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Abstract

In this paper we study of a continuous-time version of the Hegselmann-Krause opin-

ion dynamics, which models bounded confidence by a discontinuous interaction. Intend-

ing solutions in the sense of Krasowskii, we provide results of existence, completeness

and convergence to clusters of agents sharing a common opinion. For a deeper un-

derstanding of the role of the mentioned discontinuity, we study a class of continuous

approximating systems, and their convergence to the original one. Our results indicate

that their qualitative behavior is similar, and we argue that discontinuity is not an

essential feature in bounded confidence opinion dynamics.

1 Introduction and Preliminaries

A crucial point in modeling opinion dynamics resides in how to specify interactions between
agents. This can be accomplished by graph-theoretical representations which are popular in
describing social networks. Most successful models include a bounded confidence constraint,
so that agents do not interact with fellow agents if their opinions are too far apart. This
feature may be described by a state-dependent discontinuous interaction function: if the dif-
ference between opinions is larger than the chosen threshold, the “strength” of the interaction
drops to zero. In this paper, we focus on a continuous-time version of the Hegselmann-Krause
model –a simple and celebrated opinion dynamics system with a discontinuity threshold–
which was recently introduced in [3]. The resulting ODE system has a discontinuous right-
hand side, which makes the analysis more difficult from a mathematical point of view. We
want to give a thorough description of the properties of the ODE solutions and to understand
the role of the discontinuity of the right-hand side of the system. To this end, we introduce
and study sequences of continuous systems which approximate the original one.
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1.1 Problem Statement

Let us consider a population of N agents, indexed in a set I = {1, . . . , N}. Each of them has
a time-dependent real-valued “opinion” xi(t), which obeys the following dynamics

ẋi =
∑

j∈I

s(xj − xi)(xj − xi), i ∈ I, (1)

where s : R → R is defined by

s(τ) =

{

1 if |τ | < 1

0 if |τ | ≥ 1.

Notice that the function s, which encodes the coupling between the agent opinions, is discon-
tinuous: for this reason, we refer to (1) as to the Discontinuous Hegselmann-Krause system
(DHK).

In addition, we also consider related Continuous Hegselmann-Krause systems (CHK)

ẋi =
∑

j∈I

sn(xj − xi)(xj − xi), i ∈ I, (2)

where the function sn : R → [0, 1] is Lipschitz, even and supported on an interval containing
zero. The index n ∈ N is introduced in order to consider, when needed, suitable sequences
of CHK systems which approximate (1). A significant example is the following.

Example 1 (εn approximations). Let εn > 0 and

sn(t) =



















1 if |t| ≤ 1− ǫn

0 if |t| ≥ 1

− 1
ǫn
(t− 1) if 1− ǫn < t < 1

1
ǫn
(t+ 1) if − 1 < t < −1 + ǫn

We remark that if ǫn → 0 as n → ∞, then sn(τ) → s(τ) for all τ ∈ R.

1.2 Contribution and Paper Overview

The first contribution of this paper consists of studying the properties of solutions to sys-
tem (1). As this system has a discontinuous right-hand side, solutions have to be intended in
an extended sense. The notion of Krasovskii solution, recalled in Section 1.4, was chosen from
a number of alternatives. The study of Krasovskii solutions to (1) is carried out in Section 3,
where we show that these solution exist for any initial condition, are complete, preserve the
average of the initial conditions and asymptotically converge to certain equilibrium points.
These equilibria can be described as collections of clusters of agents which share a common
opinion. The robustness of such clusters to small perturbations is also investigated.

The second contribution consists of investigating the role of the discontinuity by studying
sequences of Continuous Hegselmann-Krause systems (2), which approximate (1). Firstly,
the properties of the solutions to (2) are presented in Section 2: note that the analysis of (2)
is presented earlier in the paper because it is technically simpler and allows us to introduce
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ideas which are used again in the analysis of (1). In Section 4 the relationship between
solutions of Continuous and Discontinuous Hegselmann-Krause models is discussed. Our
results show that the qualitative properties of the solutions to (2) and (1) are very similar,
in terms of both finite-time and limit behavior. We believe that this is good news from the
point of view of mathematical modeling, as it means that the discontinuity can be smoothed
out to reduce technical difficulties, without loosing significant phenomena. We also show that
solutions to (2) approximate solutions to (1), with a caveat: the approximation is uniform on
bounded intervals, but one can not infer the time-limit behavior of a single solution to (1)
by looking at its approximations.

1.3 Relationship with Literature

We now examine the references about opinion dynamics which are most pertinent to our
work and refer to the survey papers [6], [16] for a more comprehensive literature review.
In the perspective of our research, the most interesting interaction models include an idea
of “bounded confidence”. Krause and Hegselmann [13] and Deffuant [10] are credited to
have introduced the bounded confidence idea in opinion dynamics models. Starting from
these works, others have contributed in recent years to this line of research [15, 2]. Such
studies are to some extent able to explain real-world phenomena such as the “persistence of
disagreement” between opinions, in spite of opinion aggregation during interactions. Hence,
typical steady-states feature some phenomenon of partial agreement as the emergence of
groups of agents who share the same opinion.

Many models developed by physicists [15, 16] involve difference equations, because they
were intended to be simulated by computers. This modeling approach has the disadvantage
of assuming the interactions to be instantaneously effective on the opinions, and to happen
either synchronously or according to some schedule. Similar assumptions may be questionable
in social science applications, and suggest the alternative approach using ODE dynamics. A
simple model describing the opinion evolution on a single topic, with no autonomous dynamics
for each individual, no external influences, and a linear way to aggregate opinions combined
with a bounded confidence rule, leads to the continuous-time version of the Hegselmann-
Krause model (1) which was introduced in [3].

The present paper studies the model (1) and how it relates to the continuous counter-
parts (2). We anticipate that our results about (1) are qualitatively similar to the conver-
gence results presented in [3, Section 2]. However, the results we present in Section 3 are
more general, as the set of Krasovskii solutions to (1) is strictly greater than the sub-set
of Carathéodory solutions considered in [3], and includes the study of some pathological
behaviors which where not covered by [3].

