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Problem statement: relative estimation

V is a set of sensors of cardinality N

ξ ∈ R
V is an unknown vector

each sensor u obtains noisy relative measurements with some other nodes v ,

buv = ξu − ξv + ηuv ηuv are i.i.d. noise

Goal: for each sensor v ∈ V , estimate the scalar value ξv

Applications:

clock synchronization
A. Giridhar and P. R. Kumar. Distributed clock synchronization over wireless networks: Al-
gorithms and analysis. In IEEE Conference on Decision and Control, pages 4915–4920, San
Diego, CA, USA, December 2006

self-localization of mobile robots
P. Barooah and J. P. Hespanha. Estimation from relative measurements: Algorithms and scaling
laws. IEEE Control Systems Magazine, 27(4):57–74, 2007

statistical ranking in databases
B. Osting, C. Brune, and S. J. Osher. Optimal data collection for improved rankings expose
well-connected graphs. Journal of Machine Learning Research, 15:2981–3012, 2014
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Relative estimation as a graph problem

Measurements −→ edges E of an oriented connected graph G = (V , E)

Incidence matrix A ∈ {0,±1}E×V

Aew =





+1 if e = (v ,w)

−1 if e = (w , v)

0 otherwise

A =
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


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

1 −1 0 0 0
1 0 0 0 −1
0 1 −1 0 0
0 1 0 0 −1
0 0 1 −1 0
0 0 0 1 −1
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Laplacian matrix

L = A⊤A =











2 −1 0 0 −1
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0 0 −1 2 −1
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Relative estimation as a least-squares problem

We define the least-squares problem

min
z

||Az − b||2

Matrix A has rank N − 1 =⇒ affine space of solutions (up to a constant)

The minimum-norm solution x⋆ = L†A⊤b best explains the measurements

Questions:

Q1 How good is the estimate x⋆?

Q2 How can the sensor network compute x⋆?
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Estimator error and effective resistance

Estimator error:
1

N
E‖x⋆ − ξ‖2 = σ2 1

N

∑

i≥2

1

λi

where 0 = λ1 < λ2 ≤ · · · ≤ λN are the eigenvalues of L
σ2 is variance of noise

Observation from graph theory:
1

N

∑

i≥2

1

λi

= Rave (G)

Rave (G) = average of all effective resistances
between all pairs of nodes if the graph was an
electrical network of unit resistors

The error is determined by the topology

of the measurement graph:

e.g., the scaling in N depends on the

graph dimension
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Gradient algorithm



Gradient descent algorithm

The gradient of Ψ(z) = ||Az − b||2 is ∇Ψ(z) = 2Lz − 2A⊤b

We define, choosing a parameter τ > 0,

{
x(0) = 0

x(k + 1) = (I − τL)x(k) + τA⊤b

Proposition (Convergence)

If τ < 1/dmax, where dmax is the largest degree in G, then lim
k→+∞

x(k) = x⋆
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We define, choosing a parameter τ > 0,

{
x(0) = 0

x(k + 1) = (I − τL)x(k) + τA⊤b

Proposition (Convergence)

If τ < 1/dmax, where dmax is the largest degree in G, then lim
k→+∞

x(k) = x⋆

The gradient algorithm is

distributed: each node only needs to know the states of its neighbors

x(k + 1) = (I − τL)︸ ︷︷ ︸
consensus algorithm

x(k) + τA⊤b︸ ︷︷ ︸
constant input

synchronous: all nodes update their states at the same time
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Finite-time optimality of the expected error

Assume ξv s are i.i.d. with zero mean and variance ν2

J(k) :=
1

N
EξEη‖x(k)− ξ‖2 expected error
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Finite-time optimality of the expected error

Assume ξv s are i.i.d. with zero mean and variance ν2

J(k) :=
1

N
EξEη‖x(k)− ξ‖2 expected error

Results:

If k ≥
ν2

τσ2
, then J(k + 1) ≥ J(k) (eventual increase)

- the error J(k) has a minimum at a finite time kmin

- kmin has an upper bound which does not depend on N or on G

Surprising conclusion:

the algorithm should not be run until

convergence, but stopped earlier, irrespective

of the measurement graph!
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W. S. Rossi, P. Frasca, and F. Fagnani. Limited benefit of cooperation in distributed relative localization. In
IEEE Conference on Decision and Control, pages 5427–5431, Florence, Italy, December 2013
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Ergodic randomized algorithm



Asynchronous randomized algorithm

We take a pairwise “gossip” approach

Fix a real number γ ∈ (0, 1)
At every time instant k ∈ Z+, an edge (u, v) ∈ E is sampled randomly

P[(u, v) is selected at time k ] =
1

|E|
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Asynchronous randomized algorithm

We take a pairwise “gossip” approach

Fix a real number γ ∈ (0, 1)
At every time instant k ∈ Z+, an edge (u, v) ∈ E is sampled randomly

P[(u, v) is selected at time k ] =
1

|E|

and the states are updated:

xu(k + 1) = (1− γ)xu(k) + γxv (k) + γb(u,v)

xv (k + 1) = (1− γ)xv (k) + γxu(k)− γb(u,v)

xw (k + 1) = xw (k) if w /∈ {u, v}
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This is not a standard coordinate gradient

