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Perturbations against observability

Dynamical network described by

graph G = (V, E)

x(t + 1) = Ax(t)

A is consistent with the graph

Monitored by sensor nodes O ⊆ V

y(t) = COx(t)

Attacks/failures occur at some edges M⊆ E

Can the adversary make the dynamics unobservable?

How large the perturbation must be?
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Topics in this talk

1 Observability radius: from classical systems to networks
The observability radius of linear systems
The observability radius of network systems

2 An algorithm for the observability radius

3 The role of topology: networks with random weights

4 Attacks on power systems



Classical observability radius

Before perturbation, (A,C ) is observable

x(t + 1) =Ax(t)

y(t) =C x(t)

The observability radius is

µ(A,C ) = min
∆A,∆C

∥∥∥∥[∆A

∆C

]∥∥∥∥
2

,

s.t. (A + ∆A,C + ∆C ) is unobservable

Typical result: µ(A,C ) = min
s∈C

σn

([
sI − A
C

])
R. Eising. Between controllable and uncontrollable. Systems & Control Letters, 4(5):263–264, 1984

Shortcomings:

unstructured: ∆A and ∆C are full matrices

both A and C are perturbed

2-norm does not quantify the effort of an attacker

2 / 12



Classical observability radius

Before perturbation, (A,C ) is observable

x(t + 1) =Ax(t)

y(t) =C x(t)

The observability radius is

µ(A,C ) = min
∆A,∆C

∥∥∥∥[∆A

∆C

]∥∥∥∥
2

,

s.t. (A + ∆A,C + ∆C ) is unobservable

Typical result: µ(A,C ) = min
s∈C

σn

([
sI − A
C

])
R. Eising. Between controllable and uncontrollable. Systems & Control Letters, 4(5):263–264, 1984

Shortcomings:

unstructured: ∆A and ∆C are full matrices

both A and C are perturbed

2-norm does not quantify the effort of an attacker
2 / 12



Our problem: perturbations of dynamical networks

Localized observation matrix:
O = {o1, . . . , op} and CO =

[
eo1 · · · eop

]>
The network observability radius is

min
∆
‖∆‖2

F ,

s.t. (A + ∆,CO) is unobservable

∆ ·M = 0

where

structure is imposed: Mij = 0 if (i , j) ∈M, Mij = 1 if (i , j) 6∈ M
· is entrywise product

Frobenius norm ||∆||2F =
∑

i,j δ
2
ij is chosen

only A is perturbed

3 / 12



Computing the observability radius



Computing the observability radius

More explicitly:

min∆,λ,x ||∆||2F Frobenius norm

s.t. COx = 0 unobservability

(A + ∆)x = λx eigenvalue constraint

‖x‖2 = 1 normalization

∆ ·M = 0 structural constraint

Comments:

The optimization is performed over ∆, λ, and x

Not convex

Not always feasible (feasible if M = E)

Since (A,C ) is observable, ∆ must be nonzero
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Idea for an algorithm

Step 1: Fix λ and solve min
x,∆
||∆||2F

s.t. COx = 0

(A + ∆)x = λx

‖x‖2 = 1

∆ ·M = 0

Step 2: Search for the best λ ∈ C

Exhaustive search seems unavoidable:

G. Hu and E. J. Davison. Real controllability/stabilizability radius of LTI systems. IEEE Transactions
on Automatic Control, 49(2):254–257, 2004
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Algorithm (Step 1)

Derivation (sketch):

1 Incorporate structural constraints in ||∆||2F (approximately)

cost:
n∑

i=1

n∑
j=1

δ2
ij −→

n∑
i=1

n∑
j=1

δ2
ij(1−mij)

−1

2 Decompose λ = λ< + iλ=, x = x< + ix= and divide real and imaginary parts

3 Define Lagrange multipliers for the other constraints and write ∇L = 0

4 Rewrite as generalized nonlinear eigenvalue problem:

finding scalar σ and vector z such that Hz = σKzz

Solve it iteratively by “freezing” the nonlinearity Kz (inverse iteration method)

