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General

Principal Component Analysis (PCA)

Goal

Given a K-dimensional r.v., x, find U and z such that

Observation

x = U z

z has uncorrelated components zi

NB: Because of lack of uniqueness, U is often assumed to be

unitary.
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General

Independent Component Analysis (ICA)

Goal

Given a K-dimensional r.v., x, find H and s such that

Observation

x = H s (1)

s has mutually statistically independent components si

!“Blind” terminology: only outputs xi are observed.

I3S
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General

Uniqueness

Inherent indeterminations

if s has independent components si, so has ΛP s

where Λ is invertible diagonal and P permutation

Solutions

If (A, s) solution, then (AΛP , P TΛ−1s) also is.

“Essential uniqueness”: unique up to a trivial filter, i.e. a

scale-permutation

Whole equivalence class of solutions ⇒ Look for one

representative.

I3S
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General

Decorrelation vs Independence

Example 1: Mixture of 2 identically distributed

sources

Consider the mixture of two independent sources x1

x2

 =

 1 1

1 −1

 ·
 s1

s2


where E{s2

i} = 1 and E{si} = 0. Then xi are uncorrelated:

E{x1 x2} = E{s2
1}− E{s2

2} = 0

But xi are not independent since, for instance:

E{x2
1 x2

2}− E{x2
1}E{x2

2} = E{s4
1} + E{s4

2}− 6 #= 0

! demoICA2x2
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General

PCA vs ICA

Example 2: 2 sources and 2 sensors
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General

Applications (1)

Sensor Array Processing

• Localization with reduced diversity

• Localization with ill calibrated antennas

• Detection and/or extraction with unknown antennas

(eg. sonar buoys, biomedical, audio, nuclear plants...)

• Blind extraction (eg. ComInt: interception, surveillance)

I3S
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General

Applications (2)

Factor Analysis

• Chemometrics

• Econometrics

• Psychology

Denoising

Compression

Arithmetic Complexity

Machine Learning

Exploratory Analysis

I3S
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General

Taxonomy (1)

Static/Dynamic and Noisy/Noiseless:

x[n] = H " s[n] + v[n] (2)

Linearly Invertible/Under-Determined:

Number of sources : P
UnderDet

≤>
Invertible

K : Number of sensors

I3S
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General

Taxonomy (2)

Transmit/Receive diversity:

Sources Sensors

1 K

1 SISO SIMO

P MISO MIMO

I3S
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General

Taxonomy (3)

Assumptions required on sources:

H1. use of Time coherency of s(n): separation by exploiting

spectral differences.

H2. Sources si are mutually statistically independent

• Static case: r.v. statistically independent (but may have

identical p.s.d.) → ICA

• Dynamic case: Sources are i.i.d. (i.e. white) processes

H3. Sources are Discrete (but may be stat. dependent)

H4. Sources are non stationary (and have different time profiles)

I3S
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General

Historical survey (Static MIMO only)

The ancestors: Dugué’51, Darmois’53, Feller’66, Friedman’74, Donoho’80

The first shy steps in ICA: Bar-Ness’82, Jutten’83, Fety’88

The first steps ins Multi-way: Carroll-Chang’70, Harshman’70,

Kruskal’77

First closed-form solutions: Comon’89, Cardoso’92

First IT frameworks: Comon’91, Cardoso’93, Comon’94, Bell’95,

Delfosse-Loubaton’95

Specific improvements: Hyvarinen’97, Pajunen’97, Amari’98,

Grellier’98, Parra’2000

Recent advances: Cao-Liu’96, Moreau-Pesquet’97, Taleb-Jutten’97,

Comon’96, Ferreol-Chevalier’98, Belouchrani’98, Lee-Lewicki’99, deLathauwer’00,

Pham-Cardoso’2000, Yeredor’2000, Sidiropoulos-Bro’00
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General

General bibliography

Books on HOS, ICA, or Multi-Way:

