The Asymptotical Error of Broadcast Gossip Averaging Algorithms

Fabio Fagnani Paolo Frasca

Dipartimento di Matematica

Politecnico di Torino, Italy

IFAC World Congress Milan, September 1, 2011

◆□> ◆舂> ◆注> ◆注>

Averaging in networks: Challenges

Distributed averaging is a building block to solve estimation problems in sensor and control networks.

Depending on the application, in distributed averaging we need to

- design efficient algorithms with little communication requirements
- analyze their performance
 - in terms of both speed and accuracy
 - as a function of the network topology and size (large networks)

Averaging in networks: Formal problem statement

Set-up:

- a set of nodes \mathcal{V} of cardinality N
- a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ (undirected in this talk)
- data at the nodes: $y_v \in \mathbb{R}$ for all $v \in \mathcal{V}$

Goal: estimate the average $y_{ave} = N^{-1} \sum_{v \in \mathcal{V}} y_v$.

Constraint:

- avoid synchronous node updates
- use instead directional asynchronous communication

 \rightarrow use randomized broadcast communication

Averaging in networks: Formal problem statement

Set-up:

- a set of nodes \mathcal{V} of cardinality N
- a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ (undirected in this talk)
- data at the nodes: $y_v \in \mathbb{R}$ for all $v \in \mathcal{V}$

Goal: estimate the average $y_{ave} = N^{-1} \sum_{v \in \mathcal{V}} y_v$.

Constraint:

- avoid synchronous node updates
- use instead directional asynchronous communication

 \rightarrow use randomized broadcast communication

Introduction and problem statement

Broadcasting Gossip Algorithm (BGA): definition

Broadcast Gossip Algorithm

- 1: for $v \in \mathcal{V}$ do
- $2: \quad x_v(0) = y_v$
- 3: end for
- 4: for $t \in \mathbb{Z}_{\geq 0}$ do
- 5: Sample node v from a uniform distribution over \mathcal{V}
- 6: for $u \in \mathcal{V}$ do
- 7: **if** $u \in \mathcal{N}_v$ then

8:
$$x_u(t+1) = (1-q)x_u(t) + q x_v(t)$$

9: **else**

$$x_u(t+1) = x_u(t)$$

- 11: end if
- 12: end for
- 13: end for

Mixing parameter: $q \in (0, 1)$

A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione. Gossip algorithms for distributed signal processing. *Proceedings of the IEEE*, 98(11):1847–1864, 2010

Preliminary results & definitions

Proposition (Convergence)

If G is connected, then there exists a random variable x^* such that almost surely $\lim_{t\to+\infty} x(t) = x^* \mathbf{1}$.

Proposition (Martingale property)

Let $x_{ave}(t) = N^{-1} \sum_{v \in \mathcal{V}} x_v(t)$. Then $\{x_{ave}(t)\}_t$ is a martingale (w.r.t. x(t)) and $\mathbb{E}[x^*] = x_{ave}(0)$.

However, x^* is not equal to $x_{ave}(0)$. The goal of this work is studying

$$\beta(t) = |x_{\text{ave}}(t) - x_{\text{ave}}(0)|^2,$$

and in particular the limit $\mathbb{E}[eta(\infty)]:= \lim_{t o\infty}\mathbb{E}[eta(t)]$

Preliminary results & definitions

Proposition (Convergence)

If G is connected, then there exists a random variable x^* such that almost surely $\lim_{t\to+\infty} x(t) = x^* \mathbf{1}$.

Proposition (Martingale property)

Let $x_{ave}(t) = N^{-1} \sum_{v \in \mathcal{V}} x_v(t)$. Then $\{x_{ave}(t)\}_t$ is a martingale (w.r.t. x(t)) and $\mathbb{E}[x^*] = x_{ave}(0)$.