Finally, we note that an incomplete and preliminary account of our work has appeared
in the Proceedings of the 18th World Congress of the International Federation of Automatic
Control as [7]. This short paper contains partial results about the discontinuous dynamics,
and does not consider the continuous model or the relationship between them.
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1.4 Preliminaries

1.4.1 Graphs

In this paper, we shall make use of some notions from graph theory, and in particular from
algebraic graph theory. Indeed, graph theory provides an effective tool to model interactions
between agents and its use is becoming common both in engineering [4, 17] and in economics
and social sciences [11]. A (weighted) graph G is a triple (V,E,A) where V is a finite set
of vertices or nodes, E ⊂ V × V is a set of edges and the adjacency matrix A is a matrix
of weights, such that for any u, v ∈ V , Auv > 0 only if (u, v) ∈ E. The Laplacian matrix
of G is defined as Luv = −Auv when u 6= v and Luu =

∑

v∈V Auv. If (u, v) ∈ E, then v is
said to be a neighbor of u in G. A path (of length l) from u to v in G is an ordered list of
edges (e1, . . . , el) in the form ((u,w1), (w1, w2), (w2, w3), . . . , (wl−1, v)). Two nodes u, v ∈ V
are said to be connected if there exists a path from u to v, and disconnected otherwise. A
graph is said to be connected if every two nodes are connected, and disconnected otherwise.
A graph is said to be symmetric when (u, v) ∈ E implies (v, u) ∈ E and the matrix A is
symmetric. In a symmetric graph, being neighbors is an equivalence relation between nodes:
the corresponding equivalence classes are said to be the connected components of the graph.

1.4.2 Solutions to ODEs

As already remarked, in order to deal with possibly discontinuous ODEs, we need to take dif-
ferent notions of solutions into consideration. We give the definitions of classical, Carathéodory
and Krasovskii solutions (see [12, 9]). Let us consider the differential equation

{

ẋ = g(x)

x(t0) = x̄
(3)

where t ∈ R, x ∈ R
N , g : RN → R

N .
A classical solution to (3) on an interval I ⊂ R containing t0, is a map φ : I → R

N such
that

1. φ is differentiable on I,

2. φ(t0) = x̄,

3. φ̇(t) = g(φ(t)) for all t ∈ I.

A Carathéodory solution to (3) on an interval I ⊂ R containing t0, is a map φ : I → R
N

such that

1. φ is absolutely continuous on I,

2. φ(t0) = x̄,

3. φ̇(t) = g(φ(t)) for almost every t ∈ I.

Equivalently, a Carathéodory solution to (3) is a solution to the integral equation

x(t) = x̄+

∫ t

t0

g(x(s))ds.
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A Krasovskii solution to (3) on an interval I ⊂ R containing t0, is a map φ : I → R
N

such that

1. φ is absolutely continuous on I,

2. φ(t0) = x̄,

3. φ̇(t) ∈ Kg(φ(t)) for almost every t ∈ I, where

Kg(x) =
⋂

δ>0

co({g(y) : y such that ‖x− y‖ < δ})

and given a set A, by co(A) we denote the closed convex hull of A.

From the above definitions, it is clear that classical solutions are Carathéodory solutions
and, in turns, Carathéodory solutions are Krasovskii solutions. Note also that Carathéodory
solutions coincide with solutions in the classical sense when g is continuous.

In the context of bounded confidence opinion dynamics, a subset of Carathéodory solu-
tions has been considered in [3]: the main drawback of the approach taken there is difficulty
in studying existence and continuation properties of those solutions. On the other hand
Krasovskii solutions are easier to be treated as far as existence and continuation properties
are considered. Moreover they give rise to more general results, in the sense that results on
Carathéodorysolutions can be a posteriori obtained as particular cases of those for Krasovskii
solutions.

1.5 Interaction Graphs

It is useful and suggestive to rewrite systems (1) and (2) as dynamics over a suitable state-
dependent weighted graph, which represents the coupling between the opinions of different
agents. In such a graph the agents are the nodes, and the opinions of two agents depend
on each other whenever the agents are neighbors in the graph. By the way systems (1)
and (2) are defined, such interaction graph depends on the opinion states, via the functions
s and sn, respectively. More precisely, for any x ∈ R

N we define an interaction graph
G(x) = (I, E(x), A(x)) where the edge set is

E(x) = {(i, j), i, j ∈ I : |xi − xj | < 1} ,

that is, (i, j) ∈ E(x) if and only if s(xj − xi) > 0, and the adjacency matrix A(x) is defined
by

A(x)ij =

{

s(xi − xj) if j 6= i

0 if j = i
i, j ∈ I,

that is, A(x)ij = 1 if and only if |xi − xj | < 1 and j 6= i. The Laplacian matrix L(x)
associated to G(x) is then given by

L(x)ij =

{

−s(xi − xj) if j 6= i
∑

k 6=i s(xk − xi) if j = i
i, j ∈ I.
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With these notations system (1) can be written as

ẋ = −L(x)x.

In order to deal with the discontinuity, it is also useful to identify “border” configurations
by the following definitions of border edge set

∂E(x) = {(i, j), i, j ∈ I : |xi − xj | = 1} .

and graph Ḡ(x) =
(

I, Ē(x), Ā
)

, with Ē(x) = E(x)∪ ∂E(x) and Ā(x)ij = 1 if and only if
|xi − xj | ≤ 1 and j 6= i.

Similarly, for systems (2) we can define the state-dependent weighted graphs Gn(x) =
(I, En(x), An(x)), where (i, j) ∈ En if and only if sn(xj − xi) > 0 and the adjacency matrix
An(x) is defined by

An(x)ij =

{

sn(xi − xj) if j 6= i

0 if j = i
i, j ∈ I.

The Laplacian matrix Ln(x) associated to Gn(x) is then given by

Ln(x)ij =

{

−sn(xi − xj) if j 6= i
∑

k 6=i s
n(xk − xi) if j = i

i, j ∈ I.

