

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (qipsa-lab)

Control of Nonlinear Systems

Nicolas Marchand

CNRS Associate researcher Nicolas.Marchand@grenoble-inp.fr

Control Systems Department, **gipsa**-lab Grenoble, France

Master PSPI 2009-2010

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

References

- Nonlinear systems Khalil Prentice-Hall, 2002 Probably the best book to start with nonlinear control
- Nonlinear systems S. Sastry Springer Verlag, 1999 Good general book, a bit harder than Khalil's
- Mathematical Control Theory E.D. Sontag Springer, 1998 Mathematically oriented, Can be downloaded at:

http://www.math.rutgers.edu/~sontag/FTP_DIR/sontag_mathematical_control_theory_springer98.pdf

- Constructive nonlinear control Sepulchre et al. Springer, 1997 More focused on passivity and recursive approaches
- Nonlinear control systems A. Isidori Springer Verlag, 1995 A reference for geometric approach
- Applied Nonlinear control J.J. Slotine and W. Li Prentice-Hall, 1991 An interesting reference in particular for sliding mode
- "Research on Gain Scheduling" W.J. Rugh and J.S. Shamma -Automatica, 36 (10):1401–1425, 2000
 "Survey of gain scheduling analysis and design" - D.J. Leith and W.E. Leithead - Int. Journal of Control, 73:1001–1025, 1999
 Surveys on Gain Scheduling, The second reference can be downloaded at: http://citeseer.ist.psu.edu/leith99survey.html

Nonlinear Control

UTLINE

Nonlinear Control

N Marchand

Outline

Linear/Nonlinear

Linearization Gain scheduling

Sliding mode

Introduction

- Linear versus nonlinear
- The X4 example

approaches

Linear control methods for nonlinear systems

- Antiwindup
- I inearization
- Gain scheduling

Stability

- 4 Nonlinear control methods
 - Control Lyapunov functions
 - Sliding mode control
 - State and output linearization
 - Backstepping and feedforwarding
 - Stabilization of the X4 at a position

Observers

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Introduction

- Linear versus nonlinear
- The X4 example
- ; 🛛 🗋
 - Linear control methods for nonlinear systems
 - Antiwindup
 - Linearization
 - Gain scheduling

Stability

- Nonlinear control methods
 - Control Lyapunov functions
 - Sliding mode control
 - State and output linearization
 - Backstepping and feedforwarding
 - Stabilization of the X4 at a position

Observers

Nonlinear Control

OUTLINE

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

• Some preliminary vocable and definitions

- What is control ?
- A very **short review of the linear case** (properties, design of control laws, etc.)

INTRODUCTION

- Why nonlinear control ?
- Formulation of a nonlinear control problem (model, representation, closed-loop stability, etc.)?
 - Some strange possible behaviors of nonlinear systems
- Example : The X4 helicopter

OUTLINE

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Introduction

Linear versus nonlinear

- The X4 example
- Linear control methods for nonlinear system
 - Antiwindup
 - Linearization
 - Gain scheduling

Stability

- Nonlinear control methods
 - Control Lyapunov functions
 - Sliding mode control
 - State and output linearization
 - Backstepping and feedforwarding
 - Stabilization of the X4 at a position

Observers

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Some preliminary vocable

• We consider a dynamical system:

where:

- *y* is the **output**: represents what is "visible" from outside the system
- x is the **state** of the system: characterizes the state of the system
- *u* is the **control input**: makes the system move

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

The 4 steps to control a system

Modelization

- To get a mathematical representation of the system
- Different kind of model are useful. Often:
 - a simple model to build the control law
 - a sharp model to check the control law and the observer
- Obesign the state reconstruction: in order to reconstruct the variables needed for control
- Oesign the control and test it
- Close the loop on the real system

N. Marchand (gipsa-lab)

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatic

Observers

Linear dynamical systems

Some properties of linear system (1/2)

Definition: Systems such that if y₁ and y₂ are the outputs corresponding to u₁ and u₂, then ∀λ ∈ ℝ: y₁ + λy₂ is the output corresponding to u₁ + λu₂
Representation near the operating point:
Transfer function:

y(s) = h(s)u(s)

• State space representation:

$$\begin{cases} \dot{x} = Ax + Bu\\ y = Cx(+Du) \end{cases}$$

- The model can be obtained
 - **physical modelization** (eventually coupled with identification)
 - identification (black box approach)
 - both give h(s) or (A, B, C, D) and hence the model.

N. Marchand (gipsa-lab)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear

The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Linear dynamical systems

Some properties of linear system (2/2)

$$\begin{cases} \dot{x} = Ax + Bu\\ y = Cx(+Du) \end{cases}$$

• Nice properties:

- Unique and constant equilibrium
- Controllability (resp. observability) directly given by rank(B, AB, ..., Aⁿ⁻¹B) (resp. rank(C, CA, ..., CAⁿ⁻¹))
- Stability directly given by the poles of h(s) or the eigenvalues of A (asymptotically stable $\Re < 0$)
- Local properties = global properties (like stability, stabilizability, etc.)
- The time behavior is independent of the initial condition
- Frequency analysis is easy
- Control is easy: simply take u = Kx with K such that $\Re(\operatorname{eig}(A + BK)) < 0$, the closed-loop system $\dot{x} = Ax + BKx$ will be asymptotically stable
- • •
- Mathematical tool: linear algebra
- This is a caricature of the reality (of course problems due to uncertainties, delays, noise, etc.)

N. Marchand (gipsa-lab)

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Why nonlinear control ?

Why nonlinear control if linear control is so easy ?

