TUT\#10

Independent Component Analysis

\&
Multi-way Factor Analysis

Pierre Comon

Lab. I3S
CNRS \mathcal{E} University of Nice
Sophia-Antipolis, France
\qquad 2/77 \qquad P.COMON

Contents

I General

- Applications - Historical survey
- Taxonomy • Uniqueness

II Tools

- Algebraic - Statistical

III Independent Sources

- Criteria
- Algorithms

IV Under-Determined Mixtures

- From Cumulant tensor
- From Data tensor (Parafac)

V Beyond this tutorial

- Other unaddressed problems
- False beliefs
\qquad
\qquad

Part I: General

- Goal of ICA, example
- Uniqueness

- Applications
- Decorrelation vs Independence
- Taxonomy
- Brief historical survey
\qquad
\qquad 4/77 \qquad P.COMON

General

Principal Component Analysis (PCA)

Goal

Given a K-dimensional r.v., \boldsymbol{x}, find \boldsymbol{U} and \boldsymbol{z} such that

- Observation

$$
\boldsymbol{x}=\boldsymbol{U} \boldsymbol{z}
$$

■ \boldsymbol{z} has uncorrelated components z_{i}

NB: Because of lack of uniqueness, \boldsymbol{U} is often assumed to be unitary.
\qquad 5/77

Goal

Given a K-dimensional r.v., \boldsymbol{x}, find \boldsymbol{H} and \boldsymbol{s} such that

- Observation

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{H} \boldsymbol{s} \tag{1}
\end{equation*}
$$

- s has mutually statistically independent components s_{i}
- "Blind" terminology: only outputs x_{i} are observed.
\qquad

ICASSP 2005 \qquad 6/77 \qquad P.COMON

General

Uniqueness

Inherent indeterminations
if \boldsymbol{s} has independent components s_{i}, so has $\boldsymbol{\Lambda} \boldsymbol{P} \boldsymbol{s}$
where $\boldsymbol{\Lambda}$ is invertible diagonal and \boldsymbol{P} permutation

Solutions

If $(\boldsymbol{A}, \boldsymbol{s})$ solution, then $\left(\boldsymbol{A} \boldsymbol{\Lambda} \boldsymbol{P}, \boldsymbol{P}^{\top} \boldsymbol{\Lambda}^{-1} \boldsymbol{s}\right)$ also is.
■ "Essential uniqueness": unique up to a trivial filter, i.e. a scale-permutation

- Whole equivalence class of solutions \Rightarrow Look for one representative.
\qquad
\qquad

Decorrelation vs Independence

Example 1: Mixture of 2 identically distributed sources

Consider the mixture of two independent sources

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \cdot\binom{s_{1}}{s_{2}}
$$

where $\mathrm{E}\left\{s_{i}^{2}\right\}=1$ and $\mathrm{E}\left\{s_{i}\right\}=0$. Then x_{i} are uncorrelated:

$$
\mathrm{E}\left\{x_{1} x_{2}\right\}=\mathrm{E}\left\{s_{1}^{2}\right\}-\mathrm{E}\left\{s_{2}^{2}\right\}=0
$$

But x_{i} are not independent since, for instance:

$$
\mathrm{E}\left\{x_{1}^{2} x_{2}^{2}\right\}-\mathrm{E}\left\{x_{1}^{2}\right\} \mathrm{E}\left\{x_{2}^{2}\right\}=\mathrm{E}\left\{s_{1}^{4}\right\}+\mathrm{E}\left\{s_{2}^{4}\right\}-6 \neq 0
$$

\qquad

ICASSP 2005 \qquad 8/77 \qquad P.COMON

General

PCA vs ICA

Example 2: 2 sources and 2 sensors

\qquad 9/77

Applications (1)

■ Sensor Array Processing

- Localization with reduced diversity
- Localization with ill calibrated antennas
- Detection and/or extraction with unknown antennas (eg. sonar buoys, biomedical, audio, nuclear plants...)
- Blind extraction (eg. ComInt: interception, surveillance)
\qquad 13S \qquad

ICASSP 2005 \qquad 10/77 \qquad P.COMON

General
Applications (2)

■ Factor Analysis

- Chemometrics
- Econometrics
- Psychology

■ Denoising
■ Compression
■ Arithmetic Complexity
■ Machine Learning
■ Exploratory Analysis
\qquad
\qquad

Taxonomy (1)

Static/Dynamic and Noisy/Noiseless:

$$
\begin{equation*}
\boldsymbol{x}[n]=\boldsymbol{H} \star \boldsymbol{s}[n]+\boldsymbol{v}[n] \tag{2}
\end{equation*}
$$

Linearly Invertible/Under-Determined:

\qquad
I3S \qquad
\qquad $12 / 77$ \qquad P.COMON

General
Taxonomy (2)

Transmit/Receive diversity:

Sources	Sensors	
	1	K
1	SISO	SIMO
P	MISO	MIMO

\qquad 13/77 \qquad

General

Taxonomy (3)

Assumptions required on sources:

- H1. use of Time coherency of $\boldsymbol{s}(n)$: separation by exploiting spectral differences.
- H2. Sources s_{i} are mutually statistically independent
- Static case: r.v. statistically independent (but may have identical p.s.d.) \rightarrow ICA
- Dynamic case: Sources are i.i.d. (i.e. white) processes
- H3. Sources are Discrete (but may be stat. dependent)

H4. Sources are non stationary (and have different time profiles)
\qquad

ICASSP 2005 \qquad $14 / 77$ \qquad P.COMON

General

Historical survey (Static MIMO only)

■ The ancestors: Dugué'51, Darmois'53, Feller'66, Friedman'74, Donoho'80
■ The first shy steps in ICA: Bar-Ness'82, Jutten'83, Fety'88
■ The first steps ins Multi-way: Carroll-Chang'70, Harshman'70, Kruskal'77

■ First closed-form solutions: Comon'89, Cardoso'92
■ First IT frameworks: Comon'91, Cardoso'93, Comon'94, Bell'95, Delfosse-Loubaton'95

■ Specific improvements: Hyvarinen'97, Pajunen'97, Amari'98, Grellier'98, Parra'2000

■ Recent advances: Cao-Liu'96, Moreau-Pesquet'97, Taleb-Jutten'97, Comon'96, Ferreol-Chevalier'98, Belouchrani'98, Lee-Lewicki'99, deLathauwer'00, Pham-Cardoso'2000, Yeredor'2000, Sidiropoulos-Bro'00
\qquad
\qquad

General bibliography

■ Books on HOS, ICA, or Multi-Way:
Lacoume-Amblard-Comon'97
Hyvarinen-Karhunen-Oja'01
Smilde-Bro-Geladi'04
Comon'07

- Other related books:

Kagan-Linnik-Rao'73
McCullagh'87
Nikias-Petropulu'93
Haykin'2000
\qquad
\qquad 16/77 \qquad P.COMON