With these notations system (2) can be written as

ẋn = −Ln(xn)xn.

Remark 1 (Symmetry and translation invariance). We remark that the graphs G, Ḡ, and
Gn are symmetric and invariant with respect to the translation x + α1, where α ∈ R and
1 = (1, ..., 1)T , i.e. G(x) = G(x + α1), Ḡ(x) = Ḡ(x + α1), Gn(x) = Gn(x + α1).

As we said, the graphs introduced above are interaction graphs in the following sense: if
two nodes are disconnected, they can not influence each other opinions.

2 Continuous Hegselmann-Krause Model

We start by proving some basic properties of the solutions of the continuous Hegselmann-
Krause model.

Proposition 1 (Basic properties of CHK). Let xn(·) be a solution1 to (2) such that xn(0) =
x̄, on its domain of definition.

(i) (Uniqueness). xn(·) is the unique solution to (2) such that xn(0) = x̄.

(ii) (Order preservation). For any i, j ∈ I, if xn
i (t1) < xn

j (t1), then xn
i (t2) < xn

j (t2), for
any t2 > t1.

1Here solutions are intended as classical solutions. Note, however, that classical, Carathéodory, and
Krasovskii solutions coincide for (2) because s

n is continuous.
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(iii) (Contractivity). For any t2 > t1, we have that co({xn
i (t2)}i∈I) ⊂ co({xn

i (t1)}i∈I).

(iv) (Completeness). The solution xn(·) is complete.

(v) (Average preservation). Let xn
ave(t) = N−1

∑

i∈I x
n
i (t). Then xn

ave(t) = xn
ave(0), for all

t > 0.

Proof. i) The solution is unique because the right-hand side of (2) is locally Lipschitz.

ii) It is not restrictive to assume that xn
1 (0) ≤ xn

2 (0) ≤ ... ≤ xn
N (0). We then prove

that xn
i (0) ≤ xn

i+1(0) implies xn
i (t) ≤ xn

i+1(t) for all t ≥ 0, which is equivalent to the
statement. First of all we remark that xn

i (0) = xn
i+1(0) then xn

i (t) = xn
i+1(t) for all

t ≥ 0 thanks to the fact that the dynamics of xn
i and xn

i+1 are the same and we have
uniqueness of the solution for a given initial condition by statement (i). Let us now
consider the case xn

i (0) < xn
i+1(0). Assume by contradiction that there exists T > 0

such that xn
i (T ) = xn

i+1(T ) and let T ∗ = sup{t∗ : xn
i (t) < xn

i+1(t)∀t ∈ (0, t∗)} . One has
xn
i (t) = xn

i+1(t) for all t ≥ T ∗. We consider the equation

ẋn
i+1(t)− ẋn

i (t) = (4)
∑

j∈I

sn(xj(t)− xi+1(t))(xj(t)− xi+1(t))−
∑

j∈I

sn(xj(t)− xi(t))(xj(t)− xi(t))

The state xn
i+1(T

∗)− xn
i (T

∗) = 0 is an equilibrium for the equation (4), then xn
i+1(t)−

xn
i (t) ≡ 0 is the unique solution to (4), which contradicts the fact that xn

i (t) < xn
i+1(t)

if t < T ∗.

iii) By statement (ii), we can assume with no loss of generality that xn
1 (t) ≤ xn

2 (t) ≤ ... ≤
xn
N (t) for all t ≥ 0. This implies that ẋn

1 (t) =
∑

j∈I sn(xn
j (t)− xn

1 (t))(x
n
j (t)− xn

1 (t)) ≥ 0
for all t ≥ 0 and, analogously, that ẋn

N (t) ≤ 0 for all t ≥ 0, and this completes the proof
of the statement.

iv) Thanks to statement (iii), any local solution is bounded. Standard arguments guarantee
that it can then be extended for all t > 0.

v) By differentiating xn
ave(t) we get

ẋn
ave(t) =

1

N

∑

i∈I

ẋn
i (t) =

1

N

∑

i∈I

∑

j∈I

sn(xn
j (t)− xn

i (t))(x
n
j (t)− xn

i (t)) = 0,

where we have used the fact that sn is even in order to get the last equality.

Next, we show that solutions to a Continuous Hegselmann-Krause model converge to
equilibria, which can be described as clusters of agents sharing the same opinion.

Theorem 2 (Convergence of CHK). The set of the equilibria of (2) is

Fn = {x ∈ R
N : ∀(i, j) ∈ I × I, either xi = xj or sn(xi − xj) = 0}

and if xn(·) is a solution to (2), then xn(t) converges to a point xn
∗ ∈ Fn as t → +∞.
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Proof. The proof is in three steps. We first describe the set of equilibria, then prove conver-
gence to this set, and finally prove convergence to one equilibrium. Note that by Proposi-
tion 1, statement (ii), we can assume with no loss of generality that the agents are sorted so
that xn

1 (t) ≤ xn
2 (t) ≤ ... ≤ xn

N (t) for all t ≥ 0.

i) Clearly the points in Fn are equilibria of (2). To prove that there are no other equilibria,
note that by the sorting assumption sn(xn

j − xn
1 ) ≥ 0 and xn

j − xn
1 ≥ 0 for all j ∈ I. For

the right-hand side of (2) to be equal to zero it is then necessary that for every j ∈ I
either sn(xn

j − xn
1 ) = 0 or xn

j − xn
1 = 0. Repeating the reasoning for all i = 2, 3, . . . , we

obtain that there are no other equilibria.

ii) We define the Lyapunov function V (x) = 1
2

∑

i∈I x
2
i and compute, using the symmetry

of sn as done in [5],

d

dt
V (xn(t)) =

∑

i∈I

xn
i (t)ẋ

n
i (t)

=
∑

i∈I

xn
i (t)

∑

j∈I

sn
(

xn
j (t)− xn

i (t)
)

(xn
j (t)− xn

i (t))

=−
1

2

∑

i,j

sn
(

xn
j (t)− xn

i (t)
)

(xn
j (t)− xn

i (t))
2 ≤ 0.

