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Abstract—This work studies how uniform quantization in
communications affect the linear diffusion algorithm for average
consensus problem. Starting from the well-known linear diffusion
algorithm, we analyze a simple and effective adaptation which
is able to preserve the average of states and to drive the system
near to the consensus value. The error is estimated by a worst
case analysis, which suggests that it can increase as the number
of agents goes to infinity. The algorithm is also compared with
the existing literature.

I. I NTRODUCTION

In the last years, we have noticed an increasing interest
for studying control, estimation and algorithmic problems
over networks. A common feature of these problems is the
fact that there is a fundamental constraint on the flux of
information: data are distributed among a large number of
nodes communicating among themselves through some net-
work communication scheme. A prototype of such problems
is the so-called consensus problem.

Suppose we have a (directed) graphG with set of nodes
V = {1, . . . , N} and a real quantityxi for every nodei ∈ V .
The average consensus problem consists of computing the
averagexA = N−1

∑

i xi in an iterative and distributed way,
exchanging information among nodes exclusively along the
available edges inG. This problem appears in a number of
different contexts since the early 80’s (decentralized computa-
tion [20], load balancing [7]) and, more recently, has attracted
much attention for possible applications to sensor networks
(data fusion problems [21], clock synchronization [16]) and
to coordinated control of mobile autonomous agents [13], [3],
[2], [9].

Suppose now that the links between agents do not allow
a perfect exchange of information, but are noiseless digital
channels on which symbols are sent. This is to say that the
agents can just exchange quantized values. The simplest way
of performing such a quantization is to decompose the domain
of possible values in bins of equal size, and assign a symbol
to each bin. This is uniform quantization. Up to a suitable
rescaling, we may assume that the agents can exchange their
values rounded to the nearest integer.

The consensus problem under quantization transmission has
first appeared in the final section of [21]. In principle, we
could simply try to take the usual linear algorithm which
yields average consensus and try to apply it with quantization
transmission. However, this turns out not to be a good idea
since in the new setting the algorithm leads in general to an
approximate consensus which may be far though from the
average. This was noted in [21] and in [4], [6], where a
new algorithm was proposed and partially analyzed. In this
note, namely in Section III, we show that it is able to drive
the system to average consensus, up to a small error due to

quantization. The question of the magnitude of such error, and
of its dependence on the number of agents, is addressed, and an
answer is given by a theoretical analysis and by simulations. A
more complete study is being presented in [10]. Some remarks
on the related literature are given in Section V.

A. Notations and recalls

Before proceeding we collect some definitions and nota-
tions which are used through the paper. The communications
between agents are modeled by a directed graphG = (V, E).
V = {1, . . . , N} is the set of vertices andE is the set of
(directed) edges, i.e. a subset ofV × V . If (j, i) ∈ E, it
means thatj can transmit information about its state toi.
Theadjacency matrix A of G is a{0, 1}-valued square matrix
indexed by the elements inV defined by lettingAij = 1 if and
only if (j, i) ∈ E andj 6= i. Define thein-degree of a vertexi
as
∑

j Aij and theout-degree of a vertexj as
∑

i Aij . A graph
is said to beundirected (or symmetric) if (i, j) ∈ E implies
that (j, i) ∈ E. A graph is strongly connected if for any given
pair of vertices(i, j) there exists a path which connectsi to j.
A path in G consists in a sequence of vertices(i1, i2, . . . , ir)
such that(ij, ij+1) ∈ E for everyj ∈ {1, . . . , r − 1}.

A matrix M is said to benonnegative if Mij ≥ 0 for all i
andj, and is said to bedoubly stochastic if it is nonnegative
and the sums along each row and column are equal to1. A
matrix M is said to benormal if, denoting with the star the
conjugate transpose,M∗M = MM∗. Given a nonnegative
matrix M ∈ RN×N , we can define an induced graphGM by
taking N nodes and putting an edge(j, i) in E if Mij > 0.
Given a graphG on V , M is said to beadapted or compatible
with G if GM ⊂ G. Given a matrixM ∈ RN×N , let σ(M)
denote the set of eigenvalues ofM and ρ(M) the spectral
radius ofM :ρ(M) = max{|λ| : λ ∈ σ(M)}. When the matrix
is stochastic, it is also worth to define theessential spectral
radius asρess(M) = max{|λ| : λ ∈ σ(M) \ {1}}.

