

Efficient quantized techniques for consensus algorithms

Paolo Frasca

paolo.frasca@polito.it

joint work with Ruggero Carli, Fabio Fagnani, and Sandro Zampieri

Università di Padova and Politecnico di Torino.

Average consensus problem

Linear dynamical system on \mathbb{R}^N

$$x(t+1) = x(t) + K x(t),$$

or componentwise $x_i(t+1) = x_i(t) + \sum_{i=1}^N K_{ij} x_j(t), \quad i = 1 \dots N$
The matrix *K* has to depend on the communication network:

if *j* does *not* communicate with *i*, then $K_{ij} = 0$

Goal: design K so that all agents tend to share the same state

$$\lim_{t \to +\infty} x_i(t) = \frac{1}{N} \sum_{j=1}^N x_j(0) \quad \forall i.$$

Our problem

We suppose that the agents can exchange information through a

- time-invariant
- strongly connected
- digital

communication network.

Exchanged information has to be symbolic, i.e. quantized.

Ideal links vs digital links

If links are not digital, it's sufficient to choose K such that P = I + K satisfies

P is non negative

• P is doubly stochastic, i.e.
$$\sum_{j=1}^{N} P_{ij} = \sum_{i=1}^{N} P_{ij} = 1$$
,

to achieve the goal of average consensus.

Adaptation to digital links

Take a slightly different evolution map:

$$x(t+1) = x(t) + K\hat{x}(t),$$

where

- P = I + K satisfies the properties above;
- $\hat{x}(t)$ is a vector of estimates of x(t) constructed by a coder-decoder scheme with memory.

Coder-Decoder scheme

The *j*-th agent sends the symbol s_j to the *i*-th agent. They are synchronous: they share the coder state.

Agent *j*:
$$\begin{cases} \xi_j(t+1) = F_j(\xi_j(t), s_j(t)) \\ s_j(t) = Q_j(\xi_j(t), x_j(t)) \end{cases}$$
Encoder

 \Downarrow s_j Symbol \Downarrow

Agent *i*:
$$\begin{cases} \xi_j(t+1) = F_j(\xi_j(t), s_j(t)) \\ \hat{x}_j(t) = H_j(\xi_j(t), s_j(t)) \end{cases}$$
 Decoder

Zooming in-out quantizers I

The uniform quantizer with *m* levels $q^{(m)} : \mathbb{R} \to S_m$ is like:

Information is concentrated in a (unitary) sensitivity interval.

A scale factor is chosen to fit $q^{(m)}$ to data.

The scale factor will shrink while approaching consensus.

Efficient quantized techniques for consensus algorithms - p. 10/1

Convergence result

Under some technical assumptions on the parameters of the zooming scheme,

 $\rho := \max_{i=0...N-1} \{ |\lambda_i| \text{ such that } \lambda_i \text{ is an eigenvalue of } P, \lambda_i \neq 1 \}$

one can prove that, for any initial condition $x(0) \in \mathbb{R}^N$, average consensus is reached:

$$\lim_{t \to +\infty} x_i(t) = \frac{1}{N} \sum_{i=1}^N x(0) \quad \forall i.$$

Simulations: Summary

Simulations show the method as effective and fast for average consensus, also outside the scope of the above theorem:

- over different network topologies,
- for wide ranges of the parameters.

Simulations

Even few levels are enough for the method to converge.

Directed circuit

(N=20, $k_{in} = 0.9$, $k_{out} = 2$).

Simulations II

The effectiveness of the method depends on the zooming rates.

Random geometric graph

(N=20, m = 4, $k_{out} = 4$).

Perspective research

- Improve the sufficiency convergence theorems to explain the good experimental results.
- Evaluate the speed of convergence of these algorithms.
- Design coding schemes to deal with digital noisy channels.