Contents
Part II: Tools

Algebraic tools

- PCA, SVD, Standardization
- Plane rotations, Jacobi sweeping

Statistical tools

- Mutual \& Pairwise Independence
- Cumulants

■ Mutual Information
\qquad 17/77 \qquad

Algebraic tools

Back to PCA

Definition

PCA is based on second order statistics
■ Observed random variable \boldsymbol{x} of dimension K. Then $\exists(\boldsymbol{U}, \boldsymbol{z})$:

$$
\boldsymbol{x}=\boldsymbol{U} \boldsymbol{z}, \boldsymbol{U} \text { unitary }
$$

where Principal Components z_{i} are uncorrelated i th column \boldsymbol{u}_{i} of \boldsymbol{U} is called i th PC Loading vector

- Two possible calculations:
- EVD of Covariance $\boldsymbol{R}_{x}: \boldsymbol{R}_{x}=\boldsymbol{U} \boldsymbol{\Sigma}^{2} \boldsymbol{U}^{\mathrm{H}}$
- Sample estimate by SVD: $\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{H}$
\qquad I3S \qquad

ICASSP 2005 \qquad 18/77 \qquad P.COMON

Algebraic tools

Standardization

Find a linear transform \boldsymbol{L} such that vector $\tilde{\boldsymbol{x}} \stackrel{\text { def }}{=} \boldsymbol{L} \boldsymbol{x}$ has unit covariance. Many possibilities, including:

- PCA yields $\tilde{\boldsymbol{x}}=\boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{H} \boldsymbol{x}$
- Cholesky $\boldsymbol{R}_{x}=\boldsymbol{L} \boldsymbol{L}^{\mathrm{H}}$ yields $\tilde{\boldsymbol{x}}=\boldsymbol{L}^{-1} \boldsymbol{x}$

Remarks

- Infinitely many possibilities: \boldsymbol{L} is as good as $\boldsymbol{L} \boldsymbol{Q}$, for any unitary Q.
- If \boldsymbol{R}_{x} not invertible, then \boldsymbol{L} not invertible. One may use pseudo-inverse of $\boldsymbol{\Sigma}$ in PCA to compute \boldsymbol{L}.
\qquad

Algebraic tools

Plane rotations

Application of a Givens rotation on both sides of a matrix allows to set a pair of zeros in a symmetric matrix;

$$
\left(\begin{array}{cccc}
c & \cdot & s & \cdot \\
\cdot & 1 & \cdot & \cdot \\
-s & \cdot & c & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)\left(\begin{array}{cccc}
X & x & 0 & x \\
x & \cdot & x & \cdot \\
0 & x & X & x \\
x & \cdot & x & \cdot
\end{array}\right)\left(\begin{array}{cccc}
c & \cdot & -s & \cdot \\
\cdot & 1 & \cdot & \cdot \\
s & \cdot & c & \cdot \\
\cdot & \cdot & \cdot & 1
\end{array}\right)
$$

Same result obtained:

- either by setting 0

■ or by maximizing X's
\qquad
\qquad 20/77 \qquad P.COMON

Algebraic tools

Jacobi sweeping for PCA

Cyclic by rows/columns algorithm for a 4×4 real symmetric matrix

$$
\begin{aligned}
& \left(\begin{array}{c}
. \\
. \\
.
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
X & 0 & x & x \\
0 & X & x & x \\
x & x & . & . \\
x & x & . & .
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
X & x & 0 & x \\
x & . & x & . \\
0 & x & X & x \\
x & . & x & .
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
X & x & x & 0 \\
x & . & . & x \\
x & . & . & x \\
0 & x & x & X
\end{array}\right) \rightarrow \\
& \left(\begin{array}{cccc}
. & x & x & 0 \\
x & X & 0 & x \\
x & 0 & X & x \\
0 & x & x & \cdot
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
. & x & \cdot & x \\
x & X & x & 0 \\
. & x & . & x \\
x & 0 & x & X
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
. & x & x & x \\
. & \cdot & x & x \\
x & x & X & 0 \\
x & x & 0 & X
\end{array}\right)
\end{aligned}
$$

X : maximized, x : minimized, 0 : canceled,.$:$ unchanged
\qquad
\qquad

Statistical tools
Statistical independence

Definition

Components s_{k} of a K-dimensional r.v. s are mutually independent

$$
\mathbb{\imath}
$$

The joint pdf equals the product of marginal pdf's:

$$
\begin{equation*}
p_{s}(\boldsymbol{u})=\prod_{k} p_{s_{k}}\left(u_{k}\right) \tag{3}
\end{equation*}
$$

Definition

Components s_{k} of \boldsymbol{s} are pairwise independent \Leftrightarrow Any pair of components (s_{k}, s_{ℓ}) are mutually independent.
\qquad
\qquad $22 / 77$ \qquad P.COMON

Statistical tools

Mutual vs Pairwise independence (1)

Example 3: Pairwise but not Mutual independence

- Bag containing 4 Bowls denoted $\{$ RB, YB, GB, RYB $\}$:

1 Red, 1 Yellow, 1 Green, 1 with the 3 colors.

- Equal drawing probabilities:
$P(R B)=P(Y B)=P(G B)=P(R Y G)=1 / 4$
- Event " R " $\stackrel{\text { def }}{=}$ draw a bowl containing Red \Rightarrow $P(R)=P(R B)+P(R Y G)=1 / 2$
- Then $P(R \cap Y)=P(R Y G)=1 / 4$
equal to $P(R) * P(Y) \Rightarrow$ Pairwise independent Events
- But $P(R \cap Y \cap G)=P(R Y G)=1 / 4$ not equal to $P(R) * P(Y) * P(G)=1 / 8 \Rightarrow$ Events are not Mutually independent
\qquad
\qquad

Statistical tools
 Mutual vs Pairwise independence (2)

Example 4: Pairwise but not Mutual independence
■ 3 mutually independent BPSK sources, $x_{i} \in\{-1,1\}, 1 \leq i \leq 3$
\square Define $x_{4}=x_{1} x_{2} x_{3}$. Then x_{4} is also BPSK, dependent on x_{i}

- x_{k} are pairwise independent: $p\left(x_{1}=a, x_{4}=b\right)=p\left(x_{4}=b \mid x_{1}=a\right) \cdot p\left(x_{1}=a\right)=$ $p\left(x_{2} x_{3}=b / a\right) \cdot p\left(x_{1}=a\right)$
But x_{1} and $x_{2} x_{3}$ are BPSK \Rightarrow $p\left(x_{2} x_{3}=b / a\right) \cdot p\left(x_{1}=a\right)=\frac{1}{2} \cdot \frac{1}{2}$
- But x_{k} obviously not mutually independent, $1 \leq k \leq 4$ In particular, $\operatorname{Cum}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=1 \neq 0$
\qquad I3S \qquad
\qquad $24 / 77$ \qquad P.COMON

Statistical tools

Mutual vs Pairwise independence (3)

Darmois's Theorem (1953)

Let two random variables be defined as linear combinations of independent random variables x_{i} :

$$
Z_{1}=\sum_{i=1}^{N} a_{i} x_{i}, \quad Z_{2}=\sum_{i=1}^{N} b_{i} x_{i}
$$

Then, if Z_{1} and Z_{2} are independent, those x_{j} for which $a_{j} b_{j} \neq 0$ are Gaussian.
\qquad
\qquad
\qquad