Since the inequality is strict if x(t) 6∈ Fn, and Fn is closed and invariant, we can apply
the LaSalle invariance principle to conclude convergence of xn(·) to the set Fn.

iii) We observe that the set Fn is the union of a finite number of sets FP , where P =
{P1, . . . , Pk} is a partition of I in 1 ≤ k ≤ N subsets, and

FP =
{

x ∈ R
N : ∀ i, j ∈ I, if ∃h s.t. i, j ∈ Ph, then xi = xj , else sn(xi − xj) = 0

}

.

Note that, since sn is an even function, sn(xi − xj) = 0 if and only if |xi − xj | ≥ rn,
where 2rn is the diameter of the support of sn. As the sets FP ⊂ Fn are closed and
disjoint, we argue that each solution converges towards one of them. We are thus left
to show that convergence to a certain FP implies convergence to a point in FP . Let
us describe the convergence of xn(·) when k, the number of parts in P , is given. When
k = 1, the only partition is the trivial one, corresponding to equilibria in which the states
of all agents coincide. In this case, average preservation implies that xn

i (t) → xn
ave(0)

for all i as t → ∞. When k = 2, for every partition P there exists a ∈ {1, . . . , N}
such that for every x ∈ FP it holds that xi = xa for every i ≤ a, xi = xa+1 for
every i > a, and xa+1 − xa ≥ rn. Let Ta = inf

{

t ≥ 0 : xn
a+1(t)− xn

a (t) > rn
}

. If
Ta < +∞, then there is disconnection at finite time and when t → +∞ we have that
xn
i (t) →

1
a

∑

j≤a x
n
j (T ) if i ≤ a, whereas xn

i (t) →
1

N−a

∑

j>a x
n
j (T ) if i > a. If instead

T = ∞, then xn
a+1(t) − xn

a (t) → rn as t → +∞ and the preservation of the average

implies that
∑

i≤N xn
i (t) → Nxn

ave(0). Hence we argue that xn
i (t) → xn

ave(0)− rn
N−a
N

if
i ≤ a and xn

i (t) → xn
ave(0) + rn

a
N

otherwise. When k ≥ 3, the above argument can be
extended by defining k− 1 appropriate disconnection times Ta1

, . . . , Tak−1
: we conclude

that xn(·) converges to a point in Fn.
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The set of equilibria Fn in Theorem 2 has the following feature: its points are such that
the agent opinions either coincide or their distance is larger than the size of the support2 of
sn. Equivalently, the opinions of two agents are equal if and only if the agents are connected
in the interaction graph. Following the opinion dynamics literature, we refer to such groups
of agents as clusters, and to the corresponding values as cluster values. More formally, one
can consider for a given x ∈ Fn, the map I ∋ i 7→ xi ∈ R: the image of such map consists
of the cluster values and the clusters are the preimages of the cluster values. The size of a
cluster is its cardinality.

In [3], the authors propose for clusters a definition of robustness with respect to small
perturbations, suggesting that opinion dynamics models are more likely to converge to robust
clusters. In this paper, we adopt a similar definition of robustness, which is discussed in the
following remark.

Remark 2 (Robustness of CHK equilibria). An equilibrium is said to be robust if no per-
turbation consisting in adding one agent to the configuration can cause two of the former
clusters to coalesce in the resulting evolution.

Indeed, note that the added agent may be connected to two, one or no cluster. In the
third case, there is no evolution. If the added agent has one neighbor cluster, the subsystem
consisting of the cluster and the added agent converges to a new single cluster. In both of
these cases no former clusters merge. This observation immediately implies that a sufficient
condition for an equilibrium to be robust is that the clusters be at a distance which is
larger than twice the size of the support. On the other hand, any necessary condition would
depend on the specific interaction function sn at hand. In the case of Example 1, the following
necessary condition holds3. For any pair of clusters, denote them by A and B, having values
xA and xB, and sizes nA ≤ nB. Then, for an equilibrium x to be robust it is necessary that
|xB − xA| ≥ (1− εn)(1 +

nA

nB
) for every pair A,B.

The interest for robust equilibria is motivated by the following intuition. Those equilibria
which are robust against the action of isolated agents are more suitable to be limit points of
“real” opinion dynamics system, which would be subject to uncertainties and disturbances.
Furthermore, as we demonstrate later in Section 4, simulated solutions usually converge to
robust equilibria.

3 Discontinuous Hegselmann-Krause Model

We have seen in Section 1.5 that system (1) can be written as

ẋ = −L(x)x, (5)

being L(x) the Laplacian matrix of the state-dependent graph G(x) and

(−L(x)x)i =
∑

j∈I

s(xj − xi)(xj − xi)

2By size of the support of an s
n function we intend half its diameter. For instance, in Example 1 the size

of the support is 1.
3We omit the simple proof which follows the lines of the proof of Proposition 5.
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the components of the right-hand side.
As the differential equation (5) has a discontinuous right-hand side, we consider Krasovskii

solutions to (1), which we characterize as follows. For any H ⊂ ∂E(x) we let LH(x) be the
Laplacian matrix associated to the graph GH(x) with edges E(x)∪H , and correspondingly

(−LH(x)x)i =
∑

j:(i,j)∈E(x)∪H

(xj(t)− xi(t)).

By the definition, it is clear that a Krasovskii solution to (1) satisfies at almost every time
the inclusion

ẋ ∈ co(
{

−LH(x)x : H ⊂ ∂E(x)
}

),

or equivalently the inclusion

ẋ ∈
{

−
∑

H⊂∂E(x)

αHLH(x)x : αH ≥ 0,
∑

K⊂∂E(x)

αK = 1
}

.

Namely, for a given Krasovskii solution φ(·),

φ̇(t) = −
∑

H⊂∂E(φ(t))

αφ
H(t)LH(φ(t))φ(t) for almost every t,

where the time-dependent coefficients αφ
H depend on the solution φ(·) itself.

