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Average consensus over networks

Several agents in a network have to communicate in order to

achieve an agreement about the average of their states.
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Average consensus problem

Linear dynamical system on R
N

x(t + 1) = x(t) + K x(t),

or componentwise xi(t + 1) = xi(t) +
N

∑

i=1

Kij xj(t), i = 1 . . . N

The matrix K has to depend on the communication network:

if j does not communicate with i, then Kij = 0

Goal: design K so that all agents tend to share the same state

lim
t→+∞

xi(t) =
1

N

N
∑

j=1

xj(0) ∀ i.
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Applications & motivations

In distributed control and information theory.

Data fusion in sensor networks

Coordination and rendezvous of UAV and
robots

Load balancing between processors
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Our problem

We suppose that the agents can exchange information through a

time-invariant

strongly connected

digital

communication network.

Exchanged information has to be symbolic, i.e. quantized.
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Ideal links vs digital links

If links are not digital, it’s sufficient to choose K such that

P = I + K satisfies

P is non negative

P is doubly stochastic, i.e.
N

∑

j=1

Pij =
N

∑

i=1

Pij = 1,

to achieve the goal of average consensus.
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Adaptation to digital links

Take a slightly different evolution map:

x(t + 1) = x(t) + K x̂(t),

where

P = I + K satisfies the properties above;

x̂(t) is a vector of estimates of x(t) constructed
by a coder-decoder scheme with memory.
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Coder-Decoder scheme

The j-th agent sends the symbol sj to the i-th agent.

They are synchronous: they share the coder state.

Agent j:







ξj(t + 1) = Fj(ξj(t), sj(t))

sj(t) = Qj(ξj(t), xj(t))
Encoder

⇓ sj Symbol ⇓

Agent i:







ξj(t + 1) = Fj(ξj(t), sj(t))

x̂j(t) = Hj(ξj(t), sj(t))
Decoder
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Zooming in-out quantizers I

The uniform quantizer with m levels q(m) : R → Sm is like:

Information is concen-

trated in a (unitary)

sensitivity interval.

A scale factor is chosen to

fit q(m) to data.
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The scale factor will shrink while approaching consensus.
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Zooming in-out coding scheme

Parameters:

m ∈ N number of levels,

kin ∈ ]0, 1[, kout ∈ ]1,+∞[ zooming rates

coder/decoder dynamics














































ξj,1(t + 1) = x̂j(t) = ξj,1(t) + ξj,2(t) sj(t) Estimate

ξj,2(t + 1) =







kin ξj,2(t) if |sj(t)| < 1

kout ξj,2(t) if |sj(t)| = 1
Scaling factor

sj(t) = q
(m)
j

(

xj(t) − ξj,1(t)

ξj,2(t)

)

Symbol
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Convergence result

Under some technical assumptions on the parameters of the

zooming scheme,
ρ := max

i=0...N−1
{|λi| such that λi is an eigenvalue of P, λi 6= 1}

ρ < kin < 1, kout = 1
kin

,

m ≥
(4+3kin)

√
N

kin(kin−ρ)
,

ξi,2(0) = ξ̄2 ≥
2(ρ+2)‖x(0)‖

kin− 3
√

N
m

and ξi,1(0) = 0 ∀ i.

one can prove that, for any initial condition x(0) ∈ R
N , average

consensus is reached:

lim
t→+∞

xi(t) =
1

N

N
∑

i=1

x(0) ∀ i.
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Simulations: Summary

Simulations show the method as effective and
fast for average consensus, also outside the
scope of the above theorem:

over different network topologies,

for wide ranges of the parameters.
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Simulations: Test Graphs

Directed circuit graph Random geometric graph
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Simulations

Even few levels are enough for the method to converge.
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Simulations II

The effectiveness of the method depends on the zooming rates.
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Perspective research

Improve the sufficiency convergence theorems
to explain the good experimental results.

Evaluate the speed of convergence of these
algorithms.

Design coding schemes to deal with digital
noisy channels.
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