Statistical tools

Mutual vs Pairwise independence (4)

Corollary

If $\boldsymbol{z}=\boldsymbol{C} \boldsymbol{s}$, where s_{i} are independent r.v., with at most one of them being Gaussian, then the following properties are equivalent:

1. Components z_{i} are pairwise independent
2. Components z_{i} are mutually independent
3. $\boldsymbol{C}=\boldsymbol{\Lambda} \boldsymbol{P}$, with $\boldsymbol{\Lambda}$ diagonal and \boldsymbol{P} permutation
\qquad
\qquad 26/77 \qquad P.COMON

Statistical tools

Characteristic functions

First

- Real Scalar: $\Phi_{x}(t) \stackrel{\text { def }}{=} \mathrm{E}\left\{e^{\jmath t x}\right\}=\int_{u} e^{\jmath t u} d F_{x}(u)$
- Real Multivariate: $\Phi_{\boldsymbol{x}}(\boldsymbol{t}) \stackrel{\text { def }}{=} \mathrm{E}\left\{e^{t^{\top} x}\right\}=\int_{\boldsymbol{u}} e^{\jmath t^{\top} x} d F_{\boldsymbol{x}}(\boldsymbol{u})$

Second

- $\Psi(\boldsymbol{t}) \stackrel{\text { def }}{=} \log \Phi(\boldsymbol{t})$
- Properties:
- Always exists in the neighborhood of 0
- Uniquely defined as long as $\Phi(\boldsymbol{t}) \neq 0$
\qquad

Statistical tools

Cumulants (1)

- Moments:

$$
\begin{equation*}
\mu_{r}^{\prime} \stackrel{\text { def }}{=} \mathrm{E}\left\{x^{r}\right\}=\left.(-\jmath)^{r} \frac{\partial^{r} \Phi(t)}{\partial t^{r}}\right|_{t=0} \tag{4}
\end{equation*}
$$

- Cumulants:

$$
\begin{equation*}
\mathcal{C}_{x(r)} \stackrel{\text { def }}{=} \operatorname{Cum}\{\underbrace{x, \ldots, x}_{r \text { times }}\}=\left.(-\jmath)^{r} \frac{\partial^{r} \Psi(t)}{\partial t^{r}}\right|_{t=0} \tag{5}
\end{equation*}
$$

- Needs the existence of the expansion. Counter example: Cauchy

$$
p_{x}(u)=\frac{1}{\pi\left(1+u^{2}\right)}
$$

- Relationship between Moments and Cumulants obtained by expanding both sides in Taylor series:

$$
\log \Phi_{x}(t)=\Psi_{x}(t)
$$

\qquad
\qquad 28/77 \qquad P.COMON

Cumulants (2)

First Cumulants

- $\mathcal{C}_{(2)}$ is the variance:
- For zero-mean r.v.: $\mathcal{C}_{(3)}=\mu_{(3)}$, and $\mathcal{C}_{(4)}=\mu_{(4)}-3 \mu_{(2)}^{2}$
- Warning: it is not true that $\mathcal{C}_{(r)}$ is the moment of a variable $x-x_{g}, x_{g}$ Gaussian
- Standardized cumulants:

$$
\mathcal{K}_{(r)}=\operatorname{Cum}_{(r)}\left\{\frac{x-\mu_{(1)}^{\prime}}{\sqrt{\mu_{(2)}}}\right\}
$$

e.g. Skewness \mathcal{K}_{3}, and Kurtosis \mathcal{K}_{4}.
\qquad
\qquad

Examples of Cumulants (1)

Example 5: Zero-mean Gaussian

- Moments

$$
\mu_{(2 r)}=\mu_{(2)}^{r} \frac{(2 r)!}{r!2^{r}}
$$

In particular: $\mu_{(4)}=3 \mu_{(2)}^{2}, \mu_{(6)}=15 \mu_{(2)}^{3}$.
■ All Cumulants of order $r>2$ are null
\qquad
I3S
\qquad $30 / 77$ \qquad P.COMON

Statistical tools

Examples of Cumulants (2)

Example 6: Uniform
■ uniformly distributed in $[-a,+a]$ with probability $\frac{1}{2 a}$
■ Moments: $\mu_{2 k}=\frac{a^{2 k}}{2 k+1}$
■ 4th order Cumulant: $\mathcal{C}_{4}=\frac{a^{4}}{5}-3 \frac{a^{4}}{9}=-2 \frac{a^{4}}{15}$
■ Kurtosis: $\mathcal{K}_{4}=-\frac{6}{5}$.

\qquad $31 / 77$ \qquad

Statistical tools

Examples of Cumulants (3)

Example 7: Zero-mean standardized binary

- x takes two values $x_{1}=-a$ and $x_{2}=1 / a$ with probabilities $P_{1}=\frac{1}{1+a^{2}}, P_{2}=\frac{a^{2}}{1+a^{2}}$
- Skewness is $\mathcal{K}_{(3)}=\frac{1}{a}-a$
\square Kurtosis is $\mathcal{K}_{(4)}=\frac{1}{a^{2}}+a^{2}-4$
■ Extreme values

Minimum Kurtosis
for $a=1$ (symmetric):
$\mathcal{K}_{(4)}=-2$

I3S \qquad

ICASSP 2005 \qquad $32 / 77$ \qquad P.COMON

Statistical tools

Multivariate cumulants

- Notation: $\mathcal{C}_{i j . . \ell} \stackrel{\text { def }}{=} \operatorname{Cum}\left\{X_{i}, X_{j}, \ldots X_{\ell}\right\}$
- First cumulants:

$$
\begin{aligned}
\mu_{i}^{\prime} & =\mathcal{C}_{i} \\
\mu_{i j}^{\prime} & =\mathcal{C}_{i j}+\mathcal{C}_{i} \mathcal{C}_{j} \\
\mu_{i j k}^{\prime} & =\mathcal{C}_{i j k}+[3] \mathcal{C}_{i} \mathcal{C}_{j k}+\mathcal{C}_{i} \mathcal{C}_{j} \mathcal{C}_{k}
\end{aligned}
$$

with $[n]$: Mccullagh's bracket notation.
■ Next, for zero-mean variables:

$$
\begin{aligned}
\mu_{i j k \ell} & =\mathcal{C}_{i j k \ell}+[3] \mathcal{C}_{i j} \mathcal{C}_{k \ell} \\
\mu_{i j k \ell m} & =\mathcal{C}_{i j k \ell m}+[10] \mathcal{C}_{i j} \mathcal{C}_{k \ell m}
\end{aligned}
$$

- General formula of Leonov Shiryayev obtained by Taylor expansion of both sides of $\Psi(\boldsymbol{t})=\log \Phi(\boldsymbol{t}) \ldots$
\qquad
\qquad

Complex variables

Definition

Let $\boldsymbol{z}=\boldsymbol{x}+\jmath \boldsymbol{y}$. Then pdf $p_{\boldsymbol{z}}=$ joint pdf $p_{\boldsymbol{x}, \boldsymbol{y}}$

Notation

- Characteristic function:

$$
\Phi_{\boldsymbol{z}}(\boldsymbol{w})=\mathrm{E}\left\{\exp \left[\jmath\left(\boldsymbol{x}^{\boldsymbol{\top}} \boldsymbol{u}+\boldsymbol{y}^{\boldsymbol{\top}} \boldsymbol{v}\right)\right]\right\}=\mathrm{E}\left\{\exp \left[\jmath \Re\left(\boldsymbol{z}^{\boldsymbol{H}} \boldsymbol{w}\right)\right]\right\}
$$

where $\boldsymbol{w} \stackrel{\text { def }}{=} \boldsymbol{u}+\boldsymbol{v}$.

