TUT # 10

Independent Component Analysis & Multi-way Factor Analysis

Pierre Comon

Lab. 13S CNRS & University of Nice Sophia-Antipolis, France

Р	eart I: General	
Goal of ICA, exampleUniqueness	le	A CONTRACTOR
ApplicationsDecorrelation vs Ind	ependence	
■ Taxonomy		
 Brief historical surve 	y	
	13S	

ICASSP 2005	4/77	P.COMON
	General	
Principal C	Component Analy	ysis (PCA)
Goal		
Given a K -dimension	onal r.v., \boldsymbol{x} , find \boldsymbol{U} and	\boldsymbol{z} such that
 Observation 		
	$oldsymbol{x} = oldsymbol{U} oldsymbol{z}$	
z has uncorrelated	d components z_i	
NB: Because of la	ack of uniqueness, \boldsymbol{U} is	often assumed to be
unitary.		

I3S

	5/77	P.COMON
	General	
Independen	t Component Analy	rsis (ICA)
Goal		
Given a K -dimens	sional r.v., $oldsymbol{x}$, find $oldsymbol{H}$ and $oldsymbol{s}$ s	uch that
 Observation 		
	$oldsymbol{x} = oldsymbol{H} oldsymbol{s}$	(1)
• \boldsymbol{s} has mutually s	tatistically independent comp	bonents s_i
▶ " <i>Blind</i> " termin	ology: only outputs x_i are ob	served.
	13S	
	13S	
 ICASSP 2005	I3S	P.COMON
 ICASSP 2005	I3S 6/77	P.COMON
 ICASSP 2005	13S 6/77 General Uniqueness	P.COMON
 ICASSP 2005	13S 6/77 General Uniqueness	P.COMON
ICASSP 2005 Inherent indete	13S 6/77 General Uniqueness erminations	P.COMON
ICASSP 2005 Inherent indete if <i>s</i> has independent	$[I3S] \\ [General] \\ [Uniqueness] \\ [Original] \\ [Origin$	P.COMON
ICASSP 2005 Inherent indeto if s has independent where Λ is invertible	$\mathbf{I3S}$ $\frac{6/77}{\mathbf{General}}$ $\mathbf{Uniqueness}$ $\mathbf{Components} s_i, \text{ so has } \mathbf{\Lambda P s}$ $\mathbf{components} s_i, \text{ so has } \mathbf{\Lambda P s}$	P.COMON

- *"Essential uniqueness"*: unique up to a *trivial filter*, i.e. a scale-permutation
- Whole equivalence class of solutions \Rightarrow Look for one representative.

____**I3S** __

ICASSP 2005 _

P.COMON

General

_____ 7/77 __

Decorrelation vs Independence

Example 1: Mixture of 2 identically distributed sources

Consider the mixture of two independent sources

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$

where $E\{s_i^2\} = 1$ and $E\{s_i\} = 0$. Then x_i are *uncorrelated*:

$$E\{x_1 x_2\} = E\{s_1^2\} - E\{s_2^2\} = 0$$

But x_i are *not independent* since, for instance:

$$\mathbf{E}\{x_1^2 x_2^2\} - \mathbf{E}\{x_1^2\} \mathbf{E}\{x_2^2\} = \mathbf{E}\{s_1^4\} + \mathbf{E}\{s_2^4\} - 6 \neq 0$$

_____I3S_____

 $\vartriangleright \underline{\operatorname{demoICA2x2}}$

Factor An	alysis		
• Chemo	ometrics		
• Econor	metrics		
• Psycho	ology		
 Denoising 			
Compressi	on		
Arithmeti	e Complexity		
Machine L	earning		
Explorator	ry Analysis		