Using this graph-theoretical characterization, we now prove some basic properties of
Krasovskii solutions to (1).

Proposition 3 (Basic properties of DHK). Let x(·) denote a Krasovskii solution to (1), on
its domain of definition.

(i) (Existence). For any initial condition x̄ ∈ R
N , there exists a Krasovskii solution

starting from x̄.

(ii) (Order preservation). For any i, j ∈ I, if xi(t1) < xj(t1), then xi(t2) < xj(t2), for any
t2 > t1.

(iii) (Contractivity). For any t2 > t1, co({xi(t2)}i∈I) ⊂ co({xi(t1)}i∈I).

(iv) (Completeness). The solution x(·) is complete.

(v) (Average preservation). Let xave(t) = N−1
∑N

i=1 xi(t). Then xave(t) = xave(0), for
t > 0.

Proof. In the proof, the following notation will be useful. For every i ∈ I, and every x ∈ R
N ,

we let
Ni(x) := {k ∈ I : |xi − xk| < 1} ,

and for any H ⊂ ∂E(x), we let

NH
i = {k ∈ I : (i, k) ∈ H} .
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Clearly, NH
i ⊂ ∂Ni(x) := {k ∈ I : |xi − xk| = 1} . With this notation,

(−L(x)x)i =
∑

j∈Ni(x)

(xj(t)− xi(t))

and
(−LH(x)x)i =

∑

j∈Ni(x)∪NH
i

(xj(t)− xi(t)).

We are now ready to prove our statements.

i) Since the right-hand side of (1) is locally essentially bounded, local existence of a
Krasovskii solution is guaranteed (see for instance [12]).

ii) To prove the claim, we study the dynamics of the difference between xj and xi, similarly
to what is done in [14, Section 10.1] for Carathéodory solutions. By continuity of Kra-
sowskii solutions, we can assume with no loss of generality that xj and xi are close, for
instance that xj − xi < 1. For brevity, in the following we omit the explicit dependence
of Ni on x. For almost every time t, we have

d

dt
(xj − xi) =

∑

H∈∂E(x)

αH





∑

h∈Nj ∪NH
j

(xh − xj)−
∑

h∈Ni ∪NH
i

(xh − xi)





=
∑

H∈∂E(x)

αH





∑

h∈Ni ∩Nj

((xh − xj)− (xh − xi)) +
∑

h∈Ni ∩NH
j

((xh − xj)− (xh − xi))

+
∑

h∈NH
i ∩Nj

((xh − xj)− (xh − xi))−
∑

h∈(Ni ∪NH
i )\(Nj ∪NH

j )

(xh − xi)

+
∑

h∈(Nj ∪NH
j )\(Ni ∪NH

i )

(xh − xj)





=
∑

H∈∂E(x)

αH





∑

h∈Ni ∩Nj

−(xj − xi) +
∑

h∈Ni ∩NH
j

(−xj + xi) +
∑

h∈NH
i ∩Nj

(−xj + xi)

−
∑

h∈(Ni ∪NH
i )\(Nj ∪NH

j )

(xh − xi) +
∑

h∈(Nj ∪NH
j )\(Ni ∪NH

i )

(xh − xj)





=− |Ni ∩Nj |(xj − xi) +
∑

H⊂∂E(x)

αH

[

− (
∣

∣Ni ∩NH
j

∣

∣+
∣

∣NH
i ∩Nj

∣

∣)(xj − xi)

−
∑

h∈(Ni ∪NH
i )\(Nj ∪NH

j )

(xh − xi) +
∑

h∈(Nj ∪NH
j )\(Ni ∪NH

i )

(xh − xj)
]

.

Since if h ∈ (Ni ∪NH
i ) \ (NH

j ∪Nj), then xh − xi < 0, whereas if h ∈ (Nj ∪NH
j ) \

11



(NH
i ∪Ni), then xh − xj > 0, and since

∣

∣Ni ∩NH
j

∣

∣ ≤ |Ni|, we get that

d

dt
(xj − xi) ≥ −

(

|Ni ∩Nj |+ |Ni|+ |Nj |
)

(xj − xi).

The obtained inequality ensures that xj −xi can not reach zero in finite time, and yields
our claim.

iii) To prove the claim we show that the leftmost agent can only move to its right. To this
goal, we need a recall the proof of statement (ii). While our argument shows that strict
inequalities between agents’ states are preserved by the dynamics, we have to remark that
equalities are not. It is not in general true that if xi(t1) = xj(t1), then xi(t2) = xj(t2)
for any t2 > t1. Indeed, we can observe that if xi(t1) = xj(t1), then ẋi(t1) and ẋj(t1)
have to satisfy to the same differential inclusion, but need not to be equal. However, it
can be proven that it is always possible, given a solution x(·), to sort the states so that
xi1 (t) ≤ xi2(t) ≤ . . . ≤ xiN (t), for every t. Note that this mapping i(·) : {1, . . . , N} → I
depends on the solution and needs not to be unique. Nevertheless, it allows us to define
xmin(t) := xi1(t), and xmax(t) := xiN (t). This fact is useful because it allows us to
observe that

xi(t)− xmin(t) ≥ 0

for every t and every i ∈ I and then, for almost every time t, d
dt
xmin(t) ∈ [0,+∞).

Repeating an analogous argument for xmax implies the claim.

iv) Claim (iii) ensures that solutions are bounded. By standard arguments, this is enough
to guarantee that local solutions can be extended for all t > 0.

v) For every x ∈ R
N , every H ⊂ ∂E(x) and every i, j ∈ I, it holds that j ∈ Ni(x)∪NH

i

if and only if i ∈ Nj(x)∪NH
j ; that is, the graph GH(x) is symmetric. This key remark

allows us to argue that for almost every time t,

d

dt
xave(t) =N−1

∑

i∈I

ẋi(t)

=N−1
∑

i∈I

∑

H⊂∂E(x(t))

αH(t)
∑

j∈Ni(x(t))∪NH
i

(xj(t)− xi(t))

=N−1
∑

H⊂∂E(x(t))

αH(t)
∑

i∈I

∑

j∈Ni(x(t))∪NH
i

(xj(t)− xi(t)) = 0.