- Generates Moments \& Cumulants, e.g.:

Variance: $\operatorname{Var}\{\boldsymbol{z}\}_{i j}=\mathcal{C}_{z i}{ }_{i}$
Higher orders: $\operatorname{Cum}\left\{z_{i}, \ldots, z_{j}, z_{k}^{*}, \ldots, z_{\ell}^{*}\right\}=\mathcal{C}_{z_{i . . j}}^{k . . \ell}$
where conjugated r.v. are labeled in superscript.
\qquad I3S \qquad
\qquad $34 / 77$ \qquad P.COMON

Statistical tools

Cumulant properties

- Multi-linearity (also enjoyed by moments):
$\operatorname{Cum}\{\alpha X, Y, . ., Z\}=\alpha \operatorname{Cum}\{X, Y, . ., Z\}$
$\operatorname{Cum}\left\{X_{1}+X_{2}, Y, . ., Z\right\}=\operatorname{Cum}\left\{X_{1}, Y, . ., Z\right\}+\operatorname{Cum}\left\{X_{2}, Y, . ., Z\right\}$
- Cancellation: If $\left\{X_{i}\right\}$ can be partitioned into 2 groups of independent r.v., then

$$
\begin{equation*}
\operatorname{Cum}\left\{X_{1}, X_{2}, . ., X_{r}\right\}=0 \tag{7}
\end{equation*}
$$

■ Independence: If \boldsymbol{X} and \boldsymbol{Y} are independent, then

$$
\begin{aligned}
\operatorname{Cum}\left\{X_{1}+Y_{1}, X_{2}+Y_{2}, . ., X_{r}+Y_{r}\right\} & =\operatorname{Cum}\left\{X_{1}, X_{2}, . ., X_{r}\right\} \\
& +\operatorname{Cum}\left\{Y_{1}, Y_{2}, . ., Y_{r}\right\}
\end{aligned}
$$

- Inequalities, e.g.:

$$
\mathcal{K}_{(3)}^{2} \leq \mathcal{K}_{(4)}+2
$$

\qquad

Statistical tools

Central Limit Theorem

Let N independent scalar r.v., $x(n), 1 \leq n \leq N$ each with finite r th order Cumulant, $\kappa_{(r)}(n)$.

Define:

$$
\bar{\kappa}_{(r)}=\frac{1}{N} \sum_{n=1}^{N} \kappa_{(r)}(n) \text { and } y=\frac{1}{\sqrt{N}} \sum_{n=1}^{N}\left(x(n)-\bar{\kappa}_{(1)}\right) .
$$

As $N \rightarrow \infty$, the pdf f_{y} tends to a Gaussian.

Proof:
$\mathcal{C}_{y(r)}=\frac{\hbar_{(r)}}{N^{r / 2-1}}, \forall r \geq 2$, tends to zero.
\qquad 135 \qquad
\qquad $36 / 77$ \qquad P.COMON

Statistical tools

Mutual Information (1)

- According to the definition of page 21, one should measure a divergence:

$$
\delta\left(p_{\boldsymbol{x}}, \prod_{i=1}^{N} p_{x_{i}}\right)
$$

- If the Kullback divergence is used:

$$
K\left(p_{\boldsymbol{x}}, p_{\boldsymbol{y}}\right) \stackrel{\text { def }}{=} \int p_{\boldsymbol{x}}(\boldsymbol{u}) \log \frac{p_{\boldsymbol{x}}(\boldsymbol{u})}{p_{\boldsymbol{y}}(\boldsymbol{u})} d \boldsymbol{u}
$$

then we get the Mutual Information as an independence measure

$$
\begin{equation*}
I\left(p_{\boldsymbol{x}}\right)=\int p_{\boldsymbol{x}}(\boldsymbol{u}) \log \frac{p_{\boldsymbol{x}}(\boldsymbol{u})}{\prod_{i=1}^{N} p_{x_{i}}\left(u_{i}\right)} d \boldsymbol{u} . \tag{8}
\end{equation*}
$$

\qquad
\qquad

Mutual Information (2)

Properties of the MI

- MI always positive
- Cancels if r.v. are mutually independent

■ MI is invariant by scale change

- Example 8: Gaussian case

$$
I\left(g_{\boldsymbol{x}}\right)=\frac{1}{2} \log \frac{\prod V_{i i}}{\operatorname{det} \boldsymbol{V}}
$$

\qquad
\qquad $38 / 77$ \qquad P.COMON

Statistical tools

Decomposition of the MI

- Define the Negentropy as the divergence:

$$
\begin{equation*}
J\left(p_{\boldsymbol{x}}\right)=\delta\left(p_{\boldsymbol{x}}, g_{\boldsymbol{x}}\right)=\int p_{\boldsymbol{x}}(\boldsymbol{u}) \log \frac{p_{\boldsymbol{x}}(\boldsymbol{u})}{g_{\boldsymbol{x}}(\boldsymbol{u})} d \boldsymbol{u} \tag{9}
\end{equation*}
$$

Negentropy is invariant by invertible transforms

- Then MI can be decomposed into:

$$
\begin{equation*}
I\left(p_{\boldsymbol{x}}\right)=I\left(g_{\boldsymbol{x}}\right)+J\left(p_{\boldsymbol{x}}\right)-\sum_{i} J\left(p_{x_{i}}\right) . \tag{10}
\end{equation*}
$$

Sample Measures of Statistical
 Independence

Independence at order r

- Definition:

Components x_{j} of \boldsymbol{x} are independent at order r if all cross cumulants of order r are null

■ In other words: the Cumulant tensor $\mathcal{C}_{i j . \ell}$ is diagonal.

