Continuous-Time Discontinuous Equations in Bounded Confidence Opinion Dynamics

Francesca Ceragioli Paolo Frasca

Dipartimento di Matematica Politecnico di Torino, Italy

IFAC World Congress Milan, August 29, 2011

◆□> ◆舂> ◆注> ◆注>

1 Opinion dynamics: motivations and models

2 Results: existence, completeness, robustness

3 Conclusion: contribution and further research

Opinion dynamics: not only consensus

Opinion dynamics is a main topic in social network analysis (and design), attracting interest by

- o physicists
- applied mathematicians
- control theorists

C. Castellano, S. Fortunato, and V. Loreto. Statistical physics of social dynamics. *Reviews of Modern Physics*, 81(2):591–646, 2009

Agent interacting on a network rarely reach an opinion consensus, but instead a fragmentation in a few different opinions.

Explanation from two concurrent phenomena:

- agents' opinions become more similar after interaction (attraction);
- interaction is more likely if opinions are similar, and less likely of opinions are very different (homophily).

Bounded confidence (Discrete-time)

Homophily can in particular be modeled as bounded confidence: there is no interaction if opinions differ by more than a sharp confidence threshold.

Hegselmann-Krause model:

Consider N agents, indexed in a set \mathcal{I} of cardinality N, each of them having a time dependent "opinion" $x_i(t) \in \mathbb{R}$, with dynamics

$$x_i(t+1) = \frac{1}{|\{j : |x_i - x_j| < 1\}|} \sum_{j:|x_i - x_j| < 1} x_j(t), \qquad i \in \mathcal{I}$$
(HK)

R. Hegselmann and U. Krause. Opinion dynamics and bounded confidence models, analysis, and simulation. *Journal of Artifical Societies and Social Simulation*, 5(3), 2002

We want to study a continuous-time version of (HK)

Continuous-time bounded-confidence dynamics

$$\dot{x}_i(t) = \sum_{j:|x_i-x_j|<1} (x_j(t)-x_i(t)), \qquad i\in\mathcal{I}$$
 (CT-HK)

V. D. Blondel, J. M. Hendrickx, and J. N. Tsitsiklis. Continuous-time average-preserving opinion dynamics with opinion-dependent communications. *SIAM JCO*, 48(8):5214–5240, 2010

Advantages:

- Considering duration of interactions;
- No need for synchronous updates.

Difficulty: equation (CT-HK) has discontinuous right-hand side

- Need for a suitable definition of "solution"
- We choose Krasowskii solutions

Krasowskii Solutions: Definition

A Krasowskii solution to

$$\begin{cases} \dot{x} = g(t, x) \\ x(t_0) = \bar{x} \end{cases}$$

on an interval $I \subset \mathbb{R}$ containing t_0 , is a map $\phi : I \to \mathbb{R}^N$ such that

- ϕ is absolutely continuous on I,
- $\ \ \, \bullet \ \ \, \dot{\phi}(t)\in \mathcal{K}g(\phi(t)) \ \, \text{for almost every} \ t\in {\it I}, \ \, \text{where} \ \ \,$

$$\mathcal{K}g(x) = \bigcap_{\delta > 0} \overline{\operatorname{co}}(\{g(t, y) : y \text{ such that } \|x - y\| < \delta\})$$

and given a set A, by $\overline{co}(A)$ denotes the closed convex hull of A.

Existence & Completeness

Proposition (Basic properties)

Let $x(\cdot)$ be a Krasowskii solution to (CT-HK), on its domain of definition.

- (Existence). For any initial condition x̄ ∈ ℝ^N, there exists a local Krasowskii solution to (CT-HK).
- (Order preservation). For any $i, j \in \mathcal{I}$, if $x_i(t_1) < x_j(t_1)$, then $x_i(t_2) < x_j(t_2)$, for any $t_2 > t_1$.
- (Contractivity). For any $t_2 > t_1$, $\overline{\operatorname{co}}(\{x_i(t_2)\}_{i \in \mathcal{I}}) \subset \overline{\operatorname{co}}(\{x_i(t_1)\}_{i \in \mathcal{I}})$.
- (Completeness). The solution $x(\cdot)$ is complete.
- (Average preservation). For every t > 0, $N^{-1} \sum_{i=1}^{N} x_i(t) = N^{-1} \sum_{i=1}^{N} x_i(0)$.

Results

Convergence & Fragmentation

Opinions split in separate groups (clusters)

Theorem (Convergence to clusters)

The set of Krasowskii equilibria of (CT-HK) is

$$F = \left\{ x \in \mathbb{R}^N : \text{for every } (i,j) \in \mathcal{I} imes \mathcal{I}, \text{ either } x_i = x_j \text{ or } |x_i - x_j| \ge 1
ight\}$$

and if $x(\cdot)$ is a Krasowskii solution to (CT-HK), then x(t) converges to a point $x_* \in F$ as $t \to +\infty$.

Note: Clusters are separated by at least 1.

However, simulations and previous results suggest that the distance between clusters is typically at least 2. Why?

Results

Convergence & Fragmentation

Opinions split in separate groups (clusters)

Theorem (Convergence to clusters)

The set of Krasowskii equilibria of (CT-HK) is

$$F = \left\{ x \in \mathbb{R}^N : \text{for every } (i,j) \in \mathcal{I} imes \mathcal{I}, \text{ either } x_i = x_j \text{ or } |x_i - x_j| \ge 1
ight\}$$

and if $x(\cdot)$ is a Krasowskii solution to (CT-HK), then x(t) converges to a point $x_* \in F$ as $t \to +\infty$.

Note: Clusters are separated by at least 1.

However, simulations and previous results suggest that the distance between clusters is typically at least 2. Why?

Results

Robustness of equilibria

An equilibrium is robust if the addition of one perturbing agent does not make any two clusters merge (in the subsequent evolution).

Proposition (Stability for 2 clusters (no loss of generality))

Consider a configuration $x^* \in F$ consisting of two clusters of n_A and n_B agents $(n_A \leq n_B)$ having opinions x_A and x_B , respectively. Then there exists $\overline{T}_{n_A,n_B} > 0$ such that x^* is robust if $|x_A - x_B| \geq \left(1 + \frac{1}{n_A + n_B}\right) \left(1 + \frac{n_A}{n_B}\right) e^{\overline{T}_{n_A,n_B}} \sim 1 + \frac{n_A}{n_B}$ for $n_A \to \infty$, and only if $|x_A - x_B| \geq 1 + \frac{n_A + 1}{n_B} \sim 1 + \frac{n_A}{n_B}$ for $n_A \to \infty$.

Conclusion:

- in practice, we observe only robust configurations
- when N is large and the opinions are "uniform", robust equilibria have inter-cluster distance larger than 2

・ロト ・ 日 ・ ・ 目 ト ・

Contribution & Further Research

Advantages of Krasowskii solutions in opinion dynamics

- Completeness of solutions;
- Intuitive convergence and robustness proofs;
- Interpretation as smoothing out the sharp confidence threshold

Open problems

- Relationship with non-discontinuous dynamics (non-sharp thresholds)
 F. Ceragioli and P. Frasca. Continuous and discontinuous opinion dynamics with bounded confidence. *Nonlinear Analysis: Real World Applications*, 2011. Submitted
- Extension to graph-limited interaction
- Include limited verbalization
- Non-reciprocal interactions

A. Mirtabatabaei and F. Bullo. Opinion dynamics in heterogeneous networks: Convergence conjectures and theorems. *SIAM JCO*, March 2011. Submitted