This reminds a gossip consensus algorithm with a constant input
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Simulations: no convergence

The states x(k) persistently oscillate!!!
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Can we still use this algorithm?
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Countermeasure: time-averages

Time-averages smooth out the oscillations

x(k) :=
1

k + 1

k∑

ℓ=0

x(ℓ) =⇒ x(k) → x⋆ as k → +∞
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Countermeasure: time-averages

Time-averages smooth out the oscillations

x(k) :=
1

k + 1

k∑

ℓ=0

x(ℓ) =⇒ x(k) → x⋆ as k → +∞

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

k 0 100 200 300 400 500 600 700 800 900 1000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

k

thanks to:
ergodicity of x(·): sample averages ⇐⇒ time averages
simple average dynamics (like the gradient algorithm)

E[x(k + 1)] =

(
I −

γ

|E|
L

)
E[x(k)] +

γ

|E|
A⊤b

E[x(k)] → x⋆ as k → +∞
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Local vs global clocks

To compute time-averages x each sensor needs to know the absolute time k

We can overcome this drawback by defining two auxiliary dynamics:

local times: κw (0) = 1 for all w ∈ V

κu(k + 1) = κu(k) + 1

κv (k + 1) = κv (k) + 1

κw (k + 1) = κw (k) if w /∈ {u, v}

“local” time-averages: xw (0) = 0 for all w ∈ V

xu(k + 1) =
1

κu(k + 1)

(
κu(k)xu(k) + xu(k + 1)

)

xv (k + 1) =
1

κv (k + 1)

(
κv (k)xv (k) + xv (k + 1)

)

xw (k + 1) = xw (k) if w /∈ {u, v}
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Convergence of “local” time-averages

We obtain a correct algorithm:

Theorem (Ergodicity & Convergence)

lim
k→+∞

x(k) = x⋆ almost surely

lim
k→+∞

E[||x(k)− x⋆||22] = 0 and E
[
||x(k)− x⋆||22

]
≤

C (γ,G)

k
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Estimation in power systems



Power systems estimation

IEEE 14-bus test system

• x is the state of the network
(frequencies at the nodes)

• linearized model of measurement

z = Hx + ν

- E[νν⊤] = R, H full rank (observable)
- measurements can be power flows, power
injections, PMU data, . . .

Least-squares problem: x⋆ = argminx(z − Hx)⊤R−1(z − Hx)

Closed-form solution: x⋆ = L−1u, where L = H⊤R−1H and u = H⊤R−1z

Issues: possibly very large state; computing capacities not everywhere
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Grouping

We divide nodes into groups endowed with computing power

partition V into N disjoint groups Vi ⊂ V
for i ∈ Ṽ = {1, 2, . . . ,N}

decompose vectors z , x , u and matrix H into
x = [x⊤1 , . . . , x⊤N ]⊤ where xi ∈ R

Vi , etc.

define neighborhoods, for each group i ∈ Ṽ

out-neighbors: Ñi = {j ∈ Ṽ : Hji 6= 0}

in-neighbors: M̃i = {j ∈ Ṽ : Hij 6= 0}
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Issue: the resulting graph can be directed (Hij 6= Hji )

we need to design a new ergodic randomized algorithm. . .
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A more involved randomized algorithm

Initialization:
(xi , κi , x i ) = (0, 0, 0)

ui = (H⊤R−1z)i =
∑

ℓ∈Ñi

H⊤
ℓi R

−1
ℓ zℓ measurements zℓ from out-neighbors

At time k ∈ Z≥0:

one group j ∈ Ṽ is randomly chosen to initiate updates

group j sends its current estimate xj(k) to its out-neighbors ℓ ∈ Ñj

groups ℓ compute y
(i ,j)
ℓ := H⊤

ℓi R
−1
ℓ Hℓjxj (k)

in-neighbors i ∈ M̃ℓ update by

xi (k + 1) = xi (k)− τ
∑

m∈Ñi∩Ñj

y (i ,j)
m + τui , i ∈ M̃ℓ, ℓ ∈ Ñj

the states of the other nodes remain unchanged

xi (k + 1) = xi (k), i /∈ M̃ℓ, ℓ ∈ Ñj
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Simulations
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P. Frasca, H. Ishii, C. Ravazzi, and R. Tempo. Distributed randomized algorithms for opinion for-
mation, centrality computation and power systems estimation. European Journal of Control, 2015.
submitted
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Take-home summary & final comments

Estimation from relative measurements

is ubiquitous: sensor networks, clock networks, statistical ranking

graph theory is useful to formulate the problem

estimation error depends on the measurement graph

stopping times of (gradient) algorithms do not depend on size

can be solved by distributed, asynchronous, randomized algorithms,
which also apply to similar least-squares problems, like in power systems

Note: Dynamics with randomization + averaging also relevant in PageRank
computation and in social networks

C. Ravazzi, P. Frasca, R. Tempo, and H. Ishii. Ergodic randomized algorithms and dynamics
over networks, 2015. To appear in IEEE Transactions on Control of Network Systems. URL:
http://arxiv.org/abs/1309.1349
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