Lacoume-Amblard-Comon’97

Hyvarinen-Karhunen-Oja’01

Smilde-Bro-Geladi’04

Comon’07

Other related books:

Kagan-Linnik-Rao’73

McCullagh’87

Nikias-Petropulu’93

Haykin’2000
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Contents
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Algebraic tools

Back to PCA

Definition

PCA is based on second order statistics

Observed random variable x of dimension K. Then ∃(U , z):

x = Uz, U unitary

where Principal Components zi are uncorrelated

ith column ui of U is called ith PC Loading vector

Two possible calculations:

• EVD of Covariance Rx: Rx = UΣ2UH

• Sample estimate by SVD: X = UΣV H

I3S
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Algebraic tools

Standardization

Find a linear transform L such that vector x̃
def
= Lx has unit

covariance. Many possibilities, including:

PCA yields x̃ = Σ−1 UH x

Cholesky Rx = LLH yields x̃ = L−1 x

Remarks

Infinitely many possibilities: L is as good as LQ, for any unitary

Q.

If Rx not invertible, then L not invertible. One may use

pseudo-inverse of Σ in PCA to compute L.

I3S
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Algebraic tools

Plane rotations

Application of a Givens rotation on both sides of a matrix allows

to set a pair of zeros in a symmetric matrix;
c . s .

. 1 . .

−s . c .

. . . 1




X x 0 x

x . x .

0 x X x

x . x .




c . −s .

. 1 . .

s . c .

. . . 1


Same result obtained:

either by setting 0

or by maximizing X’s

I3S
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Algebraic tools

Jacobi sweeping for PCA

Cyclic by rows/columns algorithm for a 4 × 4 real symmetric

matrix


. . . .

. . . .

. . . .

. . . .

 →


X 0 x x

0 X x x

x x . .

x x . .

 →


X x 0 x

x . x .

0 x X x

x . x .

 →


X x x 0

x . . x

x . . x

0 x x X

 →


. x x 0

x X 0 x

x 0 X x

0 x x .

 →


. x . x

x X x 0

. x . x

x 0 x X

 →


. . x x

. . x x

x x X 0

x x 0 X


X : maximized, x: minimized, 0: canceled, . : unchanged
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Statistical tools

Statistical independence

Definition

Components sk of a K-dimensional r.v. s are mutually

independent

+
The joint pdf equals the product of marginal pdf’s:

ps(u) =
∏
k

psk
(uk) (3)

Definition

Components sk of s are pairwise independent ⇔ Any pair of

components (sk, s#) are mutually independent.

I3S
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Statistical tools

Mutual vs Pairwise independence (1) (
Example 3: Pairwise but not Mutual independence

Bag containing 4 Bowls denoted {RB, YB, GB, RYB}:
1 Red, 1 Yellow, 1 Green, 1 with the 3 colors.

Equal drawing probabilities:

P (RB) = P (Y B) = P (GB) = P (RY G) = 1/4

Event “R”
def
= draw a bowl containing Red ⇒

P (R) = P (RB) + P (RY G) = 1/2

Then P (R ∩ Y ) = P (RY G) = 1/4

equal to P (R) ∗ P (Y ) ⇒ Pairwise independent Events

But P (R ∩ Y ∩G) = P (RY G) = 1/4

not equal to P (R) ∗ P (Y ) ∗ P (G) = 1/8 ⇒
Events are not Mutually independent

I3S
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Statistical tools

Mutual vs Pairwise independence (2)

Example 4: Pairwise but not Mutual independence

3 mutually independent BPSK sources, xi ∈ {−1, 1}, 1 ≤ i ≤ 3

Define x4 = x1x2x3. Then x4 is also BPSK, dependent on xi

xk are pairwise independent:

p(x1 = a, x4 = b) = p(x4 = b |x1 = a).p(x1 = a) =

p(x2 x3 = b/a).p(x1 = a)

But x1 and x2 x3 are BPSK ⇒
p(x2 x3 = b/a).p(x1 = a) = 1

2 · 1
2

But xk obviously not mutually independent, 1 ≤ k ≤ 4

In particular, Cum{x1, x2, x3, x4} = 1 #= 0

I3S
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Statistical tools

Mutual vs Pairwise independence (3)

Darmois’s Theorem (1953)

Let two random variables be defined as linear combinations of

independent random variables xi:

Z1 =
N∑

i=1

ai xi, Z2 =
N∑

i=1

bi xi

Then, if Z1 and Z2 are independent, those xj for which ajbj #= 0 are

Gaussian.