		isors	
	1	K	
1	SISO	SIMO	
P	MISO	MIMO	

	13/77	P.COMON
	General	
	Taxonomy (3)	
Assumptions re	quired on sources:	
• H1. use of Time spectral difference	coherency of $\boldsymbol{s}(n)$: separation separation of $\boldsymbol{s}(n)$: separation of $\boldsymbol{s}(n)$:	ration by exploiting
H2. Sources s_i are	e mutually statistically ind	lependent
• Static case: r identical p.s.d	\therefore v. statistically independent.) → ICA	lent (but may have
• Dynamic case	: Sources are i.i.d. (i.e. wh	nite) processes
H3. Sources are D	Discrete (but may be stat.	dependent)
H4 Sources are n	on stationary (and have di	fferent time profiles)
	13S	
	13S	
	13S	
CASSP 2005	I3S	P.COMON
 CASSP 2005	I3S 14/77 General	P.COMON
CASSP 2005 Historical s	14/77 General Survey (Static MI	P.COMON P.COMON MO only)
CASSP 2005 Historical s	13S 14/77 General survey (Static MI	P.COMON MO only)
CASSP 2005 Historical s	14/77 General Survey (Static MI Dugué'51, Darmois'53, Feller'66,	P.COMON P.COMON MO only) Friedman'74, Donoho'80
CASSP 2005 Historical s • The ancestors: • The first shy s	14/77 General Survey (Static MI Dugué'51, Darmois'53, Feller'66, teps in ICA: Bar-Ness'82,	P.COMON P.COMON MO only) Friedman'74, Donoho'80 Jutten'83, Fety'88
CASSP 2005 Historical s The ancestors: The first shy s The first steps Kruskal'77	14/77 General Survey (Static MI Dugué'51, Darmois'53, Feller'66, teps in ICA: Bar-Ness'82, s ins Multi-way: Carro	P.COMON MO only) Friedman'74, Donoho'80 Jutten'83, Fety'88 Il-Chang'70, Harshman'70,
CASSP 2005 Historical s • The ancestors: • The first shy s • The first steps Kruskal'77 • First closed-for	14/77 General Survey (Static MI Dugué'51, Darmois'53, Feller'66, teps in ICA: Bar-Ness'82, s ins Multi-way: Carro rm solutions: Comon'89, O	P.COMON MO only) Friedman'74, Donoho'80 Jutten'83, Fety'88 Il-Chang'70, Harshman'70, Cardoso'92
CASSP 2005 Historical s • The ancestors: • The first shy s • The first steps Kruskal'77 • First closed-for • First IT fram	14/77 General Survey (Static MI Dugué'51, Darmois'53, Feller'66, teps in ICA: Bar-Ness'82, s ins Multi-way: Carro rm solutions: Comon'89, C neworks: Comon'91, Cardo	P.COMON MO only) Friedman'74, Donoho'80 Jutten'83, Fety'88 Il-Chang'70, Harshman'70, Zardoso'92 so'93, Comon'94, Bell'95,
CASSP 2005 Historical s The ancestors: The first shy s The first steps Kruskal'77 First closed-for First IT fram Delfosse-Loubaton'95	14/77 General Survey (Static MI Dugué'51, Darmois'53, Feller'66, teps in ICA: Bar-Ness'82, s ins Multi-way: Carro rm solutions: Comon'89, C neworks: Comon'91, Cardo	P.COMON MO only) Friedman'74, Donoho'80 Jutten'83, Fety'88 Il-Chang'70, Harshman'70, Cardoso'92 so'93, Comon'94, Bell'95,
CASSP 2005 Historical s The ancestors: The first shy s The first steps Kruskal'77 First closed-for First IT fram Delfosse-Loubaton'95 Specific impr	14/77 General Survey (Static MI Dugué'51, Darmois'53, Feller'66, teps in ICA: Bar-Ness'82, s ins Multi-way: Carro rm solutions: Comon'89, C neworks: Comon'91, Cardo ovements: Hyvarinen'97	P.COMON MO only) Friedman'74, Donoho'80 Jutten'83, Fety'88 Il-Chang'70, Harshman'70, Cardoso'92 so'93, Comon'94, Bell'95, , Pajunen'97, Amari'98,
 CASSP 2005 Historical s The ancestors: The first shy s The first steps Kruskal'77 First closed-for First IT fram Delfosse-Loubaton'95 Specific impr Grellier'98, Parra'2000 	14/77 General Survey (Static MI Dugué'51, Darmois'53, Feller'66, teps in ICA: Bar-Ness'82, s ins Multi-way: Carro rm solutions: Comon'89, C neworks: Comon'91, Cardo ovements: Hyvarinen'97	P.COMON MO only) Friedman'74, Donoho'80 Jutten'83, Fety'88 Il-Chang'70, Harshman'70, Cardoso'92 so'93, Comon'94, Bell'95, , Pajunen'97, Amari'98,
 CASSP 2005	14/77 General Survey (Static MI Dugué'51, Darmois'53, Feller'66, teps in ICA: Bar-Ness'82, s ins Multi-way: Carro rm solutions: Comon'89, C neworks: Comon'91, Cardo ovements: Hyvarinen'97 Ces: Cao-Liu'96, Moreau-Pe	P.COMON MO only) Friedman'74, Donoho'80 Jutten'83, Fety'88 Il-Chang'70, Harshman'70, Cardoso'92 so'93, Comon'94, Bell'95, , Pajunen'97, Amari'98, squet'97, Taleb-Jutten'97,