II. STATEMENT OF THE PROBLEM

Assume that we have a set of agentsV and a graphG on
V describing the available links among the agents. For each
agenti ∈ V we denote byxi(t) the estimation of the average
of agenti at time t.

In discrete time, if we have ideal exchange of information,
the typical approach is to set as dynamics the following
equations

xi(t + 1) =
N
∑

j=1

Pijxj(t), (1)

where xi(t) ∈ R is the state of thei-th agent at the time
t and Pij are coefficients belonging to a doubly stochastic



matrix P ∈ R
N×N . More compactly we can write

x(t + 1) = Px(t),

wherex(t) is the column vector whose entriesxi(t) represent
the agents states.

It is well known in the literature [19], [3] that, ifP is
a doubly stochastic matrix with positive diagonal and with
GP strongly connected, then the algorithm with exchange of
perfect information (1) solves theaverage consensus problem,
namely

lim
t→+∞

x(t) =
1

N

(

N
∑

i=1

xi(0)

)

1, (2)

where1 is the (column) vector of all ones.
Assumption 1: The matrixP is doubly stochastic and such

that Pii > 0, i = 1, . . . , N , andGP is strongly connected.
This will be assumed in the sequel of the paper.

When communication is quantized, we propose that at each
time step each agenti adjourn its state following

xi(t + 1) = xi(t) +

N
∑

j=1

Pij [q(xj(t)) − q(xi(t))],

wherePij are the entries of a matrixP compatible withG,
and whereq(·) denotes rounding to the nearest integer. If we
have a vectorx ∈ RN , with a slight abuse of notation, we
will use the notationq(x) ∈ RN to denote the vector such
that q(x)i = q(xi). Hence more compactly we can write

x(t + 1) = x(t) + (P − I) q(x(t)). (3)

wherex(t) is the column vector whose entriesxi(t) represent
the agents states.

The algorithm (3) preserves the average of the initial
conditions, that is, definingxa(t) = N−1

1
∗x(t), xa(t) =

xa(0), ∀t ∈ N . Indeed, by Assumption refAssMatrixP,
1
∗P = 1

∗, and we have that, for allt > 0, xa(t + 1) =
N−1

1
∗x(t + 1) = N−1

1
∗x(t) + N−1

1
∗ (P − I) q(x(t)) =

N−1
1
∗x(t) = xa(t).

It is clear that the algorithm (3), because of the quantization
effects, is not expected to converge in the sense (2). What
we can hope is for the agents to reach real estimates which
are close to each other and close to the averagexa(0).
To measure this asymptotic disagreement, we introduce the
following quantity∆i(t) := xi(t) − xa(0). Since the average
is preserved,∆i(t) = xi(t) − xa(t), and this represents
the distance, at timet, of the i-th agent from the average
of the initials conditions. Let nowY = I − N−1

11
∗ and

∆(t) = [∆1(t), . . . , ∆N (t)]∗. Then,∆(t) = Y x(t). We define
the performance indexd(P, x(0)) = lim supt→∞

1√
N
||∆(t)||.

To avoid a dependence on the initial condition, we prefer to
consider

d∞(P ) = sup
x(0)

d(P, x(0)).

III. W ORST CASE ANALYSIS

An exact analysis of the dynamics of system (3) is an hard
task and can be done only in special cases [10]. In this section
we undertake a worst case analysis which is very general
and proves that the proposed method drives the agents to a
neighborhood of consensus, providing a bound on its size.

We start by observing that (3) can be rewritten in the
following way

x(t + 1) = Px(t) + (P − I)(q(x(t)) − x(t)), (4)

whereq(x(t))−x(t) is such that‖q(x(t))−x(t)‖∞ ≤ 1/2. In
order to carry out a worst-case analysis of (4), we introduce
the following bounded error model
{

xw(t + 1) = Pxw(t) + (I − P )e(t), xw(0) = x(0)
∆w(t) = Y xw(t),

(5)
wheree(t) ∈ RN is such that‖e(t)‖∞ ≤ 1/2 for all t ≥ 0
and where we recall thatY = I − 1

N 11
∗. Notice that in this

casee(t) is no more a quantization error, but instead represents
an unknown bounded disturbance. Clearly, whene(t) = x(t)−
q(x(t)) it turns out thatxw(t) = x(t) and∆w(t) = ∆(t) for
all t ≥ 0.