However, x^* is not equal to $x_{ave}(0)$. The goal of this work is studying

$$\beta(t) = |x_{\text{ave}}(t) - x_{\text{ave}}(0)|^2,$$

and in particular the limit $\mathbb{E}[\beta(\infty)] := \lim_{t \to \infty} \mathbb{E}[\beta(t)]$

Main result

Bounding the error introduced at each time step as

$$|x_{\mathsf{ave}}(t+1) - x_{\mathsf{ave}}(t)| \leq q \, rac{d_{\mathsf{max}}}{N} L, \qquad ext{where} \quad L \geq \max_{u,v} |x_u(0) - x_v(0)|,$$

and exploiting the martingale property, we can prove

Theorem (Uniform Mean Square Error Bound)

Let ${\cal G}$ be connected, λ_1 be its spectral gap and d_{max} be the maximum degree of its nodes. Then,

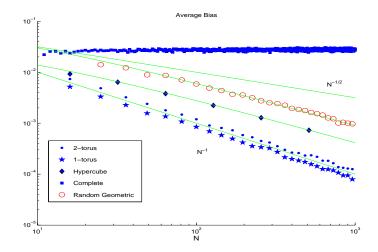
$$\mathbb{E}\left[\sup_{t\in\mathbb{N}}\beta(t)\right]\leq 8\,L^2\frac{q}{1-q}\frac{d_{\max}^2}{N\lambda_1}$$

Think of large networks....

Simulations & Examples

Simulations: $\beta(\infty)$ vs N

Varying size in example sequences



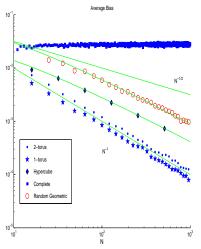
Solid lines are proportional to $N^{-1/2}$, log N/N, log N/N and N^{-1}

P. Frasca (PoliTo)

Simulations & Examples

Simulations: $eta(\infty)$ vs N

Varying size in example sequences



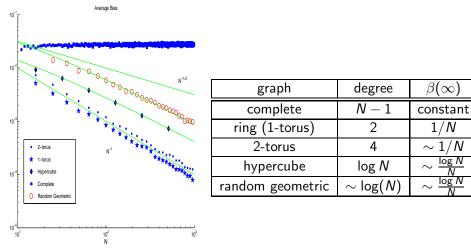
Solid lines are proportional to $N^{-1/2}$, log N/N, log N/N and N^{-1}

P. Frasca (PoliTo)

Simulations & Examples

Simulations: $\beta(\infty)$ vs N

Varying size in example sequences



Solid lines are proportional to $N^{-1/2}$, log N/N, log N/N and N^{-1}

P. Frasca (PoliTo)

Summary and Further Research

In the BGA, a larger network gives a more accurate averaging!

Simulations suggest
$$\propto rac{d_{\max}}{N}$$
 but we have proved $\propto rac{d_{\max}^2}{N\lambda_1}$

Future research

• Close this gap!

Related known result: for 1- and 2-dimensional tori, $\lim_{N \to \infty} \beta(\infty) = 0$

F. Fagnani and P. Frasca. Broadcast gossip averaging: interference and unbiasedness in large Abelian Cayley networks. *IEEE Journal of Selected Topics in Signal Processing*, 5(4):866–875, 2011

Extend this analysis to other randomized averaging algorithms

Further related reading

About the BGA and its performance:

F. Fagnani and S. Zampieri. Randomized consensus algorithms over large scale networks. *IEEE Journal on Selected Areas in Communications*, 26(4):634–649, 2008
T. C. Aysal, M. E. Yildiz, A. D. Sarwate, and A. Scaglione. Broadcast gossip algorithms for consensus. *IEEE Transactions on Signal Processing*, 57(7):2748–2761, 2009
T. C. Aysal, A. D. Sarwate, and A. G. Dimakis. Reaching consensus in wireless networks

with probabilistic broadcast. In *Allerton Conf. on Communications, Control and Computing*, pages 732–739, Monticello, IL, September 2009

A. Tahbaz-Salehi and A. Jadbabaie. Consensus over ergodic stationary graph processes. *IEEE Transactions on Automatic Control*, 55(1):225–230, 2010