The Observability Radius of Network Systems

Minimum-norm structured perturbations preventing observability
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Perturbations against observability

@ Dynamical network described by

graph G = (V,€)
x(t+1) = Ax(t)
A is consistent with the graph

@ Monitored by sensor nodes O C V
y(t) = Cox(t)

@ Attacks/failures occur at some edges M C &

@ Can the adversary make the dynamics unobservable?

@ How large the perturbation must be?




Topics in this talk

© Observability radius: from classical systems to networks
@ The observability radius of linear systems
@ The observability radius of network systems

@ An algorithm for the observability radius
© The role of topology: networks with random weights

@ Attacks on power systems
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Typical result: p(A, C) = min o, ([S c ])

R. Eising. Between controllable and uncontrollable. Systems & Control Letters, 4(5):263-264, 1984

Shortcomings:
@ unstructured: A4 and A are full matrices
@ both A and C are perturbed
@ 2-norm does not quantify the effort of an attacker



Our problem: perturbations of dynamical networks

Localized observation matrix: .
O={o1,...,0}and Co = e, -+ &o,]

The network observability radius is

min A1,

s.t. (A+ A, Cp) is unobservable
A-M=0

where
@ structure is imposed: M =0 if (i,j) e M, M =1if (i,j) ¢ M
- is entrywise product
o Frobenius norm ||Al[z = 3=, ; 67 is chosen
@ only A is perturbed
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Computing the observability radius

More explicitly:
minaxx  ||A]% Frobenius norm
s.t. Cox =0 unobservability
(A+ A)x = Ax eigenvalue constraint
x|l =1 normalization

A-M=0 structural constraint

Comments:
@ The optimization is performed over A, A, and x
@ Not convex
o Not always feasible (feasible if M = &)

@ Since (A, C) is observable, A must be nonzero



|dea for an algorithm

Step 1: Fix A and solve m21||AH,2:
st. Cox=0
(A4 A)x = Ax
Ixll2 =1
A-M=0

Step 2: Search for the best A € C

Exhaustive search seems unavoidable:

G. Hu and E. J. Davison. Real controllability/stabilizability radius of LTI systems. IEEE Transactions
on Automatic Control, 49(2):254-257, 2004



Algorithm (Step 1)

Derivation (sketch):

@ Incorporate structural constraints in ||A]|2 (approximately)

cost: Z Z 5 — Z Z 5U( — mj)~?
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Algorithm (Step 1)

Derivation (sketch):
@ Incorporate structural constraints in ||A]|2 (approximately)

n n n n
cost: 35 > 0% — > > 65(1 —my) 7t
i=1j=1 i=1j=1
@ Decompose A = A\ +iAg, x = xp + ixg and divide real and imaginary parts

© Define Lagrange multipliers for the other constraints and write VL =0

@ Rewrite as generalized nonlinear eigenvalue problem:

finding scalar o and vector z such that Hz = oK,z

Solve it iteratively by “freezing” the nonlinearity K, (inverse iteration method)
If convergent, the algorithm gives a suboptimal solution

Based on ideas from

B. De Moor. Total least squares for affinely structured matrices and the noisy realization problem.
IEEE Transactions on Signal Processing, 42(11):3104-3113, 1994

6/12



Networks with random weights



The effect of disconnecting cuts

Define the minimal observability-preventing perturbation as

0 := min||A
min |AlF

s.t. Cox=0
(A+ A)x = Ax
Ixl2 =1

A-M=0 (M=¢)
If aj are independent random variables uniformly distributed in [0, 1], then

r(1/k)  T(w+1)
Vk T(w+1+1/k)

E[¢] <

where
o I(z) = [;° x*~te ™ dx is the Gamma function

@ Q4(O) is a collection of disjoint cuts of size k,
where each cut disconnects a non-empty subset of nodes from O

o w = |Q(O)| is the number of such cuts
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Example of application

Looking for disconnecting cuts. ..

k=2, w=4 =

rmz re)  _
O/O E[§] < 5 et - T

Note:

@ The number of disconnecting cuts is essential:

r(1/k) T(w+1)
Vk Tlw+1+1/k) = Tw+1’

increasing in k

@ To have a small bound, we need many small cuts

o Often, the best choice is just isolating single nodes



Large networks

Consider a sequence of networks with increasing size n — oo:
If w — 0o and k constant, then
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increases, with a rate determined by k



Large networks

Consider a sequence of networks with increasing size n — oo:
If w — 0o and k constant, then

r1/k)Mw+1) Nl'(l/k) 1
VET(w+1+1/k)  Vk (w+1)V/k

The network becomes less robust to perturbations as the size of the network
increases, with a rate determined by k

Questions:
@ Is the bound tight?

@ How do optimal perturbations look like?



The role of graph topology: Examples

Line network
—O0—O---0

Line is strongly structurally observable

I
Best perturbation is disconnecting

0= max;{a;,,url}

E(n)] = -
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The role of graph topology: Examples

Line network Star network

N
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Line i ly structurally observable .
Ine Is strongly structurally v Best perturbation introduces

U e
Best perturbation is disconnecting an artificial symlr:'eit?/l
d = max;{ajit1} 0 = minij>2,i z
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Real example



Attacks on power systems

Small-signal model is linear descriptor system

I 0 0][é 0 —/ 07Js¢ 0

0 My 0| |&|=—|See Dz Sal|w|+|P.

0 0 0| |6 Se 0 Sul|o Po
E A

§: generator rotor angles
w: generator rotor frequencies
0: voltage angles at the buses

IEEE 14 grid observed from bus 1

Goal: inducing an unobservable unstable mode

11/12



Attacks on power systems

Small-signal model is linear descriptor system

I 0 0][é 0 —/ 07Js¢ 0
0 My Of || =— |See Dz Sall||w]|+|Po
0 0 0| |6 Se 0 Sul|o Po

E A

—_

§: generator rotor angles
w: generator rotor frequencies
0: voltage angles at the buses

IEEE 14 grid observed from bus 1

Goal: inducing an unobservable unstable mode

Perturbation [IAllF Unobservable mode
Disconnect load 1 ([Sy]12 = 0) 460  10.92
Stop generator 1 (J; = 0) 259  10.92 + 20.95/

Modify impedance (53 lines modified) 2.34 10.92 + 10%j

Creating artificial dynamical symmetries seems to require smaller perturbations
than disconnecting the network

11/12



Conclusion

Summary
@ New resilience measure for network systems
e extending classical observability radius
@ Formulation as optimization problem
e heuristic algorithm for its solution
@ Study of networks with random weights

e focus on network topology
o different types of graphs — different observability radii

Note: everything can be translated to controllability



Conclusion

Summary
@ New resilience measure for network systems
e extending classical observability radius
@ Formulation as optimization problem
e heuristic algorithm for its solution
@ Study of networks with random weights

e focus on network topology
o different types of graphs — different observability radii

Note: everything can be translated to controllability

Open problems

Effective computation of radius ¢

Refine the upper bound on E[4]

Find a lower bound on E[d]

Find more tractable examples (complete graph, grids?)
Study other random network models

Apply to more realistic networks
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