Example 9: Uncorrelated but not independent \boldsymbol{s} non Gaussian, s_{i} independent, then $\boldsymbol{x}=\boldsymbol{Q} \boldsymbol{s}$ has uncorrelated components at order 2 if \boldsymbol{Q} unitary \rightarrow cf. example slide 7 .
\qquad
\qquad 40/77 \qquad P.COMON

Statistical tools

Edgeworth expansion (1)

Edgeworth expansion of a pdf

The pdf $p_{\boldsymbol{x}}(\boldsymbol{u})$ of a standardized r.v. \boldsymbol{x} can be expanded about the Gaussian density $g_{\boldsymbol{x}}(\boldsymbol{u})$ of same mean and variance, in terms of a combination of Hermite polynomials, ordered by decreasing significance in the sense of the Central Limit Theorem (CLT).

| Order | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $m^{-1 / 2}$ | κ_{3} | | | | | | |
| m^{-1} | κ_{4} | κ_{3}^{2} | | | | | |
| $m^{-3 / 2}$ | κ_{5} | $\kappa_{3} \kappa_{4}$ | κ_{3}^{3} | | | | |
| m^{-2} | κ_{6} | $\kappa_{3} \kappa_{5}$ | $\kappa_{3}^{2} \kappa_{4}$ | κ_{4}^{2} | κ_{3}^{4} | | |
| $m^{-5 / 2}$ | κ_{7} | $\kappa_{3} \kappa_{6}$ | $\kappa_{3}^{2} \kappa_{5}$ | $\kappa_{4}^{2} \kappa_{3}$ | κ_{3}^{5} | $\kappa_{4} \kappa_{5}$ | $\kappa_{3}^{3} \kappa_{4}$ |

From page 35, r th order Cumulants $\sim O\left(m^{1-r / 2}\right)$.
\qquad $41 / 77$ \qquad

Edgeworth expansion (2)

Edgeworth expansion of the MI

This yields for standardized random variables \boldsymbol{x}, after lengthy calculations:
$I\left(p_{\boldsymbol{x}}\right)=J\left(p_{\boldsymbol{x}}\right)-\frac{1}{48} \sum_{i} 4 \mathcal{C}_{i i i}{ }^{2}+\mathcal{C}_{i i i i}{ }^{2}+7 \mathcal{C}_{i i i}{ }^{4}-6 \mathcal{C}_{i i i}{ }^{2} \mathcal{C}_{i i i i}+o\left(m^{-2}\right)$.

- If 3rd order $\neq 0$, then $I\left(p_{\boldsymbol{x}}\right) \approx J\left(p_{\boldsymbol{x}}\right)-\frac{1}{12} \sum_{i} \mathcal{C}_{i i i}{ }^{2}$
- If 3rd order ≈ 0, then $I\left(p_{\boldsymbol{x}}\right) \approx J\left(p_{\boldsymbol{x}}\right)-\frac{1}{48} \sum_{i} \mathcal{C}_{i u i i}{ }^{2}$
\qquad

ICASSP 2005 \qquad $42 / 77$ \qquad P.COMON

Contents

Part III: Separation of Independent Sources

- Cumulant matching (direct approach: identification)

■ Numerical Algorithms: block/adaptive, joint/deflation
\qquad 43/77 \qquad

Identification

Principle

- Estimate the mixture by solving the I/O Multi-linear equations: Cumulant matching

- Apply a separating filter based on the latter estimate
\qquad
\qquad $44 / 77$ \qquad P.COMON

Cumulant Matching

Noiseless mixture of 2 sources

Example 10: 2×2 by Cumulant matching (cf. demo p.8)

- After standardization, the mixture takes the form

$$
\boldsymbol{x}=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha e^{\jmath \varphi} \tag{12}\\
\sin \alpha e^{-\jmath \varphi} & \cos \alpha
\end{array}\right) \boldsymbol{s}
$$

■ Denote $\gamma_{i j}^{k \ell}=\operatorname{Cum}\left\{x_{i}, x_{j}, x_{k}^{*}, x_{\ell}^{*}\right\}$ and $\kappa_{i}=\operatorname{Cum}\left\{s_{i}, s_{i}, s_{i}^{*}, s_{i}^{*}\right\}$.
Then by Multi-linearity:

$$
\begin{aligned}
\gamma_{12}^{12} & =\cos ^{2} \alpha \sin ^{2} \alpha\left(\kappa_{1}+\kappa_{2}\right) \\
\gamma_{11}^{12} & =\cos ^{3} \alpha \sin \alpha e^{\jmath \varphi} \kappa_{1}-\cos \alpha \sin ^{3} \alpha e^{\jmath \varphi} \kappa_{2} \\
\gamma_{12}^{22} & =\cos \alpha \sin ^{3} \alpha e^{\jmath \varphi} \kappa_{1}-\cos ^{3} \alpha \sin \alpha e^{\jmath \varphi} \kappa_{2}
\end{aligned}
$$