I3S
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Statistical tools

Mutual vs Pairwise independence (4)

Corollary

If z = C s, where si are independent r.v., with at most one of

them being Gaussian, then the following properties are equivalent:

1. Components zi are pairwise independent

2. Components zi are mutually independent

3. C = ΛP , with Λ diagonal and P permutation

I3S
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Statistical tools

Characteristic functions

First

Real Scalar: Φx(t)
def
= E{e tx} =

∫
u e tu dFx(u)

Real Multivariate: Φx(t)
def
= E{e tTx} =

∫
u e tTx dFx(u)

Second

Ψ(t)
def
= log Φ(t)

Properties:

• Always exists in the neighborhood of 0

• Uniquely defined as long as Φ(t) #= 0

I3S
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Statistical tools

Cumulants (1)

Moments:

µ′r
def
= E{xr} = (−)r

∂rΦ(t)

∂tr

∣∣∣∣
t=0

(4)

Cumulants:

C
x (r)

def
= Cum{x, . . . , x︸ ︷︷ ︸

r times

} = (−)r
∂rΨ(t)

∂tr

∣∣∣∣
t=0

(5)

Needs the existence of the expansion. Counter example: Cauchy

px(u) =
1

π (1 + u2)

Relationship between Moments and Cumulants obtained by

expanding both sides in Taylor series:

Log Φx(t) = Ψx(t)

I3S
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Statistical tools

Cumulants (2)

First Cumulants

C(2) is the variance:

For zero-mean r.v.: C(3) = µ(3), and C(4) = µ(4) − 3 µ2
(2)

Warning: it is not true that C(r) is the moment of a variable

x− xg, xg Gaussian

Standardized cumulants:

K(r) = Cum(r)

{
x− µ′(1)√

µ(2)

}
e.g. Skewness K3, and Kurtosis K4.

I3S
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Statistical tools

Examples of Cumulants (1)

Example 5: Zero-mean Gaussian

Moments

µ(2r) = µr
(2)

(2r)!

r! 2r

In particular: µ(4) = 3µ2
(2), µ(6) = 15µ3

(2).

All Cumulants of order r > 2 are null

I3S
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Statistical tools

Examples of Cumulants (2)

Example 6: Uniform

uniformly distributed in [−a, +a] with probability 1
2a

Moments: µ2k = a2k

2k+1

4th order Cumulant: C4 = a4

5 − 3 a4

9 = −2 a4

15

Kurtosis: K4 = −6
5.

a
!

1/2a

−a

"

I3S
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Statistical tools

Examples of Cumulants (3)

Example 7: Zero-mean standardized binary

x takes two values x1 = −a and x2 = 1/a with probabilities

P1 = 1
1+a2 , P2 = a2

1+a2

Skewness is K(3) =
1

a
− a

Kurtosis is K(4) =
1

a2
+ a2 − 4

Extreme values

Minimum Kurtosis

for a = 1 (symmetric):

K(4) = −2

I3S
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Statistical tools

Multivariate cumulants

Notation: Cij..#
def
= Cum{Xi, Xj, ...X#}

First cumulants:

µ′i = Ci

µ′ij = Cij + CiCj

µ′ijk = Cijk + [3] CiCjk + CiCjCk

with [n]: Mccullagh’s bracket notation.

Next, for zero-mean variables:

µijk# = Cijk# + [3] CijCk#

µijk#m = Cijk#m + [10] CijCk#m

General formula of Leonov Shiryayev obtained by Taylor

expansion of both sides of Ψ(t) = log Φ(t)...

