

Average consensus on networks with quantized communication

Paolo Frasca

paolo.frasca@polito.it

joint work with Ruggero Carli, Fabio Fagnani, Thomas Taylor, and Sandro Zampieri

Università di Padova, Arizona State University and Politecnico di Torino.

Average consensus over networks

Several agents in a network have to communicate in order to achieve an agreement about the average of their states.

Average consensus problem

Linear dynamical system on \mathbb{R}^N

$$x(t+1) = P x(t),$$

componentwise $x_i(t+1) = \sum_{i=1}^N P_{ij} x_j(t), \quad i = 1 \dots N$

The matrix *P* has to depend on the communication network: if *j* does *not* communicate with *i*, then $P_{ij} = 0$

Goal: design K so that all agents tend to share the same state

$$\lim_{t \to +\infty} x_i(t) = \frac{1}{N} \sum_{j=1}^N x_j(0) \quad \forall i.$$

Our problem

We suppose that the agents can exchange information through a

- time-invariant
- strongly connected
- digital

communication network.

Information has to be symbolic, i.e. quantized:

Normalized to 1 uniform quantization: q[x(t)] = round [x(t)].

 \Rightarrow the classical consensus can not be reached.

See the seminal works by A. Kashyap, T. Basar, R. Srikant (2006), and by L. Xiao, S. Boyd and S. J. Kim (2007).

Perfect links & naive quantization

If links are not digital, it is known that we can choose P such that

- $P_{ii} > 0 \quad \forall i$
- P is non negative

• *P* is doubly stochastic, i.e.
$$\sum_{j=1}^{N} P_{ij} = \sum_{i=1}^{N} P_{ij} = 1$$
.

With digital links, the naive approach

$$x_i(t+1) = P_{ii} x_i(t) + \sum_{j \neq i} P_{ij} q[x_j(t)],$$

fails because this non linear map

- does not drive the agents to equal states,
- does not preserve their average.

Our proposal

Take a slightly different evolution map:

$$x_i(t+1) = x_i(t) - (1 - P_{ii})q[x_i(t)] + \sum_{j \neq i} P_{ij} q[x_j(t)],$$
$$x(t+1) = x(t) + (P - I) q[x(t)],$$

This map preserves the average of states and drives them nearer to consensus.

Example: random geometric graph.

Three approaches to the analysis

Remarks:

- we are interested in the asymptotic of average consensus disagreement $\Delta(t) := x(t) - \frac{1}{N} \sum_{i=1}^{N} x_i(0) \mathbb{1}.$
- The quantization errors e(t) := x(t) q[x(t)] are bounded

Three approaches can be useful:

Working on the actual quantized map. $d_{\infty}(P) := \limsup_{t \to \infty} \frac{1}{\sqrt{N}} ||\Delta(t)||_2.$ Worst case analysis. $d_{\infty}^w := \lim_{t \to \infty} \sup_{||e||_{\infty} \le 1/2} \frac{1}{N} ||\Delta(t)||_2$ Probabilistic analysis: consider *e* as a random variable. $d_{\infty}^r(P) := \sqrt{\lim_{t \to \infty} \frac{1}{N} \mathbb{E}[||\Delta(t)||]^2}$

Exact analysis

- + we study the actual system
- very difficult: results only in special cases.

Complete graphs with uniform weights, $P = \frac{1}{N} \mathbb{1} \mathbb{1}^T$. $\Rightarrow d_{\infty}(P) \leq 1$

Directed circuits with uniform weights, k = 1/2. Thanks to a symbolic dynamics underlying the system, \Rightarrow $d_{\infty}(P) \le 1/2$

 $x_i(t+1) = (1-k)x_i(t) + kx_i(t)$

- + it gives upper bounds on the actual system, since $d_{\infty}(P) \leq d_{\infty}^{w}(P)$
- results are often very conservative.

We find two main bounds

$$d^w_{\infty}(P) \le \frac{C_P}{1 - \rho_{ess}(P)}$$

 $\textbf{ if } P \text{ is symmetric} \Rightarrow \quad d^w_\infty(P) \leq \frac{1}{2} \sum_{s=0}^\infty \rho(P^s(I-P)) \qquad \rho \text{ spectral radius}$

Worst case II
Consequences on the dependence on N .
If there is a uniform lower bound G on the spectral gaps, the performance does not worsen in N .
If P is symmetric Cayley matrix with bounded degree, (its spectral gap is infinitesimal in N) $\Rightarrow d_{\infty}(P_N) = O(\log N).$
This bound is tight for the hypercube graphs: $d_{\infty}^{w}(P) = \frac{\log_2 N}{2}.$
Is this divergence intrinsical in the system?

Average consensus on networks with quantized communication - p. 11/1

Probabilistic I

+ it's easier

- there is little a priori justification, since the original system is not random
- it gives no upper bound
- + results are near to typical simulated results (*a posteriori* justification).

e is supposed to be a random variable acting as an additive noise, having

zero mean,

• variance σ^2 .

Then
$$d_{\infty}^{r}(P) = \sqrt{\frac{1}{N}\sigma^{2}\sum_{i=1}^{N-1}\frac{|1-\lambda_{i}|^{2}}{1-|\lambda_{i}|^{2}}}, \quad \lambda_{i} \text{ are the eigenvalues of } P.$$

Probabilistic II

In general, if $P_{ii} \ge \varepsilon \ \forall i$, $\Rightarrow \quad d_{\infty}^{r}(P) \le \frac{1-\varepsilon}{\varepsilon}$.

This applies to sequences of Cayley graphs. Examples:

Hypercube
$$d_{\infty}^{r}(P) = \sqrt{\frac{N-1}{N}\sigma}$$

Directed circuit $d_{\infty}^{r}(P) = \sqrt{\frac{N-1}{N} \frac{k}{1-k}} \sigma^{2}$

Undirected circuit $\lim_{N \to \infty} d_{\infty}^{r}(P) = \left(\frac{1}{\sqrt{1-2k}} - 1\right)^{1/2} \sigma$

- + In most cases, $d_\infty^r(P)$ can be bounded uniformly in N \Longrightarrow good scalability
- $d_{\infty}^{r}(P)$ can not be bounded uniformly on other parameters (e.g, k in directed circuit)

Simulations: hypercube graph

The method scales very well in N.

- No logarithmic divergence.
- Well compatible with the probabilistic (uniform noise) result.

Remark that the *x*-axis is logarithmic.

Parameters tuning

- **•** No logarithmic divergence in N
- qualitatively compatible with probabilistic results:
 - 🧕 in k
 - in N for small k

Discussion and open problems

The algorithm works very well.

- it preserves the average of initial conditions,
- it drives the agents near to the consensus in typical cases (e.g. uniform weights),

But:

- which is the right theoretical approach?
- are there trade-offs between asymptotical vicinity to consensus and speed of convergence?
- are there better algorithms? E.g., we know that using uniform quantization in an encoder-decoder scheme with memory (Zooming in-zooming out), average consensus is reachable.