 $Pham-Cardoso'2000,\ Yeredor'2000,\ Sidiropoulos-Bro'00$

_____I3S_____

____**I3S**__

Statistical tools

Statistical independence

Definition

Components s_k of a K-dimensional r.v. \boldsymbol{s} are *mutually independent*

↕

The *joint* pdf equals the *product of marginal* pdf's:

$$p_{\boldsymbol{s}}(\boldsymbol{u}) = \prod_{k} p_{\boldsymbol{s}_{k}}(\boldsymbol{u}_{k}) \tag{3}$$

Definition

Components s_k of **s** are *pairwise independent* \Leftrightarrow Any pair of components (s_k, s_ℓ) are mutually independent.

_____I3S_____

Let two random variables be defined as linear combinations of independent random variables x_i :

$$Z_1 = \sum_{i=1}^N a_i x_i, \quad Z_2 = \sum_{i=1}^N b_i x_i$$

Then, if Z_1 and Z_2 are independent, those x_j for which $a_j b_j \neq 0$ are Gaussian.

 $--13S_{-}$

Statistical tools

Mutual vs Pairwise independence (4)

_____ 25/77 _

Corollary

If $\boldsymbol{z} = \boldsymbol{C} \boldsymbol{s}$, where s_i are independent r.v., with at most one of them being Gaussian, then the following properties are equivalent:

_____I3S _____

- **1.** Components z_i are pairwise independent
- **2.** Components z_i are mutually independent
- **3.** $\boldsymbol{C} = \boldsymbol{\Lambda} \boldsymbol{P}$, with $\boldsymbol{\Lambda}$ diagonal and \boldsymbol{P} permutation

ICASSP 2005 _

_____ 27/77 ___

P.COMON

Statistical tools
Cumulants (1)

Moments:

$$\mu_r' \stackrel{\text{def}}{=} \mathbf{E}\{x^r\} = (-\jmath)^r \left. \frac{\partial^r \Phi(t)}{\partial t^r} \right|_{t=0}$$
(4)

Cumulants:

$$\mathcal{C}_{x(r)} \stackrel{\text{def}}{=} \operatorname{Cum}\{\underbrace{x, \dots, x}_{r \text{ times}}\} = (-\jmath)^r \left. \frac{\partial^r \Psi(t)}{\partial t^r} \right|_{t=0}$$
(5)

■ Needs the existence of the expansion. Counter example: Cauchy

$$p_x(u) = \frac{1}{\pi (1+u^2)}$$

 Relationship between Moments and Cumulants obtained by expanding both sides in Taylor series:

$$\log \Phi_x(t) = \Psi_x(t)$$

_____13S _____

ICASSP 2005	28/77	P.COMON
	Statistical tools	
	Cumulants (2)	
First Cumulan	ts	
$\bullet C_{(2)}$ is the varian	ice:	
■ For zero-mean r	.v.: $\mathcal{C}_{(3)} = \mu_{(3)}$, and $\mathcal{C}_{(4)}$	$= \mu_{(4)} - 3\mu_{(2)}^2$
■ Warning: it is	not true that $\mathcal{C}_{(r)}$ is the m	noment of a variable
$x - x_g, x_g$ Gaus	ssian	
■ Standardized cu	mulants:	
	$\mathcal{K}_{(r)} = \operatorname{Cum}_{(r)} \left\{ \frac{x - \mu'_{(1)}}{\sqrt{\mu_{(2)}}} \right.$	
e.g. <i>Skewness</i> 1	\mathcal{C}_3 , and <i>Kurtosis</i> \mathcal{K}_4 .	