I3S
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Statistical tools

Complex variables

Definition

Let z = x +  y. Then pdf pz = joint pdf px,y

Notation

Characteristic function:

Φz(w) = E{exp[(xTu + yTv)]} = E{exp[/(zHw)]}

where w
def
= u + v.

Generates Moments & Cumulants, e.g.:

Variance: V ar{z}ij = C
z

j

i

Higher orders: Cum{zi, . . . , zj, z∗k, . . . , z
∗
#} = C

z

k..#

i..j

where conjugated r.v. are labeled in superscript.

I3S
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Statistical tools

Cumulant properties

Multi-linearity (also enjoyed by moments):

Cum{αX, Y, .., Z} = α Cum{X, Y, .., Z} (6)

Cum{X1 + X2, Y, .., Z} = Cum{X1, Y, .., Z} + Cum{X2, Y, .., Z}

Cancellation: If {Xi} can be partitioned into 2 groups of

independent r.v., then

Cum{X1, X2, .., Xr} = 0 (7)

Independence: If X and Y are independent, then

Cum{X1 + Y1, X2 + Y2, .., Xr + Yr} = Cum{X1, X2, .., Xr}
+ Cum{Y1, Y2, .., Yr}

Inequalities, e.g.:

K2
(3) ≤ K(4) + 2

I3S
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Statistical tools

Central Limit Theorem

Let N independent scalar r.v., x(n), 1 ≤ n ≤ N each with finite

rth order Cumulant, κ(r)(n).

Define:

κ̄(r) =
1

N

N∑
n=1

κ(r)(n) and y =
1√
N

N∑
n=1

(x(n)− κ̄(1)).

As N →∞, the pdf fy tends to a Gaussian.

Proof:

C
y (r)

=
κ̄(r)

Nr/2−1 , ∀r ≥ 2, tends to zero.

I3S
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Statistical tools

Mutual Information (1)

According to the definition of page 21, one should measure a

divergence:

δ

(
px,

N∏
i=1

pxi

)
If the Kullback divergence is used:

K(px, py)
def
=

∫
px(u) log

px(u)

py(u)
du,

then we get the Mutual Information as an independence

measure:

I(px) =

∫
px(u) log

px(u)∏N
i=1 pxi(ui)

du. (8)
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Statistical tools

Mutual Information (2)

Properties of the MI

MI always positive

Cancels if r.v. are mutually independent

MI is invariant by scale change

Example 8: Gaussian case

I(gx) =
1

2
log

∏
Vii

det V

I3S
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Statistical tools

Decomposition of the MI

Define the Negentropy as the divergence:

J(px) = δ(px, gx) =

∫
px(u) log

px(u)

gx(u)
du. (9)

Negentropy is invariant by invertible transforms

Then MI can be decomposed into:

I(px) = I(gx) + J(px)−
∑

i

J(pxi). (10)

J(p)

∑
i J(pi)

I(g)

I(p)
{xi}

g

x{gi}

!!!!!!!!!!!!!!!"
#

#
#

#
#$%%%%%%%%%%%%%%%%%%%%&''''''''''(
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Statistical tools

Sample Measures of Statistical

Independence (

Independence at order r

Definition:

Components xj of x are independent at order r if all cross

cumulants of order r are null

In other words: the Cumulant tensor Cij..# is diagonal.

Example 9: Uncorrelated but not independent

s non Gaussian, si independent, then x = Qs has uncorrelated

components at order 2 if Q unitary → cf. example slide 7.

I3S
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Statistical tools

Edgeworth expansion (1)

Edgeworth expansion of a pdf

The pdf px(u) of a standardized r.v. x can be expanded about

the Gaussian density gx(u) of same mean and variance, in terms

of a combination of Hermite polynomials, ordered by decreasing

significance in the sense of the Central Limit Theorem (CLT).