We define now a performance index for (5), consider-
ing the worst asymptotic disagreement, worst with respect
to all the possible choices of the time sequence of the
vectors e(t). To be more precise, let us introduceE∞ =
{

{e(·)}∞t=0 |‖e(t)‖∞ ≤ 1
2 , ∀ t ≥ 0

}

, namely the set of all the
sequences ofN -dimensional vectors having sup norm less than
1/2. Then, for the system (5), we define

dw
∞(P, xw(0)) = sup

E∞

lim sup
t→∞

1√
N

||∆w(t)||.

Note that limt→∞ Y P t = 0. This implies that the asymp-
totic behavior of∆w(t) is independent of the initial con-
dition xw(0) and hence this is the case also for the quan-
tity dw

∞(P, xw(0)). Thus, from now on we will denote
dw
∞(P, xw(0)) simply by dw

∞(P ). As a preliminary remark,
note that

d∞(P ) ≤ dw
∞(P ).

We start from the following result that provides a general
bound fordw

∞.
Proposition 1: Let P be a matrix satisfying Assumption 1.

Then‖PY ‖ < 1 and

dw
∞(P ) ≤ 1

1 − ‖PY ‖ . (6)

Proof: We have that‖PY ‖ =
√

ρ ((PY )∗PY ). Since
PY = Y P and Y 2 = Y we can write that(PY )∗PY =
P ∗PY . Notice that the fact thatP satisfies Assumption 1 im-
plies both that(P ∗P )ii > 0 andGP∗P is strongly connected.
Therefore we can write thatσ(P ∗P ) = {1, λ1, . . . , λN−1},
where|λi| < 1, 1 ≤ i ≤ N − 1. Observe thatσ(P ∗PY ) =



{σ(P ∗P ) − {1}} ∪ {0}. Hence‖PY ‖ < 1.
Consider now∆w(t). From (3), by simple algebra we have

∆w(t) = Y P tx(0) + Y

t−1
∑

s=0

P s(I − P )e(t − s − 1)

= (PY )t∆(0) +

t−1
∑

s=0

(PY )s(I − P )e(t − s − 1),

where in the last equality we have used again the facts that
PY = Y P and thatY k = Y for all k > 0. Now we have that

‖∆w(t)‖ = ‖(PY )t∆w(0) +
t−1
∑

s=0

(PY )s(I − P )e(t − s − 1)‖

≤ ‖(PY )t‖ ‖∆w(0)‖ + ‖I − P‖
t−1
∑

s=0

‖(PY )‖s‖e(t − s − 1)‖

= ‖(PY )t‖ ‖∆w(0)‖ +
√

N
1 − ‖PY ‖t

1 − ‖PY ‖ ,

where in the last inequality we used the facts that‖I−P‖ ≤ 2
and‖e(t)‖ ≤

√
N/2 for all t ≥ 0. By lettingt → ∞ we obtain

(6).
Note that, if P is normal we have that‖PY ‖ = ρess(P )

and hence (6) becomes

dw
∞(P ) ≤ 1

1 − ρess(P )
.

However, whenP is a normal matrix the bound ondw
∞(P )

can be improved as stated in the next proposition.
Proposition 2: If P is normal, then

dw
∞(P ) ≤ 1

2

∞
∑

s=0

ρ(P s(I − P )). (7)

Proof: Starting from the expression of∆w(t) provided
along the proof of Proposition 1 we can write that

‖∆w(t)‖ ≤ ‖(PY )t∆w(0)‖ + ‖
t−1
∑

s=0

(PY )s(I − P )e(t − s − 1)‖

≤ ‖(PY )t∆w(0)‖ +

√
N

2
‖(PY )s(I − P )‖.

Since P is normal we have that‖(PY )s(I − P )‖ =
ρ((PY )s(I − P )) = ρ(P s(I − P )). By letting t → ∞ in
the last inequality, we obtain (7).

It is worth noting that, from the sub-multiplicative inequality
‖(PY )s(I − P )‖ ≤ ‖PY ‖s ‖I − P‖, it follows immediately
that 1

2

∑∞
s=0 ρ(P s(I −P )) ≤ 1

1−ρess(P ) which shows that the
bound (6) is indeed an improvement of the bound (7).