Statistical tools

_____ 35/77 _

Central Limit Theorem

Let N independent scalar r.v., $x(n), 1 \le n \le N$ each with finite rth order Cumulant, $\kappa_{(r)}(n)$.

Define:

$$\bar{\kappa}_{(r)} = \frac{1}{N} \sum_{n=1}^{N} \kappa_{(r)}(n) \text{ and } y = \frac{1}{\sqrt{N}} \sum_{n=1}^{N} (x(n) - \bar{\kappa}_{(1)}).$$

_____I3S _____

As $N \to \infty$, the pdf f_y tends to a Gaussian.

Proof:

 $C_{y(r)} = \frac{\bar{\kappa}_{(r)}}{N^{r/2-1}}, \forall r \ge 2$, tends to zero.

_____**I3S**_____

From page 35, *r*th order Cumulants ~ $O(m^{1-r/2})$.

____**I3S**__

Statistical tools

Edgeworth expansion (2)

Edgeworth expansion of the MI

This yields for standardized random variables \boldsymbol{x} , after lengthy calculations:

$$I(p_{\boldsymbol{x}}) = J(p_{\boldsymbol{x}}) - \frac{1}{48} \sum_{i} 4 \mathcal{C}_{iii}^{2} + \mathcal{C}_{iiii}^{2} + 7 \mathcal{C}_{iii}^{4} - 6 \mathcal{C}_{iii}^{2} \mathcal{C}_{iiii} + o(m^{-2}).$$
(11)

_____13S_____

- If 3rd order $\neq 0$, then $I(p_x) \approx J(p_x) \frac{1}{12} \sum_i C_{iii}^2$
- If 3rd order ≈ 0 , then $I(p_x) \approx J(p_x) \frac{1}{48} \sum_i C_{iiii}^2$

ICASSP 2005	42/77	P.COMON
Part III: Sepa	Contents ration of Indepe	ndent Sources
 Cumulant matchin Contrast Criteria Numerical Algorit 	ng (direct approach: ide (inverse approach: equa hms: block/adaptive, jo	ntification) lization):
U	, , , , , , , , , , , , , , , , , , , ,	7
	13S	

INOISEIE	ss mixture of 2	2 sources
Source1	Sensor1	
$\begin{array}{c} 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	2 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
Source1 Source2 QAM1 PSK8 Generate Sources	Data Length SNR dB 100 - 50 - Generate Observations	Separate by Com1

Г

ICASSP 2005	46/77	P.COMON
	Contrast criteria	
Def	inition of a Contra	ast
Axiomatic defin	ition	
A <i>Contrast</i> optimizat	ion criterion Υ should enj	oy 3 properties:
■ <i>Invariance</i> : Y si filters (as defined	hould not change under t in p.6)	the action of trivial
Domination: If s decrease (or leave	ources are already separat unchanged) Υ	ed, any filter should
 Discrimination: reached only when by trivial filters) 	The maximum achievable sources are separated (i.e.	ble value should be . maxima are related

_**I3S**.

____**I3S** _____

ICASSP 2005 _

_____ P.COMON

Contrast criteria

_____ 51/77 __

Contrasts of $CoM(\alpha, r)$

When observations are standardized, and when only unitary transforms are considered, then the following are contrast functions:

■ If at most 1 source has a null skewness:

$$\Upsilon_{2,3} = \sum_{p=1}^{P} (\kappa_{iii})^2, \quad \kappa_{iii} \stackrel{\text{def}}{=} \mathcal{C}_{z_{iii}}$$

■ If at most 1 source has a null kurtosis:

$$\Upsilon_{2,4} = \sum_{p=1}^{P} (\kappa_{ii}^{ii})^2, \quad \kappa_{ii}^{ii} \stackrel{\text{def}}{=} \mathcal{C}_{z_{ii}}^{ii}$$

• If at most 1 source has a null standardized Cumulant of order r > 2, and for any $\alpha \ge 1$:

$$\Upsilon_{\alpha,r} = \sum_{p=1}^{P} |\kappa_{(r)}|^{\alpha}, \quad \kappa_{(r)} \stackrel{\text{def}}{=} \mathcal{C}_{\boldsymbol{z}(r)}$$