- Compact solution: $\frac{\gamma_{12}^{22}-\gamma_{11}^{12}}{\gamma_{12}^{12}}=-2 \cot 2 \alpha e^{\mu \varphi}$

```
| demoICA2x2
\(\qquad\) 45/77 \(\qquad\)

\section*{Noiseless mixture of 2 sources}

Example 11: Separation of 2 non Gaussian sources

\(\qquad\)
\(\qquad\) 46/77 \(\qquad\) P.COMON

Contrast criteria

\section*{Definition of a Contrast}

\section*{Axiomatic definition}

A Contrast optimization criterion \(\Upsilon\) should enjoy 3 properties:
- Invariance: \(\Upsilon\) should not change under the action of trivial filters (as defined in p.6)
- Domination: If sources are already separated, any filter should decrease (or leave unchanged) \(\Upsilon\)
- Discrimination: The maximum achievable value should be reached only when sources are separated (i.e. maxima are related by trivial filters)
\(\qquad\)
\(\qquad\)

\section*{Mutual Information}
\(\Upsilon \xlongequal{\text { def }}-I\left(p_{z}\right)\) is a contrast
- Invariant by scale change and permutation
- Always negative
- Null if and only if components are independent

\(\qquad\)
\(\qquad\) 48/77 \(\qquad\) P.COMON

Contrast criteria

\section*{Maximum Likelihood}

Given the source pdf's: \(p_{s}(\boldsymbol{u})=\prod_{i} p_{s_{i}}\left(u_{i}\right)\), the ML approach consists of maximizing one of the criteria below
- Noiseless case
\[
\mathcal{L} \stackrel{\text { def }}{=} p(\boldsymbol{x} \mid \boldsymbol{H})=\frac{1}{|\operatorname{det} \boldsymbol{H}|} p_{\boldsymbol{s}}\left(\boldsymbol{H}^{-1} \boldsymbol{x}\right)
\]
- Noisy case
\[
\mathcal{L} \stackrel{\text { def }}{=} p(\boldsymbol{x}, \boldsymbol{s} \mid \boldsymbol{H})=g(\boldsymbol{x}-\boldsymbol{H} \boldsymbol{s}) p_{s}(\boldsymbol{s})
\]
- And the Joint MAP-ML criterion for a joint estimation of sources:
\[
\begin{aligned}
\left(\boldsymbol{s}_{M A P}, \boldsymbol{H}_{M V}\right) & =\operatorname{Arg} \operatorname{Max}_{\boldsymbol{s}, \boldsymbol{H}} p(\boldsymbol{x}, \boldsymbol{s} \mid \boldsymbol{H}) \\
& =\operatorname{Arg} \operatorname{Max}_{\boldsymbol{s}, \boldsymbol{H}} p(\boldsymbol{x} \mid \boldsymbol{s}, \boldsymbol{H}) p_{\boldsymbol{s}}(\boldsymbol{s})
\end{aligned}
\]
\(\qquad\)
\(\qquad\)

\section*{Contrast criteria}

\section*{Noiseless Maximum Likelihood (1)}

■ For an increasing number of independent observations, the average log-likelihood converges to
\[
\frac{1}{T} \log p\left(\boldsymbol{x}_{1} \ldots \boldsymbol{x}_{T} \mid \boldsymbol{H}\right) \rightarrow \int \log p_{\boldsymbol{s}}\left(\boldsymbol{H}^{-1} \boldsymbol{u}\right) p_{\boldsymbol{x}}(\boldsymbol{u}) d \boldsymbol{u}+c s t
\]
which can be seen to be, by making the change \(\boldsymbol{v}=\boldsymbol{H}^{-1} \boldsymbol{u}\) :
\[
\begin{equation*}
\Upsilon_{M L} \stackrel{\text { def }}{=}-K\left(p_{\boldsymbol{z}}, p_{\boldsymbol{s}}\right)+c s t \tag{13}
\end{equation*}
\]
pdf matching
\(\qquad\)
\(\qquad\) 50/77 \(\qquad\) P.COMON

Contrast criteria

\section*{Noiseless Maximum Likelihood (2)}
- Yet, since \(s_{i}\) are independent, it can be shown that
\[
K\left(p_{\boldsymbol{z}}, p_{s}\right)=\underbrace{K\left(p_{\boldsymbol{z}}, \prod_{i} p_{z_{i}}\right)}_{M I}+\underbrace{\sum_{i} K\left(p_{z_{i}}, p_{s_{i}}\right)}_{\text {pdfdeviation }}
\]

This allows to take into account the source pdf's, if they are known

- But ML is not adequate if source pdf's are unknown \(\Rightarrow\) just use contrast criteria, as MI
\(\qquad\)
\(\qquad\)
\(\qquad\) 51/77 \(\qquad\)

\section*{Contrasts of \(\operatorname{CoM}(\alpha, r)\)}

When observations are standardized, and when only unitary transforms are considered, then the following are contrast functions:

■ If at most 1 source has a null skewness:
\[
\Upsilon_{2,3}=\sum_{p=1}^{P}\left(\kappa_{i i i}\right)^{2}, \quad \kappa_{i i i} \stackrel{\text { def }}{=} \mathcal{C}_{z i i i}
\]

■ If at most 1 source has a null kurtosis:
\[
\Upsilon_{2,4}=\sum_{p=1}^{P}\left(\kappa_{i i}^{i i}\right)^{2}, \quad \kappa_{i i}^{i i} \stackrel{\text { def }}{=} \mathcal{C}_{z_{i i}}^{i i}
\]
- If at most 1 source has a null standardized Cumulant of order \(r>2\), and for any \(\alpha \geq 1\) :
\[
\Upsilon_{\alpha, r}=\sum_{p=1}^{P}\left|\kappa_{(r)}\right|^{\alpha}, \quad \kappa_{(r)} \stackrel{\text { def }}{=} \mathcal{C}_{\boldsymbol{z}(r)}
\]
\(\qquad\) I3S \(\qquad\) ICASSP 2005 \(\qquad\) 52/77 \(\qquad\) P.COMON

\section*{Contrast criteria}

\section*{Contrast \(\operatorname{CoM}(1,4)\)}

Example 12: Kurtosis-based contrast without squaring

■ In particular, if all source kurtosis have the same sign, \(\varepsilon\), one can avoid the absolute value:
\[
\Upsilon_{1,4}=\varepsilon \sum_{p=1}^{P} \kappa_{i i}^{i i}
\]
\(\qquad\) 53/77 \(\qquad\)

Contrast criteria

\section*{Noisy mixture of 2 sources}

Example 13: Separation of 2 non Gaussian sources by contrast maximization

\(\qquad\) I3S \(\qquad\)

ICASSP 2005 \(\qquad\) 54/77 \(\qquad\) P.COMON

Contrast criteria

\section*{JADE Contrast}

Instead of minimizing all extra-diagonal terms:
\[
\Theta-\Upsilon_{2,4}=\sum_{i j k \ell \neq i i i i}\left|\mathcal{C}_{i j}^{k \ell}(\boldsymbol{Q} \tilde{\boldsymbol{x}})\right|^{2}
\]
one minimizes
\[
\Theta-\Upsilon_{\text {Jade }}=\sum_{i j k \ell \neq i i k \ell}\left|\mathcal{C}_{i j}^{k \ell}(\boldsymbol{Q} \tilde{\boldsymbol{x}})\right|^{2}
\]
which is equivalent to maximize \(\Upsilon_{\text {Jade }}=\sum_{i k \ell}\left|\gamma_{i \ell}^{i k}\right|^{2}\).
Interest:
\[
\begin{equation*}
\Upsilon_{J a d e}=\sum_{p=1}^{P^{2}} \| \operatorname{diag}\left(\boldsymbol{Q}^{\mathrm{H}} \boldsymbol{M}_{r} \boldsymbol{Q} \|^{2}\right. \tag{14}
\end{equation*}
\]
is satisfied if the matrix set \(\left\{\boldsymbol{M}_{r}\right\}\) forms an orthonormal basis.
\(\qquad\)

\section*{Block vs Adaptive}
- Increase power of DSP
- Limitations of time-recursive Adaptive Algorithms
- Convergence time of optimization algorithm
- Convergence time of moment estimators
- Local extrema harder to handle
- Coherence time sometimes limited
