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Average consensus over networks

Several agents in a network have to communicate in order to achieve an
agreement about the average of their states.
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Average consensus problem

Linear dynamical system on R
N

x(t + 1) = P x(t),

componentwise xi(t + 1) =

N
∑

i=1

Pij xj(t), i = 1 . . . N

The matrix P has to depend on the communication network:
if j does not communicate with i, then Pij = 0

Goal: design K so that all agents tend to share the same state

lim
t→+∞

xi(t) =
1

N

N
∑

j=1

xj(0) ∀ i.
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Applications & motivations

In distributed control and information theory.

Data fusion in sensor networks

Coordination and rendezvous of UAV and
robots

Load balancing between processors
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Our problem

We suppose that the agents can exchange information through a

time-invariant

strongly connected

digital

communication network.

Information has to be symbolic, i.e. quantized:

Normalized to 1 uniform quantization: q[x(t)] = round [x(t)].

⇒ the classical consensus can not be reached.

See the seminal works by A. Kashyap, T. Basar, R. Srikant (2006), and by L.
Xiao, S. Boyd and S. J. Kim (2007).
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Perfect links & naive quantization

If links are not digital, it is known that we can choose P such that

Pii > 0 ∀ i

P is non negative

P is doubly stochastic, i.e.
N

∑

j=1

Pij =

N
∑

i=1

Pij = 1.

With digital links, the naive approach

xi(t + 1) = Pii xi(t) +
∑

j 6=i

Pij q[xj(t)],

fails because this non linear map

does not drive the agents to equal states,

does not preserve their average.
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Our proposal

Take a slightly different evolution map:

xi(t + 1) = xi(t) − (1 − Pii)q[xi(t)] +
∑

j 6=i

Pij q[xj(t)],

x(t + 1) = x(t) + (P − I) q[x(t)],
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This map preserves the average of
states and drives them nearer to con-
sensus.

Example: random geometric graph.
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Three approaches to the analysis

Remarks:

we are interested in the asymptotic of average consensus disagreement

∆(t) := x(t) − 1

N

N
∑

i=1

xi(0)1.

The quantization errors e(t) := x(t) − q[x(t)] are bounded

Three approaches can be useful:

Working on the actual quantized map. d∞(P ) := lim sup
t→∞

1√
N

||∆(t)||2.

Worst case analysis. dw
∞ := lim

t→∞
sup

||e||∞≤1/2

1

N
||∆(t)||2

Probabilistic analysis: consider e as a random variable.

dr
∞(P ) :=

√

lim
t→∞

1

N
E[‖∆(t)‖]2
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Exact analysis

+ we study the actual system

- very difficult: results only in special cases.

Complete graphs with uniform
weights, P = 1

N
11

T .
⇒ d∞(P ) ≤ 1

Directed circuits with uniform
weights, k = 1/2.
Thanks to a symbolic dynamics
underlying the system, ⇒
d∞(P ) ≤ 1/2

xi(t + 1) = (1 − k)xi(t) + kxi(t)
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Worst case

+ it’s easier

+ it gives upper bounds on the actual system, since d∞(P ) ≤ dw
∞(P )

- results are often very conservative.

We find two main bounds

dw
∞(P ) ≤ CP

1 − ρess(P )

if P is symmetric ⇒ dw
∞(P ) ≤ 1

2

∞
∑

s=0

ρ(P s(I − P )) ρ spectral radius
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Worst case II

Consequences on the dependence on N .

If there is a uniform lower bound G on the spectral gaps, the performance
does not worsen in N .

If P is symmetric Cayley matrix with bounded degree,
( its spectral gap is infinitesimal in N ) ⇒ d∞(PN ) = O(log N).

This bound is tight for the hypercube graphs: dw
∞(P ) =

log2 N

2
.

Is this divergence intrinsical in the system?
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Probabilistic I

+ it’s easier

- there is little a priori justification, since the original system is not random

- it gives no upper bound

+ results are near to typical simulated results (a posteriori justification).

e is supposed to be a random variable acting as an additive noise, having

zero mean,

variance σ2.

Then dr
∞(P ) =

√

√

√

√

1

N
σ2

N−1
∑

i=1

|1 − λi|2
1 − |λi|2

, λi are the eigenvalues of P .
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Probabilistic II

In general, if Pii ≥ ε ∀ i, ⇒ dr
∞(P ) ≤ 1−ε

ε
.

This applies to sequences of Cayley graphs.
Examples:

Hypercube dr
∞(P ) =

√

N − 1

N
σ

Directed circuit dr
∞(P ) =

√

N − 1

N

k

1 − k
σ2

Undirected circuit lim
N→∞

dr
∞(P ) =

(

1√
1 − 2k

− 1

)1/2

σ

+ In most cases, dr
∞(P ) can be bounded uniformly in N

=⇒ good scalability

- dr
∞(P ) can not be bounded uniformly on other parameters (e.g, k in directed
circuit)
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Simulations: hypercube graph

The method scales very well in
N .

No logarithmic divergence.

Well compatible with the
probabilistic (uniform noise)
result.
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Remark that the x-axis is logarithmic.
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Parameters tuning

In the directed circuit, the performance depends on the parameter k.
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No logarithmic divergence in N

qualitatively compatible with probabilistic results:

in k

in N for small k
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Discussion and open problems

The algorithm works very well.

it preserves the average of initial conditions,

it drives the agents near to the consensus in typical cases (e.g. uniform
weights),

But:

which is the right theoretical approach?

are there trade-offs between asymptotical vicinity to consensus and speed
of convergence?

are there better algorithms? E.g., we know that using uniform quantization
in an encoder-decoder scheme with memory (Zooming in-zooming out),
average consensus is reachable.
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