Ergodic Dynamics in Social Networks

Paolo Frasca Chiara Ravazzi Roberto Tempo Hideaki Ishii

UNIVERSITY OF TWENTE.

WUDS'14 Workshop KNAW, Amsterdam August 22, 2014

1 Interactions in social networks

- 2 Opinion dynamics leading to consensus: Opinion diffusion
- More realistic opinion dynamics: Obstinacy and prejudices
 Randomization and ergodic oscillations

Other (non-social) ergodic dynamics

• Algorithms for estimation from relative measurements

Models of opinion dynamics

A population \mathcal{I} of *individuals* is given Individuals have **opinions** $x_i(k)$ in \mathbb{R} Opinions evolve through **interactions** between agents

then, we have to model

- the set of allowed interactions: the social network
 - nodes are individuals $i \in \mathcal{I}$
 - edges are potential interactions, *i.e.*, pairs $(i,j) \in \mathcal{I} \times \mathcal{I}$
- the interaction process: discrete-time, deterministic/randomized
- the effects of interactions

Assumption: interactions bring opinions closer to each other

 \implies (discrete-time) dynamics: local averaging

$$x_i(k+1) = \sum_{j\in\mathcal{I}} C_{ij} x_j(k)$$

positive couplings $C_{ij} \geq$ 0, $\sum_j C_{ij} =$ 1, $C_{ij} =$ 0 if (i,j) is not an edge

Result:

• x(k) converges to a **consensus** on one opinion

M. H. DeGroot. Reaching a consensus. *Journal of the American Statistical Association*, 69(345):118–121, 1974

Synchronous rounds of updates are a poor description of real interaction processes: we can instead study sparse randomized interactions

Gossip approach: at each time t, interaction and update occur across one random edge (i, j)

$$x_i(k+1) = \frac{1}{2}x_i(k) + \frac{1}{2}x_j(k)$$

$$x_j(k+1) = \frac{1}{2}x_i(k) + \frac{1}{2}x_j(k)$$

$$x_\ell(k+1) = x_\ell(k) \quad \text{if } \ell \notin \{i, j\}$$

Result:

• x(k) almost surely converges to a **consensus** on one opinion

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. *IEEE Transactions on Information Theory*, 52(6):2508–2530, 2006

Diffusive coupling: Examples and discussion

- + easy, well understood
 - societies do not exhibit consensus

We need to model the reasons for persistent disagreement in societies

Assumption: interactions bring opinions closer to each other, but the initial opinions are never forgotten

 $p \in \mathbb{R}^{\mathcal{I}}$ is a vector of **prejudices** $w \in [0, 1]^{\mathcal{I}}$ is a vector of **obstinacies**

$$x_i(0) = p_i$$

 $x_i(k+1) = (1 - w_i) \sum_{j \in \mathcal{I}} C_{ij} x_j(k) + w_i p_i$

Result:

• x(k) converges to a non-trivial opinion profile

$$x(k)
ightarrow x^{\star} = \left(I - (I - \operatorname{diag}(w))C
ight)^{-1}\operatorname{diag}(w)p$$

N. E. Friedkin and E. C. Johnsen. Social Influence Network Theory: A Sociological Examination of Small Group Dynamics. Cambridge University Press, 2011

Prejudices: Example and discussion

UNIVERSITY OF TWENTE

- + linear dynamics \rightarrow easy to study
- + complex limit opinion profiles (no consensus)
- + supported by experimental evidence

Gossips and prejudices

We can also define sparse random interactions:

for a randomly chosen edge (i, j)

$$\begin{aligned} x_i(k+1) &= (1-w_i) \left(\frac{1}{2} x_i(k) + \frac{1}{2} x_j(k) \right) + w_i p_i \\ x_j(k+1) &= (1-w_j) \left(\frac{1}{2} x_j(k) + \frac{1}{2} x_i(k) \right) + w_j p_j \\ x_\ell(k+1) &= x_\ell(k) \quad \text{if } \ell \notin \{i,j\} \end{aligned}$$

Result: x(k) persistently oscillates

Analysis

Intermediate steps:

- **(**) \exists random variable x_{∞} such that $x(k) \rightarrow x_{\infty}$ in distribution
- ② the distribution of x_∞ is the unique invariant distribution of x(k)
 ③ x(k) is ergodic

sample averages
$$\iff$$
 time averages $\bar{x}(k) := \frac{1}{k+1} \sum_{h=0}^{k} x(h)$
 $\bar{x}(k) \to \mathbb{E}[x_{\infty}]$ as $k \to \infty$
 $\mathbb{E}[x_{\infty}] = x^{\star}$

Consequence: oscillations occur around the average dynamics and can be smoothed away by time-averaging