If convergent, the algorithm gives a suboptimal solution

Based on ideas from

B. De Moor. Total least squares for affinely structured matrices and the noisy realization problem.
IEEE Transactions on Signal Processing, 42(11):3104–3113, 1994
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Networks with random weights



The effect of disconnecting cuts

Define the minimal observability-preventing perturbation as

δ := min
λ,x,∆
‖∆‖F

s.t. COx = 0

(A + ∆)x = λx

‖x‖2 = 1

∆ ·M = 0 (M = E)

If aij are independent random variables uniformly distributed in [0, 1], then

E[δ] ≤ Γ(1/k)√
k

Γ(ω + 1)

Γ(ω + 1 + 1/k)

where

Γ(z) =
∫∞

0
xz−1e−x dx is the Gamma function

Ωk(O) is a collection of disjoint cuts of size k ,
where each cut disconnects a non-empty subset of nodes from O
ω = |Ωk(O)| is the number of such cuts
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Example of application

Looking for disconnecting cuts. . .

k = 2, ω = 4 =⇒

E[δ] ≤Γ(1/2)√
2

Γ(5)

Γ(5 + 1/2)
= 0.5747

Note:

The number of disconnecting cuts is essential:

Γ(1/k)√
k

Γ(ω + 1)

Γ(ω + 1 + 1/k)
≥ 0.8

1

ω + 1
, increasing in k

To have a small bound, we need many small cuts

Often, the best choice is just isolating single nodes
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Large networks

Consider a sequence of networks with increasing size n→∞:
If ω →∞ and k constant, then

Γ(1/k) Γ(ω + 1)√
k Γ(ω + 1 + 1/k)

∼ Γ(1/k)√
k

1

(ω + 1)1/k

The network becomes less robust to perturbations as the size of the network
increases, with a rate determined by k

Questions:

Is the bound tight?

How do optimal perturbations look like?
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The role of graph topology: Examples

Line network

Line is strongly structurally observable
⇓

Best perturbation is disconnecting

δ = maxi{ai,i+1}

E[δ(n)] =
1

n

Star network

Best perturbation introduces
an artificial symmetry

δ = mini,j≥2,i 6=j
|aii−ajj |√

2

E[δ(n)] ∼ 1√
2 n2

as n→∞

5 10 15 20 2510-3

10-2

10-1

Star
Line

n

E[
�(

n
)]
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Real example



Attacks on power systems

G G

G

G

G

bus 1

bus 2 bus 3

bus 4bus 5

bus 6

bus 7 bus 8

bus 9

bus 10bus 11

bus 12

bus 13 bus 14

IEEE 14 grid observed from bus 1

Small-signal model is linear descriptor systemI 0 0
0 Mg 0
0 0 0


︸ ︷︷ ︸

E

 δ̇ω̇
θ̇

=−

 0 −I 0
Sgg Dg Sgl

Slg 0 Sll


︸ ︷︷ ︸

A

δω
θ

+

 0
Pω
Pθ



δ: generator rotor angles
ω: generator rotor frequencies
θ: voltage angles at the buses

Goal: inducing an unobservable unstable mode

Perturbation ‖∆‖F Unobservable mode
Disconnect load 1 ([Sll]1,2 = 0) 4.60 10.92

Stop generator 1 (δ̇1 = 0) 2.59 10.92± 20.95j

Modify impedance (53 lines modified) 2.34 10.92± 104j

Creating artificial dynamical symmetries seems to require smaller perturbations
than disconnecting the network
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Conclusion

Summary
1 New resilience measure for network systems

extending classical observability radius

2 Formulation as optimization problem
heuristic algorithm for its solution

3 Study of networks with random weights
focus on network topology
different types of graphs −→ different observability radii

Note: everything can be translated to controllability

Open problems

Effective computation of radius δ

Refine the upper bound on E[δ]

Find a lower bound on E[δ]

Find more tractable examples (complete graph, grids?)

Study other random network models

Apply to more realistic networks
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