In general it is quite hard to evaluate (7). We provide two
results which permit us to approximate (7) under some mild
assumptions. First a notational definition. Givenc ∈ C and
r ∈ R such thatr ≥ 0, we denote

Bc,r := {z ∈ C | ‖z − c‖ ≤ r} ,

the closed ball of complex numbers of radiusr and centered
in c.

Proposition 3: Let P be a normal matrix satisfying the
Assumption 1. LetR be such that0 < R < 1 and
σ(P ) ⊆ B1−R,R and let ρ̄ = ρess(P ) denote the essential
spectral radius ofP . Then

∞
∑

s=0

ρ(P s(I − P )) ≤ 1

1 − R
+

√

8R

(1 − R)(1 − ρ̄)
. (8)

Proof: Assume thatσ(P ) = {λ0 = 1, λ1, . . . , λN−1}.
We want to upper boundρ(P s(I − P )) = maxN−1

k=1 |λs
k(1 −

λk)|. In order to do so we consider the functionf : C →
R defined asf(z) = zs(1 − z). Let us consider the closed
balls B1−R,R and B0,ρ̄. By Gershgorin’s Theorem,σ(P ) ⊆
B1−R,R, and by definition of essential spectral radius,σ(P )\
{1} ⊆ B0,ρ̄. Henceσ(P ) \ {1} ⊆ B0,ρ̄ ∩ B1−R,R. Let A :=

B1−R,R∩B0,ρ̄. Clearly
N−1
max
k=1

|λs
k(1−λk)| ≤ max

z ∈A
|f(z)|. Since

f is an analytic function andA is a compact set, from the
Maximum Modulus Principle it follows that

N−1
max
k=1

|λs
k(1 − λk)| ≤ max

z ∈ ∂A
|f(z)|,

where∂A denotes the boundary ofA.
Consider now the curvesγ, θ : [0, 2π] → C, γ(t) =
1 − R + Rejt, and θ(t) = ρ̄ejt, which represent, respec-
tively, the boundaries ofB1−R,R and of B0,ρ̄. In the fol-
lowing, since |f(z)| = |f(z∗)|, we will consider γ and
θ only on the interval[0, π]. Define ξ = 1−2R+ρ̄2

2(1−R) . Com-
puting the intersection betweenγ and θ, we get ∂A =
γ̃ ∪ θ̃ where γ̃ := {z = zx + izy ∈ γ : zx ≤ ξ} and θ̃ :=
{z = zx + izy ∈ θ : zx ≥ ξ} . We consider now|f(z)| on γ̃.
By direct calculations one can show that

|f(γ(t))|2 = 2R2(1 − cos t) [1 − 2R(1 − R)(1 − cos t)]
s
.

Now let x = R cos t + 1 − R and let F (x) = 2R(1 −
x) [1 − 2(1 − R)(1 − x)]

s
. Remark that studying|f(z)|2 on

γ̃ is equivalent to studyingF on I := [1 − 2R, ξ].
DefinexM = 1− 1

2(1−R)(s+1) . F is such that it reaches its
maximum onI in 1−2R if xM ≤ 1−2R, in xM if 1−2R ≤
xM ≤ ξ, and inξ if xM ≥ ξ. We have thatxM ≤ 1 − 2R ⇔
s ≤ (1−2R)2

4R(1−R) , 1 − 2R ≤ xM ≤ ξ ⇔ (1−2R)2

4R(1−R) < s < ρ̄2

1−ρ̄2 ,

xM ≥ ξ ⇔ s ≥ ρ̄2

1−ρ̄2 . Let s̄ = b (1−2R)2

4R(1−R)c ands∗ = b ρ̄2

1−ρ̄2 c.
Then,

max
x∈I

F (x) =











4R2 (1 − 2R)
2s if s ≤ s̄

R
1−R

ss

(s+1)s+1 if s̄ + 1 ≤ s ≤ s∗

R
1−R ρ̄2s

(

1 − ρ̄2
)

if s ≥ s∗ + 1.