Order

m−1/2 κ3

m−1 κ4 κ2
3

m−3/2 κ5 κ3κ4 κ3
3

m−2 κ6 κ3κ5 κ2
3κ4 κ2

4 κ4
3

m−5/2 κ7 κ3κ6 κ2
3κ5 κ2

4κ3 κ5
3 κ4κ5 κ3

3κ4

From page 35, rth order Cumulants ∼ O(m1−r/2).
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Statistical tools

Edgeworth expansion (2)

Edgeworth expansion of the MI

This yields for standardized random variables x, after lengthy

calculations:

I(px) = J(px)− 1

48

∑
i

4 C
iii

2
+ C

iiii

2
+ 7 C

iii

4 − 6 C
iii

2 C
iiii

+o(m−2).

(11)

If 3rd order #= 0, then I(px) ≈ J(px)− 1
12

∑
i Ciii

2

If 3rd order ≈ 0, then I(px) ≈ J(px)− 1
48

∑
i Ciiii

2

I3S
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Contents
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Cumulant matching (direct approach: identification)

Contrast Criteria (inverse approach: equalization):

Numerical Algorithms: block/adaptive, joint/deflation
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Cumulant Matching

Identification

Principle

Estimate the mixture by solving the I/O Multi-linear equations:

Cumulant matching

H! !
s x

Apply a separating filter based on the latter estimate

I3S
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Cumulant Matching

Noiseless mixture of 2 sources

Example 10: 2× 2 by Cumulant matching (cf. demo p.8)

After standardization, the mixture takes the form

x =

 cos α − sin α eϕ

sin α e−ϕ cos α

 s (12)

Denote γk#
ij = Cum{xi, xj, x∗k, x

∗
#} and κi = Cum{si, si, s∗i , s∗i}.

Then by Multi-linearity:

γ12
12 = cos2 α sin2 α (κ1 + κ2)

γ12
11 = cos3 α sin α eϕ κ1 − cos α sin3 α eϕ κ2

γ22
12 = cos α sin3 α eϕ κ1 − cos3 α sin α eϕ κ2

Compact solution:
γ22
12−γ12

11
γ12
12

= −2 cot 2α eϕ

! demoICA2x2 ! Noiseless demo2C
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Cumulant matching

Noiseless mixture of 2 sources

Example 11: Separation of 2 non Gaussian sources

I3S
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Contrast criteria

Definition of a Contrast

Axiomatic definition

A Contrast optimization criterion Υ should enjoy 3 properties:

Invariance: Υ should not change under the action of trivial

filters (as defined in p.6)

Domination: If sources are already separated, any filter should

decrease (or leave unchanged) Υ

Discrimination: The maximum achievable value should be

reached only when sources are separated (i.e. maxima are related

by trivial filters)

I3S
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Contrast criteria

Mutual Information

Υ
def
= −I(pz) is a contrast

Invariant by scale change and permutation

Always negative

Null if and only if components are independent

x
H

s
! !

z
F

x
! !

I3S
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Contrast criteria

Maximum Likelihood

Given the source pdf’s: ps(u) =
∏

i psi(ui), the ML approach

consists of maximizing one of the criteria below

Noiseless case

L def
= p(x|H) =

1

| det H| ps(H
−1x)

Noisy case

L def
= p(x, s|H) = g(x−H s) ps(s)

And the Joint MAP-ML criterion for a joint estimation of

sources:

(sMAP , HMV ) = Arg Max
s,H

p(x, s|H)

= Arg Max
s,H

p(x|s, H) ps(s)
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Contrast criteria

Noiseless Maximum Likelihood (1)

For an increasing number of independent observations, the

average log-likelihood converges to

1

T
log p(x1 . . . xT |H) →

∫
log ps(H

−1u) px(u) du + cst

which can be seen to be, by making the change v = H−1u:

ΥML
def
= −K(pz, ps) + cst (13)

" pdf matching

I3S
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Contrast criteria

Noiseless Maximum Likelihood (2)