____I3S_____

_____**I3S** __

Algorithms

_ 57/77 _

Deflation by Kurtosis Gradient Ascent

Adaptive Deflation by Kurtosis Maximization

After standardization, it is equivalent to maximize 4th order moment, E $\{z^4\}$, which yields:

$$\Delta \boldsymbol{f} = \mu \, \nabla \mathcal{C}_{\boldsymbol{z}(4)} = \mu \, \mathbb{E} \{ \boldsymbol{x} \, (\boldsymbol{f}^{\mathsf{T}} \boldsymbol{x})^3 \}$$

- After prewhitening, fixed step gradient on angles (Delfosse-Loubaton'95)
- "Locally optimal step" gradient on filter taps: FastICA (Hyvärinen'97)
- Globally optimal step gradient ascent (Comon'02)

Convergence: when \boldsymbol{f} and $\nabla C_{z(4)}$ collinear (and *not* when gradient is null, because of constraint $||\boldsymbol{f}|| = 1$).

____**I3S** ____

ICASSP 2005	61/77	P.COMON
Part IV. II	Contents	Mixtures
	inder-Determined	Wixtures
What is specific	:	
• No linear inverse ϵ	exists (thus no contrast)	
Prior standardizat	tion of poor usefulness	2
Two families of	approaches:	
From Cumulant te	ensor	
From Data tensor		
	13S	
ICASSP 2005	62/77	P.COMON

Canonical Decomposition

Cumulant Tensor Matching (example at order 3):

■ Model + Multi-linearity yields:

Γ

$$\mathcal{C}_{\boldsymbol{x}\,ijk} = \sum_{p} H_{ip} H_{jp} H_{kp} \mathcal{C}_{\boldsymbol{s}\,ppp} + E_{ijk}$$

• Canonical Tensor Decomposition (CanD):

$$\boldsymbol{T} = \sum_{p=1}^{rank(\boldsymbol{T})} \kappa_p \, \boldsymbol{h}(p) \circ \boldsymbol{h}(p) \circ \boldsymbol{h}(p) + \boldsymbol{E}$$
(15)

$$T = \kappa_1 \left| \begin{array}{c} & & \\ & + \cdots + \kappa_P \\ & & \end{array} \right|$$

• In practice, often minimize the matching error $\Psi \stackrel{\text{def}}{=} ||\boldsymbol{E}||^2$

___**I3S**_

ICASSP 2005			_ 63/7	7				P.COMON
	UE	M from	ı Cumu	lant to	ensor			
	Te	nsoi	r Ra	nk	(1)		
■ Generic/T	ypical rank	ω of	symr	netri	c tei	nsors	s of o	order d ,
generally la	arger than	dime	nsion	K:				
	ω K	2	3 4	5	6	7	8	
		2	4 5	8	10	12	15	
	$\begin{bmatrix} a \\ 4 \end{bmatrix}$	3	6 10	15	22	30	42	
CanD often	n not uniqu	ıe (<mark>in</mark>	red:	infin	itely	ma	ny s	olutions)
			13	5				
			<					
CASSP 2005			_ 64/7	7				P.COMON
	UE	M from	ı Cumu	lant to	ensor			
	Te	enso	r ra	nk	(2)			
Maximal ratio	ank: genera	ally la	rger	than	gen	eric	rank	
Example	15: orde	er 3,	dim	ensi	on 2	2, b	ut 1	cank 3
	_	.		4			Æ	-
	2		+			+ 2		
	blue bi	illets	= 1, 1	red b	ulle	ts =	-1.	
	01000		, -					
∎ In dimensi	on 2, CanE) entii	ely co	ompu	ıtab	le th	ank	s to Sylvester's
■ In dimension theorem or	on 2, CanE 1 polynomi) entii als	ely co	ompı	ıtab	le th	anks	s to Sylvester's
 In dimension theorem or Very hard 	on 2, CanE 1 polynomi in higher d) entii als limens	cely co sions	ompı	ıtab	le th	anks	s to Sylvester's
 In dimension theorem or Very hard 	on 2, CanE 1 polynomi in higher d) entii als limens	cely co sions	ompı	ıtab	le th	ank	s to Sylvester's
 In dimension theorem or Very hard 	on 2, CanE 1 polynomi in higher d) entin als limens	cely co sions	ompı	ıtab	le th	anks ⊳ <u>de</u>	s to Sylvester's
 In dimensional theorem or Very hard 	on 2, CanE 1 polynomi in higher d) entin als limens	cely co sions	ompı	ıtab	le th	anks ⊳ de	s to Sylvester's
 In dimensional theorem or Very hard 	on 2, CanE 1 polynomi in higher d) entin als limens	cely co sions	ompı	ıtab	le th	anks ⊳ de	s to Sylvester's mo BinaryTensors