This ensures xave(t) = xave(0) for every t > 0.

We are now ready to prove convergence to a configuration in which agents are separated
into clusters of agents which share the same opinion. We first recall that a point x̃ is said to
be a Krasovskii equilibrium of (1) if the function x(t) ≡ x̃ is a Krasovskii solution to (1), i.e.
0 ∈ co(

{

−LH(x̃)x̃ : H ⊂ ∂E(x̃)
}

).

Theorem 4 (Convergence of DHK). The set of Krasovskii equilibria of (1) is

F =
{

x ∈ R
N : for every (i, j) ∈ I × I, either xi = xj or |xi − xj | ≥ 1

}

and if x(·) is a Krasovskii solution to (1), then x(t) converges to a point x∗ ∈ F as t → +∞.

12



Proof. The proof follows the lines of the proof of Theorem 2 and is done in three steps.
We first describe the set of equilibria, then prove convergence to this set, and finally prove
convergence to one equilibrium.

i) It is clear that every point in F is an equilibrium. To prove that there are no other
equilibria, we proceed as follows. Without loss of generality we can sort the components
of x̃ so that x̃i1 ≤ ... ≤ x̃iN . For a vector v ∈ co(

{

−LH(x̃)x̃ : H ⊂ ∂E(x̃)
}

) to be equal
to zero, it is necessary that vi1 = 0. But since x̃k− x̃i1 ≥ 0 for every k ∈ I, it is necessary
that x̃j − x̃i1 ∈ {0}∪[1,+∞), for every j ∈ I. Repeating this reasoning for i2, . . ., we
have that the set of equilibria actually coincides with F .

ii) We define the Lyapunov function V (x) = 1
2

∑

i∈I x
2
i and compute, using the symmetry

of the graph G(x),

d

dt
V (x(t)) =

∑

i∈I

xi(t)ẋi(t)

=
∑

i∈I

xi(t)





∑

j∈Ni(x)

(xj(t)− xi(t)) +
∑

H⊂∂E(x)

αH

∑

j∈NH
i

(xj(t)− xi(t))





=−
1

2

∑

(i,j)∈E(x)

(xj(t)− xi(t))
2 −

1

2

∑

H⊂∂E(x)

αH

∑

(i,j)∈H

(xj(t)− xi(t))
2 ≤ 0.

Since the inequality is strict if x(t) 6∈ F , and F is closed and weakly invariant, we can
apply a LaSalle invariance principle [1, Theorem 3] to conclude convergence to the set F .

iii) We observe that the set F is the union of a finite number of sets FP , where P =
{P1, . . . , Pk} is a partition of I in 1 ≤ k ≤ N subsets, and

FP =
{

x ∈ R
N : ∀ i, j ∈ I, if ∃h s.t. i, j ∈ Ph, then xi = xj , else |xi − xj | ≥ 1

}

.

As the sets FP ⊂ F are closed and disjoint, each solution converges towards one of
them. Without loss of generality, we relabel the states so that, for the solution at hand,
x1(t) ≤ . . . ≤ xN (t) for every t ≥ 0. When k = 1, the only partition is the trivial one,
corresponding to equilibria in which the states of all agents coincide. In this case, average
preservation implies that xi(t) → xave(0) for all i as t → ∞. When k = 2, there exists a ∈
{1, . . . , N} such that for every x ∈ FP it holds that xi = xa for every i ≤ a, xi = xa+1 for
every i > a, and xa+1−xa ≥ 1. Let Ta = inf {t ≥ 0 : xa+1(t)− xa(t) > 1} . If Ta < +∞,
then there is disconnection at finite time and xi(t) → 1

a

∑

j≤a xj(T ) if i ≤ a whereas

xi(t) → 1
N−a

∑

j>a xj(T ) otherwise. If instead T = ∞, then xa+1(t) − xa(t) → 1− as

t → +∞. By the average preservation, we argue that xi(t) → xave(0)−
N−a
N

if i ≤ a and
xi(t) → xave(0) +

a
N

otherwise. As the argument can be extended to k ≥ 3 by defining
k − 1 appropriate disconnection times, we conclude that every solution converges to a
point in F .

Similarly to Theorem 2, this result proves that also solutions to (1) converge to a state
in which clusters of agents, corresponding to the limit connected components of the graph,
share the same opinion.
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Remark 3. (Weak and strong equilibria) According to the definition of Krasovskii equilib-
rium, Krasovskii solutions which have Krasovskii equilibria as initial conditions may leave
the equilibria. For example, if N = 2, x = (1, 0) ∈ F , there are two Krasovskii solutions
issuing from x: x1(t) ≡ (1, 0) and x2(t) = (1/2 + 1/2e−2t, 1/2 − 1/2e−2t). In other words,
the set F is weakly invariant but not strongly invariant. A subset of F which is strongly

invariant is F̊ =
{

x ∈ R
N : for every (i, j) ∈ I × I, either xi = xj or |xi − xj | > 1

}

.

As for the continuous Hegselmann-Krause model, we define an equilibrium to be robust
if no perturbation consisting in adding one agent to the configuration can cause two of the
former clusters to coalesce in the resulting evolution.

Proposition 5 (Robustness of DHK equilibria). Let x ∈ F , and when considering any
pair of clusters in x, denote them by A and B, having values xA and xB , and cardinalities
nA ≤ nB. Then, for the equilibrium x ∈ F to be robust it is sufficient that |xB − xA| > 2 for
every pair A,B, and it is necessary that |xB − xA| > 1 + nA

nB
for every pair A,B.

Proof. If |xB − xA| > 2, then the added agent can only be connected to one cluster. This
implies that no pair of the former clusters can merge, and proves the sufficient condition.

To prove the necessary condition, assume that for a pair of clusters, |xB − xA| ≤ 1+ nA

nB
,

and without loss of generality that xA < xB. Then, if the perturbing agent –whose value is
denoted by x0– is added with value x0(0) = xA + nB

nA
(xB − xA), then ẋ0(t) = 0 for every

t ≥ 0, while the agents in xA (resp., in xB) experience a positive (resp., negative) derivative,
so that the two clusters converge into each other.

