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| Aver age consensus over networks

Several agents in a network have to communicate in order to achieve an
agreement about the average of their states.




| Aver age consensus problem

Linear dynamical system on R

z(t+1)=Px(t),

componentwise  x;(t + 1) ZP” x;(t), i=1...N

The matrix P has to depend on the communication network:
If 7 does not communicate with ¢, then P;; =0

Goal: design K so that all agents tend to share the same state
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I Applications & motivations

In distributed control and information theory.
» Data fusion in sensor networks

o Coordination and rendezvous of UAV and
robots

» Load balancing between processors

—



| Our problem

We suppose that the agents can exchange information through a
® time-invariant

® strongly connected

$® (digital

communication network.

Information has to be symbolic, i.e. quantized:

Normalized to 1 uniform quantization: qlx(t)] = round [z(t)].

= the classical consensus can not be reached.

See the seminal works by A. Kashyap, T. Basar, R. Srikant (2006), and by L.
Xiao, S. Boyd and S. J. Kim (2007). |



| Perfect links & naive quantization

® |If links are not digital, it is known that we can choose P such that

® P, >0 Vi
#® P is non negative

N N
® Pisdoubly stochastic, i.e. ¥ P =) Pj=1

j=1 i=1

® \With digital links, the naive approach
zi(t+1) = Py ai(t) + > Pijqlz; (1)),
JF#i
fails because this non linear map
#® does not drive the agents to equal states,

#® does not preserve their average. |



Our proposal

Take a slightly different evolution map:

zi(t+1) = @:(t) = (1 = Pu)qlzi(t)] + Z Pij qla;(t)];

JFi
r(t+1) =z(t) + (P —I)qlz(t)],

5 Time evolution of the dispersion .

10° ¢ This map preserves the average of
L o noms0 states and drives them nearer to con-
10 ¢ - 3§fv2'gai§l§m?f4o Sensus.
% Example: random geometric graph.
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| T hree approachesto the analysis

Remarks:

® we are interested in the asymptotic of average consensus disagreement

® The quantization errors e(t) := x(t) — q|z(t)] are bounded

Three approaches can be useful:

® Working on the actual quantized map. do(P) := limsup L||A(t)||2.

t— o0 \/N

_ 1
® \Worst case analysis. doo := lim  sup —||A(t)]]2
=00 e[| o <1/2 IV

® Probabilistic analysis: consider e as a random variable.

L (P) =\ im LE(AD)) |




| Exact analysis

+ we study the actual system

- very difficult: results only in special cases.

®» C let hs with unif N
omp ete grap1 S W; uniform ooy
weights, P = 11" 4 N
= ds(P) <1 / R\

® Directed circuits with uniform E f
weights, k = 1/2. \ Vs
Thanks to a symbolic dynamics \O‘\o A/O/J
underlying the system, = -
doo (P) < 1/2

zi(t+1) = (1 — k)zi(t) + ki (2)



| Wor st case

+ It's easier
+ it gives upper bounds on the actual system, since do. (P) < d5.(P)

- results are often very conservative.

We find two main bounds

Cp
® J (P)<
( ) 1 _PeSS(P)

® if Pissymmetric = d . (P) < % Z p(P*(I — P)) p spectral radius
s=0

—



| Wor st case | |

Consequences on the dependence on V.

® If there is a uniform lower bound G on the spectral gaps, the performance
does not worsen in N.

® If Pis symmetric Cayley matrix with bounded degree,
( its spectral gap is infinitesimal in V) = doo(Pn) = O(log N).

N

$® This bound is tight for the hypercube graphs: deo (P) = 10g22 :

Is this divergence intrinsical in the system?

—



Probabilistic |

+ It's easier
- there is little a priori justification, since the original system is not random

- it gives no upper bound

+ results are near to typical simulated results (a posteriori justification).

e IS supposed to be a random variable acting as an additive noise, having
» 7zero mean,

® variance o2.

N—-1

Then d..(P) = %022
1=1

11— Adf?

T e A; are the eigenvalues of P.



| Probabilistic ||

In general, if P;; > e Vi, = d(P) < ==,

S

This applies to sequences of Cayley graphs.
Examples:

N —1

Hypercube d,.(P) =

N 0}
N—1 k
N 1—-k°

Directed circuit dy, (P) = 2

1 1/2
Undirected circuit lim d o (P) = | —— — 1 o
N, 4o (P) <M1—2k )

+ In most cases, d_.(P) can be bounded uniformly in N
—> good scalability

- di. (P) can not be bounded uniformly on other parameters (e.qg, & in directed

circuit) |



Simulations. hypercube graph

Quantization over hypercube 2"

The method scales very well in
1_
N ’ Actual quantization
Upper bound worst case model
0.8F : = = = Uniform noise model
_ _ _ o 0.6
® No logarithmic divergence. ©
® Well compatible with the A
probabilistic (uniform noise)
result.
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Remark that the z-axis is logarithmic.



Parameter stuning

In the directed circuit, the performance depends on the parameter k.

Quantization over directed circuit (N=10) Quantization over directed circuit

3r 0.8
Worst case k=0.3 Actual quantization
—k=0.5
25 Mean 0.7 K=0.85
d ~ Probabilistic model Mean d = _
L © = = =k=0.3 Noise model
103 simulations 0.6F - = = k=0.5
2t k=.85
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® No logarithmic divergence in N
$ qualitatively compatible with probabilistic results:
® ink

® In N for small &



I Discussion and open problems

The algorithm works very well.

® it preserves the average of initial conditions,

® it drives the agents near to the consensus in typical cases (e.g. uniform
weights),

But:

® which is the right theoretical approach?

® are there trade-offs between asymptotical vicinity to consensus and speed
of convergence?

® are there better algorithms? E.g., we know that using uniform quantization

in an encoder-decoder scheme with memory (Zooming in-zooming out),
average consensus is reachable. |



	 Average consensus over networks
	Average consensus problem
	 Applications & motivations
	 Our problem 
	 Perfect links & naive quantization
	Our proposal
	Three approaches to the analysis 
	Exact analysis
	Worst case 
	 Worst case II
	Probabilistic I 
	Probabilistic II
	Simulations: hypercube graph
	Parameters tuning
	Discussion and open problems 

