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Averaging, consensus, and wisdom

Populations and learning

- Unknown θ ∈ R is the state of the world

- a population I of N agents takes noisy observations

yi = θ + ni for all i ∈ I

- noises ni are independent random variables:
E[ni ] = 0 and E[n2i ] = σ2

- the population wishes to learn θ

agents have beliefs xi(t), which are based on the
observations and evolve in time through communication
between agents, in order to (hopefully) approach θ
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Averaging, consensus, and wisdom

Collective estimation: an interdisciplinary issue

Social interpretation

People beliefs and evolving opinions about a topic
B. Golub and M. O. Jackson. Näıve learning in social networks and the wisdom of crowds. American
Economic Journal: Microeconomics, 2(1):112–149, 2010

Technological interpretation

Sensor network: measurements and fusion/filtering
F. Garin and S. Zampieri. Mean square performance of consensus-based distributed estimation
over regular geometric graphs. SIAM Journal on Control and Optimization, 50(1):306–333, 2012

In both cases, we ask the same question:

Does learning ensure that observation errors average away
(when N is large)?

the answer depends on the belief dynamics!
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Averaging, consensus, and wisdom

Wisdom and averaging

A formal definition requires sequences of populations:

Definition (Wise population)

Take a sequence of populations {IN}N∈N of increasing size.
Assume xi (t) → α(N) as t → ∞ for all i ∈ I .
Then, IN is said to be wise if

lim
N→+∞

α(N) = θ for all i ∈ I

An ideal learning process would provide the population with the

ML estimator of the state of the world: θ̂ =
1

N

∑

i

yi

Note: E[(θ − θ̂)2] =
σ2

N
⇒ if a population can compute θ̂, it is wise
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Averaging, consensus, and wisdom

In-network averaging: standard consensus algorithm

We represent the communication constraints among the agents by a
network: communication is restricted to neighboring nodes.

An iterative averaging algorithm allows the population to compute θ̂:

{

xi (0) = yi

xi (t + 1) =
∑

j aijxj(t)

Note: synchronous communication,
aij ≥ 0 ,

∑

j aij = 1
and aij > 0 according to the network

S1

S2

S3

S4

S5

S6

Proposition (Convergence and wisdom)

If the network is strongly connected and
∑

i

aij = 1,

then xi (t) → α as t → ∞ for all i , and α = θ̂ = 1
N

∑

i yi .

So far so good. . .
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Randomized averaging

Obstacles to averaging: randomness

Issue: this simple algorithm may not always be used...

Examples:

packet losses (asymmetric link failures)

asymmetric gossip approaches (by design, few links are active
symultaneously)

In these cases, the population actually attempts to compute θ̂ by a rule
which is properly described as stochastic:

the aij are time-dependent random variables aij(t),

we can only know the statistics of aij(t)

then, xi(t + 1) =
∑

j aij(t, ω)xj(t)
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Randomized averaging

Example: packet losses

S1

S2

S3

S4

S5

S6

At each t ∈ N:

- each message is lost with probability p;

- each node compensates missing
information using her own state instead

F. Fagnani and S. Zampieri. Average consensus with packet drop communication. SIAM
Journal on Control and Optimization, 48(1):102–133, 2009

P. Frasca and J. M. Hendrickx. Packet loss errors are negligible in large network averaging.
In IEEE Conf. on Decision and Control, 2012. submitted
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Randomized averaging

Example: Broadcast gossip

S1

S2

S3

S4

S5

S6

At each t ∈ N:

- a node i is randomly chosen;

- her neighbors update as

xj(t + 1) = (1− q)xj(t) + q xi (t)

for some q ∈ (0, 1)

A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione. Gossip algorithms
for distributed signal processing. Proceedings of the IEEE, 98(11):1847–1864, 2010

F. Fagnani and P. Frasca. The asymptotical error of broadcast gossip averaging algorithms.
In IFAC World Congress, pages 10027–10031, Milan, Italy, August 2011
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Randomized averaging

Drawbacks of randomization

The population aims to compute θ̂ by a randomized rule:

the aij are time-dependent random variables aij(t),

we can only know the statistics of aij(t)

Then, xi(t + 1) =
∑

j aij(t, ω)xj(t)

Effect: with probability 1, each xi (t) converges to α, but α 6= θ̂

Question: How large is the induced error?

P. Frasca (PoliTo) Stuttgart, May 2012 10 / 15



Main result and applications

Mean square error estimate

Theorem (Probabilistic wisdom condition)

Let A(t) be the update matrix such that [A(t)]ij = aij(t), I the identity matrix,
and 1 a vector of 1s of length N. If

∑

i E[aij(t)] = 1 (1st order condition)

it exists γ > 0 such that
E[A(s)∗11∗A(s)] ≤ γ

(
I − E[A(s)∗A(s)]

)
(2st order condition)

then E[
( 1

N

∑

i

xi (t)−
1

N

∑

i

xi (0)
)2
] ≤

γ

N

( 1

N

∑

i

x2i (0)
)

∀ t ≥ 0
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( 1
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xi (t)−
1

N

∑

i

xi (0)
)2
] ≤

γ

N

( 1

N

∑

i

x2i (0)
)

∀ t ≥ 0

Actually, at convergence:

E[
(
α− θ̂

)2
] ≤

γ

N
σ2
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Main result and applications

Corollary & examples

A population satisfying the above condition is wise:

E[(α− θ)2] ≤ E[( α− θ̂
︸ ︷︷ ︸

randomization

error

+ θ̂ − θ
︸ ︷︷ ︸

estimator error

)2] ≤
1 + γ

N
σ2

(cf: increasing the number of samples improves the estimate)
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randomization

error
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︸ ︷︷ ︸

estimator error

)2] ≤
1 + γ

N
σ2

(cf: increasing the number of samples improves the estimate)

Examples (assuming balanced networks):
Packet loss: let packet loss probability p, ā = maxi

∑

j 6=i aij

γ =
ā

1− ā
(1 − p).

Broadcast: let q update gain, dmax largest degree

γ =
q

1− q

dmax

N
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Remarks and conclusion

Remarks

the proof uses a probabilistic method, based on a key remark:
the current average is a martingale, i.e.

E[
1

N

∑

i

xi(t + 1)|x(t)] =
1

N

∑

i

xi (t)
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E[
1

N

∑

i

xi(t + 1)|x(t)] =
1

N

∑

i

xi (t)

the result is independent of convergence properties
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Remarks and conclusion

Remarks II

“robustness” result:
under mild assumptions, asymmetric asynchronous averaging is
effective!

tight bounds (compared with simulations)

wide application:
available results cover algorithms featuring

small number of concurrent updates
little correlation between updates

(over balanced graphs)

P. Frasca and J. M. Hendrickx. On the mean square error of randomized averaging
algorithms. Automatica, November 2011. submitted
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Remarks and conclusion

Current and future work

1 General result on the role of correlation between entries of P(t)
(cf. law of large numbers)

2 Extension to non-doubly-stochastic E[P(t)]
(implies E[α] 6= θ, useful for unbalanced graphs)

3 Social science applications

a. Näıve learning and random interactions
b. Resilience to fluctuations in economic networks

D. Acemoglu, V. M. Carvalho, A. Ozdaglar, and A. Tahbaz-Salehi. The network origins
of aggregate fluctuations. Econometrica, 2012. to appear
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Thank you for your attention
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