	00, 1.00.000
	UDM from Cumulant tensor
Ca	nD of 2-dim tensors
Example 16: Ra	ank obtained for d th order symmetric
tensors of dim 2	
Real	Drder 7 -
1000	2 tomo
	0 1871113
Compute Ranks	Compute CanD
Order 3 Real Tensors	ORIGINAL: 0.02948 0.26882 0.32959 1 0.06753 0.6610 -0.16251 0.063225
	³ RECONSTRUCTED: 0.02948 0.26882 0.32959 1 0.06753 0.66107 -0.16251 0.063225
ASVM: 79.7, 20.3 SVM: 51.9 48.1	ESTIMATED TENSOR RANK = 4
	RECONSTRUCTION ERROR = 5.7746e-16
	I3S

UDM form Data tensor

_____69/77 ___

Alternate Least Squares (ALS)

The PARAFAC algorithm computes in turn \boldsymbol{A} , \boldsymbol{B} , and \boldsymbol{C} : Alternating Least Squares (ALS)

Very slow convergence

■ Need for a sufficient condition of uniqueness:

$$k(\boldsymbol{A}) + k(\boldsymbol{B}) + k(\boldsymbol{C}) \ge 2\,\omega + 2$$

where $k(\mathbf{A})$ denotes *Kruskal's rank* of \mathbf{A} .

In symmetric case, one needs at least that $2\omega \leq 3K-2$

©Can be extended to order $d: 2\omega \leq dK - d + 1$

• Need for *diversity*: matrix slices must be "sufficiently different"

____**I3S**_____

 \triangleright demo Parafac

ICASSP 2005	73/77	P.COMON
Dem	Contents	Vet entel
Par	t V: Beyond this 1	utorial
■ Some unaddre	essed problems	
 Tensor proper 	rties	a wills
■ False beliefs		
	13S	
	13S	
	I3S	
ICASSP 2005	I3S 	P.COMON
ICASSP 2005	I3S 74/77 Beyond this Tutorial	P.COMON
CASSP 2005 Son	74/77 Beyond this Tutorial ne Unaddressed Pr	P.COMON
CASSP 2005 Son	13S 74/77 Beyond this Tutorial ne Unaddressed Pr tensor sizes: HOSVD/Tuck	 P.COMON oblems er3 model fitting
CASSP 2005 Son Reduction of Simultaneous	74/77	oblems er3 model fitting
CASSP 2005 Son Reduction of Simultaneous Performance	74/77 Beyond this Tutorial ne Unaddressed Pr tensor sizes: HOSVD/Tucka Tensor Diagonalization (ST indices	oblems er3 model fitting D)
CASSP 2005 Son Reduction of Simultaneous Performance i Nonstationary	74/77	oblems er3 model fitting TD)
CASSP 2005 Son Reduction of Simultaneous Performance i Nonstationary Convolutive r	74/77	oblems er3 model fitting D)
CASSP 2005 Son Reduction of Simultaneous Performance i Nonstationary Convolutive r Semi-Blind ap	74/77	oblems er3 model fitting 'D)
CASSP 2005 Son Reduction of Simultaneous Performance i Nonstationary Convolutive r Semi-Blind ap Unexpected t	74/77	oblems er3 model fitting TD)
CASSP 2005 Son Reduction of Simultaneous Performance i Nonstationary Convolutive r Semi-Blind ap Unexpected t	74/77	oblems er3 model fitting CD)