As we have already noted about the continuous Hegselmann-Krause model, and in accor-
dance with the findings in [3], simulated solutions typically converge to robust equilibria (cf.
Figure 1).

Remark 4 (Robustness for large populations). Whenever not all clusters have the same
cardinality, Proposition 5 leaves a gap between the necessary and the sufficient condition.
For large groups of agents, this gap can actually be filled by showing that in the limit for
nA → ∞, the condition

|xB − xA| > 1 +
nA

nB

is both necessary and sufficient. Details about this more refined analysis are not included in
this paper: the interested reader can find them in the report [8].

3.1 Krasovskii and Carathéodory Solutions

As a consequence of their definitions, the set of Krasovskii solutions may be larger than the
set of solutions intended in a Carathéodory sense. We now provide an example of a solution
sliding on a discontinuity surface, proving that there are Krasovskii solutions to (1) which
are not Carathéodory solutions.

Example 2 (Sliding mode). Let N = 3 and consider a configuration x in which 1 > x2−x1 >
0 and x3 − x2 = 1. Then, x is on a discontinuity surface due to the disconnection between
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Figure 1: A sample solution to (1). The initial condition has been randomly generated from
N = 500 independent uniform distributions, and the solution has been computed by an
explicit Euler solver with time step equal to 10−4. We remark that the final clusters satisfy
the necessary condition in Proposition 5.

agents 2 and 3. Then, for almost every time

ẋ∈







α





x2 − x1

1 + x1 − x2

−1



+ (1− α)





x2 − x1

x1 − x2

0



 : α ∈ [0, 1]







.

Since the normal vector to the discontinuity plane is v⊥ = [0,−1, 1], we have that

v⊥ · ẋ = −2α+ x2 − x1

is equal to zero if α = 1
2 (x2 − x1). Namely, the Krasovskii solution corresponding to such α

does not exit the discontinuity plane x3 − x2 = 1 at time 0, but it slides on it. The sliding
solution takes into account the fact that opinions x3 and x2 may remain for a while at the
threshold distance before reaching an equilibrium configuration.

It is an open question whether sliding mode solutions can be attractive for the dynam-
ics. However, we know from [3] that a unique complete Carathéodory solution exists for
almost every initial condition. This implies that the set of initial conditions such that the
corresponding solutions converge to a sliding mode has measure zero, because Carathéodory
solutions corresponding to those initial conditions would not be complete.
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4 Comparing the Continuous and Discontinuous H-K

Models

The results in Sections 2 and 3 show that continuous and discontinuous H-K models have sim-
ilar qualitative properties. These similarities increase the interest for considering sequences
of systems (2) which approximate a dynamic (1). Do solutions of the former system converge
to a solution of the latter? The following result provides a partial answer to this question.

Theorem 6 (Limits of solutions). Let {x̄n}n∈N, x̄
n ∈ R

N , let xn : R≥0 → R
N be the solutions

to (2) with initial condition x̄n. Assume that x̄n → x̄ and sn(τ) → s(τ) for all τ ∈ R as
n → ∞. Then there exists a subsequence xnk(·) of xn(·) and a function x : R≥0 → R

N such
that

i) xnk(·) → x(·) pointwise for every t ≥ 0 and uniformly on intervals [0, T ] for any T > 0;

ii) x(·) is a Carathéodory solution to (1) such that x(0) = x̄.

Proof. i) Let T > 0 be fixed. First of all we remark that, since the sequence {x̄n} is
convergent, then it is bounded. Let xm = inf{x̄n

i , i ∈ I, n ∈ N} and xM = sup{x̄n
i , i ∈

I, n ∈ N}. Thanks to contractivity (Proposition 1, statement (iii)), we have that

xn
i (t) ∈ [xm, xM ] ∀t ∈ [0, T ], ∀i ∈ I,

then the functions xn
i are uniformly bounded for all i ∈ I. Moreover

|ẋn
i (t)| = |

∑

j∈I

sn(xn
j (t)− xn

i (t))(x
n
j (t)− xn

i (t))| ≤
∑

j∈I

|xn
j (t)− xn

i (t))| ≤ N |xM − xm|

then the functions xn(·) are also equicontinuous. By Ascoli-Arzelà Theorem we deduce
that there exists a subsequence xnk(·) of xn(·) and a continuous function x : [0, T ] → R

N

such that xn(·) → x(·) uniformly on [0, T ].

Now, we want to show that the function x can be extended to [0,+∞). Since xnk(T ) →
x(T ), we can consider the subsequence xnk on the interval [T, 2T ] and repeat the same
reasoning as in [0, T ]. As R≥0 = [0, T ]∪ (∪K∈N[KT, (K + 1)T ]), we argue that x can be
iteratively extended.

ii) We now prove that x = (x1, ..., xN ) is a Carathéodory solution to (1), i.e. for any i ∈ I
and t ∈ R≥0

xi(t) = x̄i +

∫ t

0

∑

j∈I

s(xj(τ) − xi(τ))(xj(τ) − xi(τ))dτ. (6)

Let t be fixed and let T > t. For any i ∈ I one has

xnk

i (t) = x̄nk

i +

∫ t

0

∑

j∈I

snk(xnk

j (τ) − xnk

i (τ))(xnk

j (τ) − xnk

i (τ))dτ.

