as shown 
in Fig. 3, The weighting filters W1 (s), W2 (s) were selected 
based on the desired controller band width and the frequency 
of the truncated vibration modes. An H ,  controller was 
designed using these weights. Next, we performed p analysis 
for the H ,  controller. Fig. 6 shows a plot of p versus 
frequency. The maximum value of p was 4.6, which implies 
that robust performance is not achieved as it dose not satisfy 
(1 8). The scaling matrices resulting from the p calculation 
were fitted over frequency with a constant matrix. The new 
generalized plant Pz was constructed so as to include this 
scaling matrix. The resulting controller is referred to as the p1 
controller. The plot of p for this controller is shown in Fig. 7 
and the maximum p is 0.82, therefore robust performance is 

achieved in this system with the p controller. Another D-E< 
iteration resulted in the p2 controller which achieved an evein 
smaller peak p value, as shown in Fig. 8. Fig. 9 shows the 
magnitude plots of the designed controllers. The pz controller 
has the highest gain in the llower frequency region, so the 
pz controller is expected to have strong robustness, since 
the sensitivity of the closed-loop system is reduced at low 
frequency. Fig. 10 shows the simulated impulse response for 
the three controllers. The best performance is obtained by a 
p2 controller. 

V. EXPERIMENTAL RESULTS 

A. Test Rig 

The test rig for the magnetic bearing system is shown 
in Fig. 11 and the parameter values for this rig and its 
corresponding rotor model are given in Table I. An induction 
motor rotor is located in the middle of the shaft and two radial 
magnetic bearings are located on both sides of the motor rotor. 
A magnetic thrust bearing is located at left end of the shafit. 
Fig. 12 shows the rotor geometry and the free vibration modes. 
Fig. 13 shows the configuration of the experimental set up. Fcir 
our robustness experiments, we can hang weight using wire 
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with load of 1.58kg (29%) 

(a) 

-0.2 
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Time[sec] 
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(b) 

Fig. 17. Levitation time history with H m  control, four-axis control. 

on the right-hand side end of the rotor. The rotor cannot be 
rotated with the added mass. 

B. Two-Axis Control Experiments 

For these tests, the X direction motion was controlled by 
either the H ,  or the p controller, while the Y direction motion 
was controlled by analog PID control. Figs. 14(a), 1S(a), and 
16(a) show the nominal levitation time history for the H,, p1, 

and p2 controllers respectively. It was found that the steady 
state error was smallest with the p2 controller due to a strong 
integrator action. Figs. 14(b), 15(b), and 16(b) show robust 
performance of the three controllers for variations in the rotor 
mass (nominal is 5.5 Kg). The upper stability limits of mass 
variation are 15% for H,, 40% for p1 and SO% for p2. It 
can be seen that the closed-loop system with 1-12 controller 
provides superior stability robustness and rejection of low- 
frequency disturbances It is not easy to realize similar good 
performance using a conventional analog compensator. 

C. Four-Axis Control Experiments 

For the next set of tests, both of the X and Y directions were 
controlled by DSP-based H ,  or p controllers. Figs. 17(a), 

. . . . . . . . . . . . . . . . . .  .: . . . . . . . . . . . . . . . . . .  

. ................. . . . . . . . . . . . . . ~  * ...... 

... . . . . . . . . . . . . . . . . . . .  :. . . . . . . . . . . . . . . . . .  

0 0.2 0.4 0.6 0.8 

Time[sec] 

without load (0%) 

(a) 

0 0.2 0.4 0.6 0.8 
Time[sec] 

with load of 3.lkg (56%) 

(b) 

Fig. 18. Levitation time history with J L ~  control, four-axis control. 

18(a), and 19(a) show the levitation time history. The nominal 
performance shown here is very similar to that in Section V- 
B. However, the settling after lift-off for the 1-12 controller 
takes twice the time required in the two-axis case. This is, 
in fact, longer than the levitation. Therefore, the nominal 
performance in the p control system presented here is inferior 
in terms of setting time in comparison to the analog PID 
control system. Next, the robust performance of the three 
controllers was examined. Figs. 17(b), 18(b), and 19(b) show 
the levitation time histories for the three controllers when the 
mass is increased to its upper stability limit. The upper limits of 
the mass variation from the nominal value are 29% for H,, 
56% for 1-11 and 73% for 1-12. We believe that the four axis 
control displays greater robustness because the PID controller 
used in the two axis tests are not as robust to the added 
mass. These p controllers were designed as a continuous-time 
compensator at first, and then transformed to a discrete- 
time compensator for implementation on the DSP using a 
bilinear transformation. If these compensators were directly 
designed as a discrete-time compensator, performance could be 
improved even more. These results are qualitatively similar to 
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0 0.2 0.4 0.6 0.8 

Time[sec] 
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1 0.2 

0.1 .................... > ........................................... ; ..................... I / :  

0 0.2 0.4 0.6 0.8 

Time[sec] 

with load of 4.0kg (73%) 

(b) 

Fig. 19. Levitation time history with p2 control, four-axis control. 

the simulation results. Fig. 20 shows the experimental impulse 
responses corresponding to Fig. 10. These results are also 
qualitatively in good agreement with the simulations results. 
We carried out the rotation test up to 35000 r/min for the 
nominal rotor (without added mass). In cases of the rotation 
test, we observed nearly the same performance for the H,, p1, 

and p2 controllers. 

VI. CONCLUSIONS 

In this paper, we applied p synthesis theory to problem 
of designing controllers for flexible rotodmagnetic bearing 
systems. In simulations and experiments the p control system 
provided greater stability robustness and rejection of low- 
frequency disturbances than H ,  control. Our conclusions are 
summarized as follows: 

Stabilization of a rotor in active magnetic bearings can 
be realized with high stiffness by controllers designed 
via p synthesis. 
The p controllers exhibited much greater stability ro- 
bustness than H ,  control to variations in rotor mass. 
Decreasing the structured singular value p via D-K 
iteration is verv imDortant to achieving good robust 

. . . .  . . . . . . . . . . .  ................. 

.,- a 

-0.1 
0 0.1 0.2 0.3 0.4 

Time[sec] 

H m  control 
(a) 

0 0.1 0.2 0.3 0.4 
Tiine[sec] 
p, control 

(bp 

-0 1 
0 0 1  0 2  0 3  0 4  

Time[ sec] 
p 2  control 

(c)  

Fig. 20. Experimental impulse responses. 

performance, as shown by the test of the p1 and p 2  

controllers. 
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