(e.g. GSM: \(900 \mathrm{MHz}, 190 \mathrm{~km} / \mathrm{h}, T_{c} \approx 2 m s \approx 300\) symbols)
- Well matched to block transmission (TDMA)
- Better exploitation of data (uniform weight, resistance to loss in synchro, time reversal)
\(\qquad\)

ICASSP 2005 \(\qquad\) 56/77 \(\qquad\) P.COMON

Algorithms
Joint vs Deflation


\section*{Deflation:}
- Advantage: reduced complexity at each stage
- Drawbacks: accumulation of regression errors, limitation of number of extracted sources
\(\qquad\)
\(\qquad\) 57/77 \(\qquad\)

\section*{Deflation by Kurtosis Gradient Ascent}

\section*{Adaptive Deflation by Kurtosis Maximization}

After standardization, it is equivalent to maximize 4 th order moment, \(\mathrm{E}\left\{z^{4}\right\}\), which yields:
\[
\Delta \boldsymbol{f}=\mu \nabla \mathcal{C}_{z(4)}=\mu \mathrm{E}\left\{\boldsymbol{x}\left(\boldsymbol{f}^{\boldsymbol{\top}} \boldsymbol{x}\right)^{3}\right\}
\]
- After prewhitening, fixed step gradient on angles (Delfosse-Loubaton'95)

■ "Locally optimal step" gradient on filter taps: FastICA (Hyvärinen'97)
- Globally optimal step gradient ascent (Comon’02)

Convergence: when \(\boldsymbol{f}\) and \(\nabla \mathcal{C}_{z(4)}\) collinear (and not when gradient is null, because of constraint \(\|\boldsymbol{f}\|=1\) ).
\(\qquad\)
\(\qquad\) 58/77 \(\qquad\) P.COMON

\section*{Algorithms}

\section*{Jacobi Sweeping}

Joint Block Algorithm: Sweeping a \(3 \times 3 \times 3\) tensor
\[
\begin{aligned}
& \left(\begin{array}{ccc}
X & x & x \\
x & x & x \\
x & x & x
\end{array}\right) \quad\left(\begin{array}{ccc}
X & x & x \\
x & x & x \\
x & x & x
\end{array}\right) \quad\left(\begin{array}{ccc}
x & x & x \\
x & x & x \\
x & x & x
\end{array}\right) \\
& \left(\begin{array}{lll}
x & x & x \\
x & X & x \\
x & x & x
\end{array}\right) \rightarrow\left(\begin{array}{lll}
x & x & x \\
x & \cdot & x \\
x & x & x
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
x & x & x \\
x & X & x \\
x & x & x
\end{array}\right) \\
& \left(\begin{array}{lll}
x & x & x \\
x & x & x \\
x & x & .
\end{array}\right) \quad\left(\begin{array}{ccc}
x & x & x \\
x & x & x \\
x & x & X
\end{array}\right) \quad\left(\begin{array}{ccc}
x & x & x \\
x & x & x \\
x & x & X
\end{array}\right)
\end{aligned}
\]
\(\left.\begin{array}{rl}X & : \text { maximized } \\ x & : \text { minimized } \\ . & : \text { unchanged }\end{array}\right\}\) by the last Givens rotation \(\quad \triangleright \underline{\text { demo10R }}\)
\(\qquad\) 59/77 \(\qquad\)

\section*{Influence on Sweeping oder}

Example 14: The order does not affect the limit, despite the presence of local maxima

\(\qquad\) I3S \(\qquad\)
\(\qquad\) 60/77 \(\qquad\) P.COMON

Algorithms

\section*{Tensors as Linear Operators}

■ Linear Operator \(\Omega\) acting on square matrices:
\[
\boldsymbol{M} \longrightarrow \Omega(\boldsymbol{M})_{i j}=\sum_{k \ell} \mathcal{C}_{i k}^{j \ell} M_{k \ell}
\]
admits eigen-matrices \(\boldsymbol{N}_{r}, 1 \leq r \leq P^{2}\).
■ In the absence of noise, \(P\) nonzero eigenvalues
■ In practice, retain \(P\) dominant eigen-matrices \(\Rightarrow\) (i) reduced complexity \(P^{2}\), and (ii) noise reduction
- A Joint Block Algorithm: JADE
- Maximize \(\Upsilon_{\alpha, J a d e} \xlongequal{\text { def }} \sum_{r}\left\|\lambda_{r}^{\alpha} \operatorname{diag}\left(\boldsymbol{U}^{H} \boldsymbol{N}_{r} \boldsymbol{U}\right)\right\|^{2}\)
"Joint Approximate Diagonalization of Eigenmatrices"
- Sweep the pairs \(\rightarrow\) again a quadratic form
\(\qquad\)
\(\qquad\)

\section*{Part IV: Under-Determined Mixtures}

What is specific:
- No linear inverse exists (thus no contrast)
- Prior standardization of poor usefulness


\section*{Two families of approaches:}
- From Cumulant tensor
- From Data tensor
\(\qquad\)
\(\qquad\) 62/77 \(\qquad\) P.COMON

UDM from Cumulant tensor

\section*{Canonical Decomposition}

Cumulant Tensor Matching (example at order 3):
- Model + Multi-linearity yields:
\[
\mathcal{C}_{x_{i j k}}=\sum_{p} H_{i p} H_{j p} H_{k p} \mathcal{C}_{s p p p}+E_{i j k}
\]
- Canonical Tensor Decomposition (CanD):
\[
\begin{gather*}
\boldsymbol{T}=\sum_{p=1}^{\operatorname{rank}(\boldsymbol{T})} \kappa_{p} \boldsymbol{h}(p) \circ \boldsymbol{h}(p) \circ \boldsymbol{h}(p)+\boldsymbol{E}  \tag{15}\\
\boldsymbol{T}=\kappa_{1} \backslash+\cdots+\kappa_{P} \square
\end{gather*}
\]
- In practice, often minimize the matching error \(\Psi \stackrel{\text { def }}{=}\|\boldsymbol{E}\|^{2}\)
\(\qquad\) 63/77 \(\qquad\)

UDM from Cumulant tensor

\section*{Tensor Rank (1)}

■ Generic/Typical rank \(\omega\) of symmetric tensors of order \(d\), generally larger than dimension \(K\) :
\begin{tabular}{c|c||c|c|c|c|c|c|c|}
\(\omega\) & \(K\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) \\
\hline \hline \multirow{3}{*}{\(d\)} & \(\mathbf{3}\) & 2 & 4 & 5 & 8 & 10 & 12 & 15 \\
\cline { 2 - 8 } & \(\mathbf{4}\) & 3 & 6 & 10 & 15 & 22 & 30 & 42 \\
\hline
\end{tabular}

■ CanD often not unique (in red: infinitely many solutions)
\(\qquad\)
I3S
\(\qquad\) 64/77 \(\qquad\) P.COMON

UDM from Cumulant tensor
Tensor rank (2)

■ Maximal rank: generally larger than generic rank
Example 15: order 3, dimension 2, but rank 3

\[
\text { blue bullets }=1, \text { red bullets }=-1
\]

■ In dimension 2, CanD entirely computable thanks to Sylvester's theorem on polynomials

■ Very hard in higher dimensions
\(\qquad\) 65/77 \(\qquad\)

UDM from Cumulant tensor

\section*{CanD of 2-dim tensors}

Example 16: Rank obtained for \(d\) th order symmetric tensors of \(\operatorname{dim} 2\)

\(\qquad\) I3S \(\qquad\)
\(\qquad\) \(66 / 77\) \(\qquad\) P.COMON

UDM from Cumulant tensor
Tensor rank (3)

■ Real tensors may not have same rank if immersed in complex
field
Example 17: Complex rank:
\[
\boldsymbol{T}(:, ., 1)=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right), \quad \boldsymbol{T}(:,:, 2)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\]