Consider now|f(z)|2 on θ̃. By simple algebraic manipulations
one can see that|f(θ(t))|2 = ρ̄2s

(

1 + ρ̄2 − 2ρ̄ cos t
)

. Note
that|f(θ(t))|2 is monotone increasing fort ∈ [0, π] and hence
it reaches its maximum oñθ whencos t = 1−2R+ρ̄2

2(1−R) . Therefore
we can conclude that

N−1
max
k=1

|λs
k(1−λk)| ≤















2R |1 − 2R|s if s ≤ s̄
√

R
1−R

ss

(s+1)s+1 if s̄ + 1 ≤ s ≤ s∗
√

R
1−R ρ̄2s (1 − ρ̄2) if s ≥ s∗ + 1.



Notice now that
∑s̄

s=0 2R |1 − 2R|s ≤ 2R
1−|1−2R| ≤

1
1−R , and that

∑∞
s=s∗+1

√

R
1−R ρ̄2s (1 − ρ̄2) ≤

√

R
1−R

√

1 − ρ̄2
∑∞

s=0 ρ̄s =
√

R(1−ρ̄2)
(1−R)(1−ρ̄)2 ≤

√

2R
(1−R)(1−ρ̄) .

Moreover, since
∑m

i=1

√

1
i+1 ≤ 2

√
m + 1, we can argue

that
∑s∗

s=s̄+1

√

R
1−R

ss

(s+1)s+1 ≤
√

R
1−R

∑s∗

s=1

√

1
2

√

1
1+s ≤

√

4R
2(1−R)(1−ρ̄2) ≤

√

2R
(1−R)(1−ρ̄) . Putting together these three

inequalities we obtain (8).
Example 1 (Direct circuit): Suppose we have a dynamics

like

xi(t + 1) = xi(t) +
1

2
[−q(xi(t)) + q(xi+1(t))],

wherei = 1, . . . , N, and the summation of indexes is intended
modN . Such dynamics is also calledpursuing. It can be
written in compact form (3) with a suitable matrixP whose
eigenvalues are (details in [3])λh(P ) = 1

2 + 1
2 exp

(

2π
N h
)

for
h = 1, . . . , N. Consider the bound introduced in Proposition
1. Sinceρess(P ) = 1− π2

2
1

N2 +o
(

1
N2

)

and since such matrix
is normal, we have that 1

1−‖PY ‖ = 1
1−ρess(P ) = Θ

(

N2
)

.
Observe now that all the eigenvalues ofP are inside the ball
B 1

2
, 1
2
. Hence we obtain that 1

1−R +
√

8R
(1−R)(1−ρ̄) = Θ(N).

This means that the bound (8) improves the bound proposed
in (6). It is worth noting that in this case it is possible to
prove ([10]) thatd∞ ≤ 1

2 : estimatingd∞ by dw
∞ is not tight

in general!
If P is symmetric we can provide a stronger result.
Proposition 4: Let P be a symmetric stochastic matrix

satisfying Assumption 1. LetR be such that0 < R < 1
andσ(P ) ⊆ B1−R,R and letρ̄ = ρess(P ) denote the essential
spectral radius ofP . Then,

+∞
∑

s=0

ρ (P s(I − P )) ≤ 3

2
+

1

1 − R
+

1

2
log

(

1

1 − ρ̄

)

. (9)

The proof is similar to the previous one, and we skip it here.
It can be found in [10].

Example 2 (Undirect circuit): We apply this result to a
concrete example. Suppose we have a dynamics like

xi(t + 1) = xi(t) +
1

3
[q(xi−1(t)) − 2q(xi(t)) + q(xi+1(t))],

wherei = 1, . . . , N, and the summation of indexes is intended
modN . It is clear that this dynamics corresponds to agents
arranged like in a necklace (ring topology), and that it can
be written in compact form (3) with a suitable matrixP . It
is possible to prove (details in [3]) that its eigenvalues are
λh = 1

3 + 2
3 cos

(

2π
N h
)

for h = 1, . . . , N. By considering the
bound (6), sinceρess(P ) ∼= 1− 4

3
π2

N2 (see [3]) we obtain that
1

1−‖PY ‖ = 1
1−ρess

= Θ(N2). Observe that all the eigenvalues
of P are greater than− 1

3 . Hence it results, lettingR = 2/3,

that 3
2 + 1

1−R + 1
2 log

(

1
1−ρ̄

)

= Θ(log N).
We shall remark that there are cases in which the bound

given by (7-9) is a tight estimate ofdw
∞(P ). Actually we

show that this happens for a sequence of matrices adapted

to hypercube graphs. Also in this case the bound scales as the
logarithm of the number of agents.