Yet, since si are independent, it can be shown that

K(pz, ps) = K(pz,
∏

i

pzi)︸ ︷︷ ︸
MI

+
∑

i

K(pzi, psi)︸ ︷︷ ︸
pdfdeviation

This allows to take into account the source pdf’s, if they are

known
J(p)

∑
i J(pi)

I(g)

I(p)

logL

∑
i Ki

!!!!!!!!!!!!!"
#

#
#

##$%%%%%%%%%%%%%%%%%&'''''''''(

)

#
#

#
#$

But ML is not adequate if source pdf’s are unknown

⇒ just use contrast criteria, as MI
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Contrast criteria

Contrasts of CoM(α, r)

When observations are standardized, and when only unitary

transforms are considered, then the following are contrast functions:

If at most 1 source has a null skewness:

Υ2,3 =
P∑

p=1

(κiii)
2, κiii

def
= C

z iii

If at most 1 source has a null kurtosis:

Υ2,4 =
P∑

p=1

(κii
ii)

2, κii
ii

def
= C

z

ii

ii

If at most 1 source has a null standardized Cumulant of order

r > 2, and for any α ≥ 1:

Υα,r =
P∑

p=1

|κ(r)|α, κ(r)
def
= C

z (r)

I3S

ICASSP 2005 52/77 P.COMON

Contrast criteria

Contrast CoM(1, 4)

Example 12: Kurtosis-based contrast without

squaring

In particular, if all source kurtosis have the same sign, ε, one can

avoid the absolute value:

Υ1,4 = ε
P∑

p=1

κii
ii

! Noisy demo2C
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Contrast criteria

Noisy mixture of 2 sources

Example 13: Separation of 2 non Gaussian sources by

contrast maximization

I3S

ICASSP 2005 54/77 P.COMON

Contrast criteria

JADE Contrast

Instead of minimizing all extra-diagonal terms:

Θ− Υ2,4 =
∑

ijk# #=iiii

|Ck#
ij (Qx̃)|2

one minimizes

Θ− ΥJade =
∑

ijk# #=iik#

|Ck#
ij (Qx̃)|2

which is equivalent to maximize ΥJade =
∑

ik# |γik
i# |2.

Interest:

ΥJade =
P 2∑
p=1

||diag(QH M r Q||2 (14)

is satisfied if the matrix set {M r} forms an orthonormal basis.
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Algorithms

Block vs Adaptive

Increase power of DSP

Limitations of time-recursive Adaptive Algorithms

• Convergence time of optimization algorithm

• Convergence time of moment estimators

• Local extrema harder to handle

Coherence time sometimes limited

(e.g. GSM: 900MHz, 190km/h, Tc ≈ 2ms ≈ 300 symbols)

Well matched to block transmission (TDMA)

Better exploitation of data

(uniform weight, resistance to loss in synchro, time reversal)
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Algorithms

Joint vs Deflation

fT

!

!

!

!

!

!

!

"

#

$#

!

!

!

!

x

z

!

!

!

!

!

Deflation:

Advantage: reduced complexity at each stage

Drawbacks: accumulation of regression errors, limitation of

number of extracted sources

I3S



ICASSP 2005 57/77 P.COMON

Algorithms

Deflation by Kurtosis Gradient Ascent

Adaptive Deflation by Kurtosis Maximization

After standardization, it is equivalent to maximize 4th order moment,

E{z4}, which yields:

∆f = µ∇C
z (4)

= µ E{x (fTx)3}

After prewhitening, fixed step gradient on angles

(Delfosse-Loubaton’95)

“Locally optimal step” gradient on filter taps: FastICA

(Hyvärinen’97)

Globally optimal step gradient ascent (Comon’02)

Convergence: when f and ∇C
z (4)

collinear (and not when

gradient is null, because of constraint ||f || = 1).
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Algorithms

Jacobi Sweeping

Joint Block Algorithm: Sweeping a 3× 3× 3 tensor
X x x

x x x

x x x




x x x

x X x

x x x

 →


x x x

x x x

x x .