Proof tool: studying the time-reversed process

Effectiveness of averaging

D. Acemoglu, G. Como, F. Fagnani, and A. Ozdaglar. Opinion fluctuations and disagreement in social networks. *Mathematics of Operations Research*, 38(1):1–27, 2013
P. Frasca, C. Ravazzi, R. Tempo, and H. Ishii. Gossips and prejudices: Ergodic randomized dynamics in social networks. In *IFAC Workshop on Estimation and Control of Networked Systems*, pages 212–219, Koblenz, Germany, September 2013

To compute time-averages each node needs to know the absolute time k

We can overcome this drawback by defining two auxiliary dynamics:

• local times $\kappa_\ell(0) = 0$ for all $\ell \in \mathcal{I}$

$$\begin{split} \kappa_i(k+1) &= \kappa_i(k) + 1\\ \kappa_j(k+1) &= \kappa_j(k) + 1\\ \kappa_\ell(k+1) &= \kappa_\ell(k) \quad \text{ if } \ell \notin \{i, j\} \end{split}$$

• "local" time-averages $\widetilde{x}_\ell(0)=0$ for all $\ell\in\mathcal{I}$

$$\begin{split} \widetilde{x}_i(k+1) &= \frac{1}{\kappa_i(k+1)} \big(\kappa_i(k) \widetilde{x}_i(k) + x_i(k+1) \big) \\ \widetilde{x}_j(k+1) &= \frac{1}{\kappa_j(k+1)} \big(\kappa_j(k) \widetilde{x}_j(k) + x_j(k+1) \big) \\ \widetilde{x}_\ell(k+1) &= \widetilde{x}_\ell(k) \quad \text{if } \ell \notin \{i,j\} \end{split}$$

These individual averages $\tilde{x}(k)$ have the same properties as the global ones

The original Friedkin's model postulates synchronous interactions

but

his experiments involved pairwise discussions

Our work is filling the gap:

 $asynchronous interactions + time-averaging \iff synchronous dynamics$

Non-social ergodic dynamics on networks

Several algorithms based on randomized updates produce ergodic oscillations

PageRank computation

H. Ishii and R. Tempo. Distributed randomized algorithms for the PageRank computation. *IEEE Transactions on Automatic Control*, 55(9):1987–2002, 2010

• Estimation from relative measurements

C. Ravazzi, P. Frasca, H. Ishii, and R. Tempo. A distributed randomized algorithm for relative localization in sensor networks. In *European Control Conference*, pages 1776–1781, Zürich, Switzerland, July 2013

- $\bullet \ \mathcal{I}$ is a set of sensors
- $\xi \in \mathbb{R}^{\mathcal{I}}$ is an unknown vector
- each sensor *u* obtains noisy relative measurements with some other nodes *j*,

$$b_{ij} = \xi_i - \xi_j + \eta_{ij}$$
 η_{ij} are noises

Goal: for each sensor $i \in \mathcal{I}$, estimate the scalar value ξ_i

Applications:

- self-localization of robotic networks
- clock synchronization
- ranking problems (Netflix)

Relative localization as a graph problem

Measurements \longrightarrow edges \mathcal{E} of an oriented connected graph $\mathcal{G} = (\mathcal{I}, \mathcal{E})$

incidence matrix $A \in \{0, \pm 1\}^{\mathcal{E} imes \mathcal{I}}$

Laplacian matrix $L = A^{\top}A$

$$\min_{z} ||Az - b||_2^2$$

has unique minimum-norm solution $x^* = L^{\dagger}A^{\top}b$

Can the sensor network effectively compute the solution?

We take a pairwise "gossip" approach At every time instant k, an edge $(i, j) \in \mathcal{E}$ is selected, according to

$$\mathbb{P}[(i,j) ext{ is selected at time } k] = rac{1}{|\mathcal{E}|}$$

and the states are updated according to $(\gamma \in (0,1))$

$$\begin{aligned} x_i(k+1) &= (1-\gamma)x_i(k) + \gamma x_j(k) + \gamma b_{(i,j)} \\ x_j(k+1) &= (1-\gamma)x_j(k) + \gamma x_i(k) - \gamma b_{(i,j)} \\ x_\ell(k+1) &= x_\ell(k) \quad \text{if } \ell \notin \{i,j\} \end{aligned}$$

from initial condition $x_\ell(0) = 0$ for all $\ell \in \mathcal{I}$

The states x(k) persistently oscillate, but

time-averages $\bar{x}(k)$ smooth out oscillations $\Longrightarrow \bar{x}(k) \to x^{\star}$ as $k \to +\infty$

Concluding remarks

Studying ergodicity of network dynamics allows to

- understand social processes
- design distributed asynchronous algorithms for relevant problems

C. Ravazzi, P. Frasca, R. Tempo, and H. Ishii. Ergodic randomized algorithms and dynamics over networks, September 2013. Submitted for publication

Open issues & current research

in the social sciences:

- dialogue with social scientists
- from opinion dynamics to opinion control

in engineering:

- $\bullet\,$ broaden the scope of the randomization + averaging approach
- averaging implies slow convergence: is there a fix?