 $\mathbf{I3S}$

ICASSF 2003	75/77	P.COMON
	Beyond this Tutorial	
Unexp	ected topological prop	oerties
■ The variety of	rank-1 matrices or tensors is clo	sed
■ The variety of	matrices of rank $\leq k$ is closed	
■ The set of tens	sors of rank $\leq k$ is not closed;	e.g.:
\exists sequence \boldsymbol{T}_n	$_{i}$ of rank-3 tensors \Rightarrow rank 4 !	
	I3S	
ICASSP 2005	76/77	P.COMON
ICASSP 2005	76/77Beyond this Tutorial False Beliefs (1)	P.COMON
ICASSP 2005	76/77Beyond this Tutorial False Beliefs (1)	P.COMON
ICASSP 2005 1. BSS always red	76/77Beyond this Tutorial False Beliefs (1) equires High-Order Statistics (HC	P.COMON
ICASSP 2005 1. BSS always rec \longrightarrow Second-	76/77 Beyond this Tutorial False Beliefs (1) equires High-Order Statistics (HC -order can (rarely) suffice	P.COMON
1. BSS always red \longrightarrow Second- 2. Sources must b	76/77	P.COMON
1. BSS always real \longrightarrow Second- 2. Sources must b \longrightarrow Correla	76/77	P.COMON
1. BSS always real \longrightarrow Second- 2. Sources must h \longrightarrow Correla (e.g. Discrete	76/77Beyond this Tutorial False Beliefs (1) equires High-Order Statistics (HC -order can (rarely) suffice be statistically independent ated sources can be sometimes e/CM sources, Pairwise cumul	P.COMON DS) separated ants)
1. BSS always red \longrightarrow Second- 2. Sources must b \longrightarrow Correla (e.g. Discrete 3. HOS are alway \longrightarrow Second-	76/77 Beyond this Tutorial False Beliefs (1) equires High-Order Statistics (HO -order can (rarely) suffice be statistically independent ated sources can be sometimes e/CM sources, Pairwise cumul ys required when sources are <i>i.i.</i> 2-order BSS algorithms exist	P.COMON DS) separated ants) d.
1. BSS always rea \longrightarrow Second- 2. Sources must b \longrightarrow Correla (e.g. Discrete 3. HOS are alway \longrightarrow Second 4. There should b	76/77 Beyond this Tutorial False Beliefs (1) equires High-Order Statistics (HC -order can (rarely) suffice be statistically independent ated sources can be sometimes e/CM sources, Pairwise cumul ys required when sources are <i>i.i.</i> e-order BSS algorithms exist be at least as many sensors as	$P.COMON$ $S)$ $separated$ $ants)$ $d.$ $sources: K \ge F$
 ICASSP 2005 BSS always reacher of the second- Sources must be a correlacion of the second- Sources must be a correlacion of the second- HOS are alway a second- HOS are alway a second- There should be a second- 	76/77 Beyond this Tutorial False Beliefs (1) equires High-Order Statistics (HO -order can (rarely) suffice be statistically independent ated sources can be sometimes e/CM sources, Pairwise cumul ys required when sources are i.i. e-order BSS algorithms exist be at least as many sensors as ersity) determined mixtures can be ide	$P.COMON$ $S)$ $separated$ $ants)$ $d.$ $sources: K \geq F$ $ntified$
1. BSS always red \longrightarrow Second- 2. Sources must b \longrightarrow Correla (e.g. Discrete 3. HOS are alway \longrightarrow Second- 4. There should b (sufficient dive \longrightarrow Underd	76/77 Beyond this Tutorial False Beliefs (1) quires High-Order Statistics (HO -order can (rarely) suffice be statistically independent ated sources can be sometimes e/CM sources, Pairwise cumul ys required when sources are i.i. e-order BSS algorithms exist be at least as many sensors as ersity) determined mixtures can be ide	$P.COMON$ $Sources: K \geq F$ $ntified$

ICASSP 2005 _

_____ 77/77 ___

Beyond this Tutorial
False Beliefs (2)
5. Perfect source extraction is impossible if K < P

→ Discrete sources can be perfectly extracted from underdetermined mixtures (insufficient diversity)

6. Conditions of application of Parafac are mild

 \longrightarrow except when one dimension = 2, the typical rank always exceeds the Parafac bound for uniqueness

 Approximate a tensor by another of lower rank is as easy as for matrices

 \longrightarrow beside for rank 1, there is a lack of closeness

8. The Constant Modulus (CM) property is the best way to handle PSK sources

 \longrightarrow The whole alphabet can be taken into account in order to define a contrast function

_**I3S**___