X x x

x x x

x x x




x x x

x . x

x x x

 →


x x x

x x x

x x X




. x x

x x x

x x x




x x x

x X x

x x x




x x x

x x x

x x X


X : maximized

x : minimized

. : unchanged

 by the last Givens rotation ! demo10R
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Algorithms

Influence on Sweeping oder

Example 14: The order does not affect the limit,

despite the presence of local maxima
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Algorithms

Tensors as Linear Operators

Linear Operator Ω acting on square matrices:

M −→ Ω(M )ij =
∑
k#

Cj#
ikMk#

admits eigen-matrices N r, 1 ≤ r ≤ P 2.

In the absence of noise, P nonzero eigenvalues

In practice, retain P dominant eigen-matrices ⇒ (i) reduced

complexity P 2, and (ii) noise reduction

A Joint Block Algorithm: JADE

• Maximize Υα,Jade
def
=

∑
r ||λα

r diag(UH N r U )||2
“Joint Approximate Diagonalization of Eigenmatrices”

• Sweep the pairs → again a quadratic form
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Part IV: Under-Determined Mixtures

What is specific:

No linear inverse exists (thus no contrast)

Prior standardization of poor usefulness

Two families of approaches:

From Cumulant tensor

From Data tensor
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UDM from Cumulant tensor

Canonical Decomposition

Cumulant Tensor Matching (example at order 3):

Model + Multi-linearity yields:

C
x ijk

=
∑

p

Hip Hjp Hkp Cs ppp
+ Eijk

Canonical Tensor Decomposition (CanD):

T =

rank(T )∑
p=1

κp h(p) ◦ h(p) ◦ h(p) + E (15)

T = κ1

*
*

*
*

+ . . . +κP

In practice, often minimize the matching error Ψ
def
= ||E||2
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UDM from Cumulant tensor

Tensor Rank (1)

Generic/Typical rank ω of symmetric tensors of order d,

generally larger than dimension K:

ω K 2 3 4 5 6 7 8

3 2 4 5 8 10 12 15
d 4 3 6 10 15 22 30 42

CanD often not unique (in red: infinitely many solutions)
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UDM from Cumulant tensor

Tensor rank (2)

Maximal rank: generally larger than generic rank

Example 15: order 3, dimension 2, but rank 3

=

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

..........................

%
%%

% %
%% %%

% % %
%%

%%
%

%% %
+ 2+2

blue bullets = 1, red bullets = −1.

In dimension 2, CanD entirely computable thanks to Sylvester’s

theorem on polynomials

Very hard in higher dimensions

! demo BinaryTensors
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UDM from Cumulant tensor

CanD of 2-dim tensors

Example 16: Rank obtained for dth order symmetric

tensors of dim 2
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UDM from Cumulant tensor

Tensor rank (3)

Real tensors may not have same rank if immersed in complex

field.

Example 17: Complex rank:

T (:, :, 1) =

 −1 0

0 1

 , T (:, :, 2) =

 0 1

1 0

 ,

If decomposed in IR , it is of rank 3:

T =
1

2

 1

1

◦3

+
1

2

 1

−1

◦3

− 2

 1

0

◦3

whereas it admits a CanD of rank 2 in lC :

T =


2

 −

1

◦3

− 

2

 

1

◦3
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UDM from Cumulant tensor

Source extraction

Example 18: 3 BPSK sources and 2 sensors

s1, 2, s3: ∈ {−1, 1}, mutually independent

Actual observations: x = [x1, x2]T

Build virtual observations: z = [x3
1, x2

1x2, x1x2
2, x3

2]
T

Then 6-dimensional augmented observation:

 x

z

 =

 H 0

B

 ·


s1

s2

s3

s1s2s3


with one virtual source s4

def
= s1s2s3, pairwise independent of si
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UDM form Data tensor

LS Criterion

Data arranged in a order-d tensor (d-way array)

CanD in the case of d = 3:

T =
ω∑

p=1

κp a(p) ◦ b(p) ◦ c(p) (16)

Now error Ψ is quadratic in each a(p), if all b(p) and c(p) fixed

Other useful writings:

Ψ =
K3∑
k=1

||T (:, :, k)−A Diag(C(k, :)) BT||2

Ψ = ||T (1) −A(C 8B)T||2 (17)

Minimum of Ψ w.r.t. A can be obtained by SVD.