If decomposed in \(\mathbb{R}\), it is of rank 3:
\[
\boldsymbol{T}=\frac{1}{2}\binom{1}{1}^{\circ 3}+\frac{1}{2}\binom{1}{-1}^{\circ 3}-2\binom{1}{0}^{\circ 3}
\]
whereas it admits a CAND of rank 2 in \(\mathbb{C}\) :
\[
\boldsymbol{T}=\frac{\jmath}{2}\binom{-\jmath}{1}^{\circ 3}-\frac{\jmath}{2}\binom{\jmath}{1}^{\circ 3}
\]
\(\qquad\)
\(\qquad\) 67/77 \(\qquad\)

UDM from Cumulant tensor

\section*{Source extraction}

Example 18: 3 BPSK sources and 2 sensors
\(\square s_{1},{ }_{2}, s_{3}: \in\{-1,1\}\), mutually independent
- Actual observations: \(\boldsymbol{x}=\left[x_{1}, x_{2}\right]^{\top}\)

■ Build virtual observations: \(\boldsymbol{z}=\left[x_{1}^{3}, x_{1}^{2} x_{2}, x_{1} x_{2}^{2}, x_{2}^{3}\right]^{\top}\)
■ Then 6-dimensional augmented observation:
\[
\binom{\boldsymbol{x}}{\boldsymbol{z}}=\left[\begin{array}{cc}
\boldsymbol{H} & \mathbf{0} \\
\boldsymbol{B}
\end{array}\right] \cdot\left(\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3} \\
s_{1} s_{2} s_{3}
\end{array}\right)
\]
with one virtual source \(s_{4} \stackrel{\text { def }}{=} s_{1} s_{2} s_{3}\), pairwise independent of \(s_{i}\)
\(\qquad\) 13S \(\qquad\)
\(\qquad\) 68/77 \(\qquad\) P.COMON

\section*{LS Criterion}

Data arranged in a order- \(d\) tensor ( \(d\)-way array)
■ CanD in the case of \(d=3\) :
\[
\begin{equation*}
\boldsymbol{T}=\sum_{p=1}^{\omega} \kappa_{p} \boldsymbol{a}(p) \circ \boldsymbol{b}(p) \circ \boldsymbol{c}(p) \tag{16}
\end{equation*}
\]
- Now error \(\Psi\) is quadratic in each \(\boldsymbol{a}(p)\), if all \(\boldsymbol{b}(p)\) and \(\boldsymbol{c}(p)\) fixed

■ Other useful writings:
\[
\begin{gather*}
\Psi=\sum_{k=1}^{K_{3}}\left\|\boldsymbol{T}(:,:, k)-\boldsymbol{A} \operatorname{Diag}(\boldsymbol{C}(k,:)) \boldsymbol{B}^{\boldsymbol{\top}}\right\|^{2} \\
\Psi=\left\|\boldsymbol{T}^{(1)}-\boldsymbol{A}(\boldsymbol{C} \odot \boldsymbol{B})^{\boldsymbol{\top}}\right\|^{2} \tag{17}
\end{gather*}
\]

Minimum of \(\Psi\) w.r.t. \(\boldsymbol{A}\) can be obtained by SVD.
Idem for \(\boldsymbol{B}, \boldsymbol{C}\).
\(\qquad\) \(69 / 77\) \(\qquad\)

UDM form Data tensor

\section*{Alternate Least Squares (ALS)}

The PARAFAC algorithm computes in turn \(\boldsymbol{A}, \boldsymbol{B}\), and \(\boldsymbol{C}\) : Alternating Least Squares (ALS)

■ Very slow convergence

■ Need for a sufficient condition of uniqueness:
\[
k(\boldsymbol{A})+k(\boldsymbol{B})+k(\boldsymbol{C}) \geq 2 \omega+2
\]
where \(k(\boldsymbol{A})\) denotes Kruskal's rank of \(\boldsymbol{A}\).
In symmetric case, one needs at least that \(2 \omega \leq 3 K-2\)
Can be extended to order \(d: 2 \omega \leq d K-d+1\)

■ Need for diversity: matrix slices must be "sufficiently different"
\(\qquad\)
\(\qquad\) 70/77 \(\qquad\) P.COMON

UDM from Data tensor

\section*{Parafac ALS algorithm}

Example 19: Two accelerated versions: Bro'98 and Rajih-Comon'05

\(\qquad\) 13.5 \(\qquad\)
\(\qquad\) \(71 / 77\) \(\qquad\)

\section*{Kruskal rank}
- Column rank of a matrix \(\operatorname{rank}(\boldsymbol{A})=r\) iff there is at least one subset of \(r\) lin. independent columns, and this fails for any subset of \(r+1\) columns.
- Kruskal rank of a matrix
\(K-\operatorname{rank}(\boldsymbol{A})=k\) iff every subset of \(k\) columns is lin. independent, and this fails for at least one subset of \(k+1\) columns.
- Property: \(k(\boldsymbol{A}) \leq \operatorname{rank}(\boldsymbol{A}) \leq \operatorname{dim}(\boldsymbol{A})\)
\(\qquad\)
\(\qquad\) 72/77 \(\qquad\) P.COMON

UDM form Data tensor

\section*{Data vs Cumulant Tensors}

\section*{Multi-linear vs Linear Blind Model fitting}
- CanD, if diversity among loading vectors allows to build a data tensor:

- ICA, if little diversity imposes a 2-way equivalent data matrix


\section*{Part V: Beyond this Tutorial}
- Some unaddressed problems
- Tensor properties

- False beliefs
\(\qquad\)
\(\qquad\) 74/77 \(\qquad\) P.COMON

Beyond this Tutorial

\section*{Some Unaddressed Problems}
- Reduction of tensor sizes: HOSVD/Tucker3 model fitting
- Simultaneous Tensor Diagonalization (STD)
- Performance indices
- Nonstationary sources, Discrete sources

■ Convolutive mixtures
- Semi-Blind approaches
- Unexpected topological properties of tensor spaces
\(\qquad\) 75/77 \(\qquad\)

Beyond this Tutorial

\section*{Unexpected topological properties}
- The variety of rank-1 matrices or tensors is closed
- The variety of matrices of rank \(\leq k\) is closed

■ The set of tensors of rank \(\leq k\) is not closed; e.g.:
\(\exists\) sequence \(\boldsymbol{T}_{n}\) of rank- 3 tensors \(\Rightarrow\) rank \(4!\)
\(\qquad\)
I3S

ICASSP 2005 \(\qquad\) 76/77 \(\qquad\) P.COMON

Beyond this Tutorial

\section*{False Beliefs (1)}
1. BSS always requires High-Order Statistics (HOS)
\(\longrightarrow\) Second-order can (rarely) suffice
2. Sources must be statistically independent
\(\longrightarrow\) Correlated sources can be sometimes separated (e.g. Discrete/CM sources, Pairwise cumulants...)
3. HOS are always required when sources are i.i.d.
\(\longrightarrow\) Second-order BSS algorithms exist
4. There should be at least as many sensors as sources: \(K \geq P\) (sufficient diversity)
\(\longrightarrow\) Underdetermined mixtures can be identified
\(\qquad\)
\(\qquad\) 77/77 \(\qquad\) P.COMON

Beyond this Tutorial

\section*{False Beliefs (2)}
5. Perfect source extraction is impossible if \(K<P\)
\(\longrightarrow\) Discrete sources can be perfectly extracted from underdetermined mixtures (insufficient diversity)
6. Conditions of application of Parafac are mild
\(\longrightarrow\) except when one dimension \(=2\), the typical rank always exceeds the Parafac bound for uniqueness
7. Approximate a tensor by another of lower rank is as easy as for matrices
\(\longrightarrow\) beside for rank 1, there is a lack of closeness
8. The Constant Modulus (CM) property is the best way to handle PSK sources
\(\longrightarrow\) The whole alphabet can be taken into account in order to define a contrast function
\(\qquad\)```