Example 3: The n-hypercube graph is the graph obtained
drawing the edges of an-dimensional hypercube. It has
N = 2n nodes which can be identified with the binary words
of length n. Two nodes are neighbors if the corresponding
binary words differ in only one component. Thus every node
has degreen. A matrix P can be constructed, adapted to
the hypercube, taking its adjacency matrixA and defining
P = 1

n+1 (A+I). For such matrix, we can prove the following
result.

Theorem 5: Let P be as above. Then

dw
∞(P ) =

n

2
=

log2 N

2
.

The proof is deferred to the appendix.

IV. SCALING PROPERTIES

Theorem 5 implies that there exist sequences of matrices
such thatdw

∞(PN ) diverges withN and the estimate (7)-(9) is
tight. However, simulations on the hypercube, Figure 1, do not
show ford∞, that is for the true system (3), this poor scaling.

As a further example we consider the random geometric
graph. The random geometric graph is a graph of great
applicative interest, since it is commonly used to model
wireless networks [11]. It is constructed by placing, uniformly
at random,N nodes in the unit square, and joining them
with edges whenever their distance is below a threshold
R = Θ(

√

log N/N) for N → ∞. Also in these simulations,
Figure 2, performance scales nicely withN .

Hence, we conclude that the bounded error approach has
been useful to prove that the algorithm gets near to consensus,
but is too pessimistic in evaluating its performance. A more
complete analysis of the algorithm, which copes with this
difficulty, and establishes more precise convergence results,
is going to appear in [10].
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Fig. 2. The performance of the algorithm scales nicely on therandom
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∞
we plot the bound (7).

V. THIS CONTRIBUTION IN THE LITERATURE

The effects of quantization in feedback control problems
have been widely studied in the past [17], mainly in the
stabilization problem. Notice moreover that granularity effects
different from quantization in the consensus problems have
been tackled in few papers, especially in the load balancing
applications [8], [15].

In the last months, different quantized algorithms have
appeared in the literature [15], [1], [18]. In [15], the authors
study systems having integer-valued states and propose a
class of gossiping1 algorithms which preserve the average of
states and are guaranteed to converge up to one quantization
bin. The recently appeared technical report [18] studies a
deterministic quantization scheme, not preserving the average,
in which the agents can only store quantized data. Several
results are obtained on the error between the convergence
value and the initial average, and on the speed of convergence.
The work [1] actually deals with quantized communication,
and proposes to use a specific randomized quantizer together
with a time invariant communication topology. This scheme
achieves almost surely a consensus in the strict sense2, and the
consensus value is always one of the quantization levels, but
it preserves the average only in expectation. Interestingly, in
[1], the authors state for the expected squared distance from
average consensus a bound which is very similar to (6). On
the contrary, the algorithm (3), that we are studying in this
note, preserves the average of initial conditions, and drives
the system to a neighborhood of consensus.

Simulations of Figure 3 compare the two methods on a
random geometric graph: one can see that the performance of
(3) is slightly better.

1A gossip algorithm is a consensus algorithm in which agents exchange
information in pairs, which are randomly selected. See [2] for a treatment
without quantization.

2That is, all agents share the same state.
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Fig. 3. Performance on a random geometric graph withN = 50 nodes, for
the methodsACR [1], dashed lines, and (3), solid lines. Red lines represent
the average ofd, and black lines the worst case, with respect to the initial
conditions.

In some sense, using either our method, or that of probabilis-
tic quantization [1], one trades off the precision in reaching the
agreement among states and in preserving the average. Thus
quantization seems to bring into the networked system some
inaccuracy in estimating the average, that no know method
is able to avoid. Are we facing an intrinsic limit of uniform
quantization? A solution can be found in a more efficient use
of the digital channel, as in [5], or in the time-varying strategy
of [14], which allows to trade off the error from average and
the speed of convergence.
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APPENDIX

The appendix is devoted to the proof of Theorem 5. Con-
sider the hypercube graph and the matrixP as defined above.
First we give the following preliminary result.

Lemma 6: Let P be as above. Then
∞
∑

s=0

ρ(P s(I − P )) = n = log2 N.