Idem for B, C.
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UDM form Data tensor

Alternate Least Squares (ALS)

The PARAFAC algorithm computes in turn A, B, and C:

Alternating Least Squares (ALS)

Very slow convergence

Need for a sufficient condition of uniqueness:

k(A) + k(B) + k(C) ≥ 2 ω + 2

where k(A) denotes Kruskal’s rank of A.

"In symmetric case, one needs at least that 2ω ≤ 3K − 2

"Can be extended to order d: 2ω ≤ dK − d + 1

Need for diversity: matrix slices must be “sufficiently different”

! demo Parafac
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UDM from Data tensor

Parafac ALS algorithm

Example 19: Two accelerated versions: Bro’98 and

Rajih-Comon’05
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UDM form Data tensor

Kruskal rank

Column rank of a matrix

rank(A) = r iff there is at least one subset of r lin. independent

columns, and this fails for any subset of r + 1 columns.

Kruskal rank of a matrix

K − rank(A) = k iff every subset of k columns is lin.

independent, and this fails for at least one subset of k + 1

columns.

Property: k(A) ≤ rank(A) ≤ dim(A)

I3S

ICASSP 2005 72/77 P.COMON

UDM form Data tensor

Data vs Cumulant Tensors

Multi-linear vs Linear Blind Model fitting

CanD, if diversity among loading vectors allows to build a data

tensor:

=

......
......
......
......
......
...

+
++

.................................

.........................................

++ . . .

......
......
......
......
......
...

ICA, if little diversity imposes a 2-way equivalent data matrix

=

+
++

.................................

.........................................

......
......
......
......
......
...

......
......
......
......
......
...

.................................

.................................

++ . . .
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Part V: Beyond this Tutorial

Some unaddressed problems

Tensor properties

False beliefs
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Beyond this Tutorial

Some Unaddressed Problems

Reduction of tensor sizes: HOSVD/Tucker3 model fitting

Simultaneous Tensor Diagonalization (STD)

Performance indices

Nonstationary sources, Discrete sources

Convolutive mixtures

Semi-Blind approaches

Unexpected topological properties of tensor spaces
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Beyond this Tutorial

Unexpected topological properties

The variety of rank-1 matrices or tensors is closed

The variety of matrices of rank ≤ k is closed

The set of tensors of rank ≤ k is not closed; e.g.:

∃ sequence T n of rank-3 tensors ⇒ rank 4 !
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Beyond this Tutorial

False Beliefs (1)

1. BSS always requires High-Order Statistics (HOS)

−→ Second-order can (rarely) suffice

2. Sources must be statistically independent

−→ Correlated sources can be sometimes separated

(e.g. Discrete/CM sources, Pairwise cumulants...)

3. HOS are always required when sources are i.i.d.

−→ Second-order BSS algorithms exist

4. There should be at least as many sensors as sources: K ≥ P

(sufficient diversity)

−→ Underdetermined mixtures can be identified
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Beyond this Tutorial

False Beliefs (2)

5. Perfect source extraction is impossible if K < P

−→ Discrete sources can be perfectly extracted from

underdetermined mixtures (insufficient diversity)

6. Conditions of application of Parafac are mild

−→ except when one dimension = 2, the typical rank always

exceeds the Parafac bound for uniqueness

7. Approximate a tensor by another of lower rank is as easy as for

matrices

−→ beside for rank 1, there is a lack of closeness

8. The Constant Modulus (CM) property is the best way to handle

PSK sources

−→ The whole alphabet can be taken into account in order

to define a contrast function
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