Since xnk

i converges to xi and sn(τ) → s(τ) for all τ ∈ R, we get that
∑

j∈I

snk(xnk

j (t)−xnk

i (t))(xnk

j (t)−xnk

i (t)) →
∑

j∈I

s(xj(t)−xi(t))(xj(t)−xi(t)) ∀t ∈ [0, T ].
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Morever for any i ∈ I, nk and t ∈ [0, T ] we have that

|
∑

j∈I

snk(xnk

j (t)− xnk

i (t))(xnk

j (t)− xnk

i (t))| ≤
∑

j∈I

|xnk

j (t)− xnk

i (t)| ≤ N |xM − xm|

then, by Lebesgue’s dominated convergence theorem, we get (6), i.e. x = (x1, ..., xN ) is
a Carathéodory solution to (1) with initial condition x̄.
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Figure 2: Sample solutions to (2) when the initial condition is the same as in Figure 1
and sn is defined as in Example 1, with different values of εn. When εn = 0.001, the
evolution is qualitatively the same as the one of (1) in Figure 1. Only when εn = 0.1,
the limit configuration is not a robust equilibrium, because there is pair of clusters such that
xB−xA ≃ 1.47, nA = 87, nB = 96. This observation, considering that the necessary condition
in Remark 2 becomes more restrictive as εn decreases, gives an intuitive explanation for the
different number of clusters formed by these evolutions.

Theorem 6 proves that –up to subsequences– xn(·) → x(·) when n → ∞. What does this
property imply about the limit configurations? We know from Theorem 4 that limt→∞ x(t) =
x∗ ∈ F ∩ {x :

∑

i∈I xi =
∑

i∈I x̄i}, and from Theorem 2 that limt→∞ xn(t) = xn
∗ ∈ Fn ∩

{x :
∑

i∈I xi =
∑

i∈I x̄n
i }. By compactness, xn

∗ converges to a limit x̃∗ when n → ∞ and
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x̃∗ ∈ F ∩ {x :
∑

i∈I xi =
∑

i∈I x̄i}. Then, it is natural to ask whether x̃∗ and x∗ are equal.
Simulations (cf. Figure 2) seem to support a positive answer. However, the following example
shows that the answer is negative in general, because of the lack of uniform convergence on
(0,∞).

Example 3 (t and n limits do not commute). In the framework of Example 1, let us consider
systems (2) with N = 2,

sn(t) =



















1 if |t| ≤ 1− ǫn

0 if |t| ≥ 1

− 1
ǫn
(t− 1) if 1− ǫn < t < 1

1
ǫn
(t+ 1) if − 1 < t < −1 + ǫn

initial conditions x̄n such that x̄n → x̄ and x̄n
2 − x̄n

1 = 1− δn, with 0 < δn < ǫn and ǫn → 0
as n → +∞.

We denote zn = xn
2 − xn

1 and we have

żn =











0 if zn ≥ 1
2
ǫn
(zn − 1)zn if 1− ǫn < zn < 1

−2zn if 0 ≤ zn ≤ 1− ǫn

and zn(0) = 1− δn. The (classical) solutions to these initial value problems are the functions

zn(t) =

{

1−δn

1−δn+δne
2

ǫn
t

t ∈ [0, T n]

(1− ǫn)e
−2(t−Tn) t ≥ T n

where T n = ǫn
2 log ǫn(1−δn)

(1−ǫn)δn
is such that zn(T n) = 1 − ǫn. If we choose δn = e−ǫ−2

n , we have

that if n → +∞, then T n → +∞ and zn(t) tends to z(t) ≡ 1 pointwise and uniformly on any
interval [0, T ]. On the other hand we remark that limt→+∞ zn(t) = 0 for any n. In terms
of the coordinates x1, x2, this means that for each solution xn of the approximating system,

limt→+∞ xn(t) = (
x̄n
1
+x̄n

2

2 ,
x̄n
1
+x̄n

2

2 ), while the Carathéodory solution x(t) ≡ (x̄1, x̄2), which is
the uniform limit of xn on any interval [0, T ], is clearly such that limt→+∞ x(t) = (x̄1, x̄2).

Of course, as n → ∞ we have that (
x̄n
1
+x̄n

2

2 ,
x̄n
1
+x̄n

2

2 ) → ( x̄1+x̄2

2 , x̄1+x̄2

2 ), which is not equal to
(x̄1, x̄2).

We conclude that a sequence of solutions to the continuous approximating H-K models
may not behave well asymptotically. More precisely a sequence of solutions xn(·) to (2) may
converge to a Carathéodory solution x(·) to (1) but their limits in time may fail to converge
to the limit in time of x(·).

5 Conclusions

In this paper, we have developed a rigorous and complete analysis of the continuous-time
Hegselmann-Krause model and of a class of approximating systems with a continuous right-
hand side. The presented results suggest that either approach can be used in modeling opinion
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dynamics, leading to similar qualitative conclusions. We leave open a few further mathemat-
ical questions about the relationship between DHK and its continuous approximations. For
instance, Theorem 6 implies that some Carathéodory solutions to DHK are (pointwise) limits
of solutions to CHK. This fact asks for a characterization of the Carathéodory (Krasovskii)
solutions which can be obtained as limits of solutions to (2). Moreover, one might con-
sider different approximating systems, with sn(·) converging to s(·) in a weaker sense. May
solutions to such systems approximate all Carathéodory (Krasovskii) solutions to (2)?

Besides the interest of the technical problems, in the big picture we intend this paper
as a contribution to modeling opinion dynamics. We have indeed compared, in the case
study of the Hegselmann-Krause model, two methods for dealing with (opinion) dynamics in
which the bounded confidence constraint is modeled by a discontinuity. One method consists
of smoothing out the discontinuity and considering a (sequence of) suitable continuous ap-
proximation(s), whereas the other consists of undertaking the discontinuity by a Krasovskii
differential inclusion. The former method has the advantage of avoiding some mathematical
difficulties, and leads to the same qualitative picture as the original discontinuous counterpart,
although when it comes to compare sample solutions to the two systems, the relationships are
far from being trivial. On the other hand, the choice of the best approximations can be tricky
from the point of view of modeling. The latter method, instead, preserves the discontinuous
definition, which is appealing and intuitive, but requires more advanced analytical tools and
challenges to give an interpretation of multiple and sliding-mode solutions. Moreover, the
Krasovskii differential inclusion has the feature of inherently smoothing the discontinuity
by taking a convex combination of possible actions: how this can be interpreted in opinion
dynamics is a question which we leave to the application-oriented reader.
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