Proof: The eigenvalues ofP are λk = 1 − 2k
n+1 k =

0 . . . n, with multiplicities pk =
(

n
k

)

.
Then,

∑∞
s=0 ρ(P s(I − P )) =

∑∞
s=0 ρess(P

s)ρ(I − P ) =
∑∞

s=0(1 − 2
n+1 )s(2 − 2

n+1 ) = n.
We are able now to provide the proof of Theorem 5.

Proof: First we rewrite the expression ofdw
∞(P ). SinceP

is symmetric,P is diagonalizable by an orthogonal matrix. We
can write thatP =

∑N−1
h=0 λhqhq∗h whereqh are orthonormal.

These facts are true also forP s(I − P ). Moreover we have
that ρ (P s(I − P )) = ||P s(I − P )||.

Let ∆
(f)
w (t) :=

∑t−1
s=0 P s(I − P )e(t − s − 1). Then,

‖∆(f)
w (t)‖2 = ‖

t−1
∑

s=0

P s(I − P )e(t − s − 1)‖2 =

= ‖
t−1
∑

s=0

N−1
∑

h=0

λs
h(1 − λh)qhq∗he(t − s − 1)‖2

= ‖
N−1
∑

h=0

qh(1 − λh)
t−1
∑

s=0

λs
hq∗he(t − s − 1)‖2 =

=

N−1
∑

h=0

[

(1 − λh)

t−1
∑

s=0

λs
hq∗he(t − s − 1)

]2

.

Hence,[dw
∞(P )]2 = maxE∞ lim supt→∞

1
N ‖∆(f)

w (t)‖2.
Now we start using combinatorial tools. Indeed the vertices

of the hypercube, as well as the eigenvalues and eigenvectors
of P , can be indexed by the subsets of{1 . . . , n} (see [12]).

With this indexing, for eachI ⊆ {1 . . . n} the corresponding
eigenvalue isλI = 1 − 2|I|

n+1 and the eigenvector is the
2n−dimesional vectorq(I), such that itsJ−th component is
equal toq

(I)
J = 2−n/2(−1)|I∩J|.

Let T be any positive integer and consider the sequence of
vectorse(0), e(1), . . . , e(t), . . . such thatJ-th component of
the vectore(t) is equal to 1

2 (−1)T−1−r(−1)|J|, wherer is
the remainder in the euclidean division oft over T . Observe
that e(t + T ) = e(t) for all t ≥ 0. Observe, moreover, that
e(t) is an eigenvector ofP corresponding to the eigenvalue
1−n
1+n for all t ≥ 0. Hence we have that

1

N
‖∆(f)

w (T )‖2 =
1

N

N−1
∑

h=0

[

(1 − λh)

T−1
∑

s=0

λs
hq∗he(T − s − 1)

]2

=

=
1

2n

[

2n

n + 1

T−1
∑

s=0

(

1 − n

n + 1

)s
∑

J

2−
n

2 (−1)|J| 1

2
(−1)s(−1)|J|

]2

=
1

4n

[

n

n + 1

T−1
∑

s=0

(

n − 1

n + 1

)s

2n

]2

=
n2

(n + 1)2







1 −
(

n−1
n+1

)T

1 − n−1
n+1







2

=
n2

4

[

1 −
(

n − 1

n + 1

)T
]2

.

Assume now thatT is an even positive integer. By recalling
that e(t + T ) = e(t) for all t ≥ 0, for t = kT wherek ∈ N

it turns out that

1

N
‖∆(f)

w (kT )‖2 =
n2

4

[

1 −
(

n − 1

n + 1

)T
]2 k−1
∑

u=0

(

1 − n

n + 1

)uT

=

=
n2

4

[

1 −
(

n − 1

n + 1

)T
]2






1 −
(

n−1
n+1

)kT

1 −
(

n−1
n+1

)T







2

=

n2

4

[

1 −
(

n − 1

n + 1

)kT
]2

.

Letting k → ∞ we obtain that, for the particular sequence
considered

lim
k→∞

1

N
‖∆(f)

w (kT )‖2 =
n2

4
(10)

Therefore we have proved that

lim sup
t→∞

1

N
‖∆(f)

w (kT )‖2 ≥ n2

4

and hence[dw
∞(P )]

2 ≥ n2

4 . Now, Lemma 6 implies that
[dw

∞(P )]
2 ≤ n2

4 , and then the claim follows.