• All physical systems are nonlinear because of

- Actuators saturations
- Viscosity (proportional to speed²)
- Sine or cosine functions in robotics
- Chemical kinetic in exp(temperature)
- Friction or hysteresis phenomena

• ...

- More and more the performance specification requires nonlinear control (eg. automotive)
- More and more controlled systems are deeply nonlinear (eg. μ-nano systems where hysteresis phenomena, friction, discontinuous behavior)
- Nonlinear control is sometimes necessary (oscillators, cyclic systems, ...)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Nonlinear dynamical systems

How to get a model ?

• Representation:

• State space representation:

ODE Ordinary differential equation:

In this course, only:

$$\dot{x}(t) = f(x(t), u(t))$$

 $y(t) = h(x(t), u(t))$

PDE Partial differential equation (traffic, flow, etc.):

$$0 = g(x(t), \dot{x}(t), \frac{\partial f(x,...)}{\partial x}u(t))$$

$$0 = h(y(t), x(t), u(t))$$

- ... Algebraic differential equations (implicit), hybrid (with discrete or event based equations), etc.
- The model can be obtained
 - **physical modelization** and then nonlinear identification of the parameters (identifiability problems)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Nonlinear dynamical systems

Open-loop control versus closed-loop control ?

Open-loop control

find	u(t)	such that	$\lim_{t\to\infty}$	y(t)	$-y_d(t)\ $	= 0
------	------	-----------	---------------------	------	-------------	-----

Widely used for path planning problems (robotics)

Closed-loop control

find u(x) such that $\lim_{t\to\infty} \|y(t) - y_d(t)\| = 0$

Better because closed loop control can stabilize systems and is robust w.r.t. perturbation.

In this course

Only closed-loop control problems are treated

N. Marchand (gipsa-lab)

Nonlinear Control

Nonlinear

Control

N Marchand

Nonlinear dynamical systems

Aim of control ?

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Tracking	prob	lem
----------	------	-----

find u(x) such that $\lim_{t\to\infty}\|x(t)-x_{d}(t)\|=0$

Stabilization problem

find u(x) such that $\lim_{t\to\infty} ||x(t) - x_d(t)|| = 0$ for $x_d(t) = constant$

Null stabilization problem

find u(x) such that $\lim_{t\to\infty} ||x(t) - x_d(t)|| = 0$ for $x_d(t) = 0$

In any cases, a null stabilization problem of $z(t) = y(t) - y_d(t)$

In this course

Only the stabilization problem will be treated.

N. Marchand (gipsa-lab)

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatior

Observers

Some strange behaviors of nonlinear systems The undersea vehicle

• **Simplified model** of the undersea vehicle (in one direction):

$$\dot{v}(t) = -v |v| + u$$

• Step answer:

No proportionality between the input and the output

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approache

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatic

Observers

Some strange behaviors of nonlinear systems The Van der Pol oscillator (1/2)

• Van der Pol oscillator

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = -x_1 - \varepsilon h(x_1) x_2 \end{cases}$$

with $h(x_1) = -1 + x_1^2$

• Oscillations: ε tunes the limit cycle

N. Marchand (gipsa-lab)

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatic

Some strange behaviors of nonlinear systems The Van der Pol oscillator (2/2)

• Oscillations: stable limit cycles, fast dynamics

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLE

Sliding mode Geometric

control

Recursive

X4 stabilizati

Some strange behaviors of nonlinear systems The tunnel diode (1/2)

• The tunnel diode model

 $C\frac{dV_C}{dt} + i_R = i_L$ $E - Ri_L = V_C + L\frac{di_L}{dt}$ $i_R = h(v_R)$

• It gives:

$$\dot{x}_1(t) = \frac{1}{C}(-h(x_1) + x_2) \dot{x}_2(t) = \frac{1}{L}(-x_1 - Rx_2 + u)$$

with $x_1 = v_C$, $x_2 = i_L$ and u = E

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatic

Observers

Some strange behaviors of nonlinear systems The tunnel diode (2/2)

• The tunnel diode behavior: bifurcation with:

 $i_R = 17.76v_R - 103.79v_R^2 + 229.62v_R^3 - 226.31v_R^4 + 83.72v_R^5$

N. Marchand (gipsa-lab)

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Some strange behaviors of nonlinear systems $${\rm The\ car\ parking}$$

• The car parking simplified model

\dot{x}_1	=	u_1
\dot{x}_2	=	<i>u</i> ₂
x ₃	=	<i>x</i> ₂ <i>u</i>

• System with a misleading simplicity

Theorem (Brockett (83))

There is no $(u_1(x),u_2(x))$ continuous w.r.t. x such that x is asymptotically stable

• In practice:

- manoeuvres
- discontinuous control
- time-varying control

archand and Alam

N. Marchand (gipsa-lab)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatior

Observers

Nonlinear dynamical systems

Everything is possible

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x, u) \end{cases}$$

• Everything is possible:

- Equilibrium can be unique, multiple, infinite or even not exist
- **Controllability** (resp. **observability**) are very hard to prove (it is often even not checked)
- Stability may be hard to prove
- Local properties \neq global properties (like stability, stabilizability, etc.)
- The time behavior is depends upon the initial condition
- Frequency analysis is almost impossible
- No systematic approach for building a control law: to each problem corresponds it unique solution
- • •
- Mathematical tool: Lyapunov and differential tools

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

.....

- IntroductionLinear versus nonlinear
- The X4 example
- Linear control methods for nonlinear system

)UTLINE

- Antiwindup
- Linearization
- Gain scheduling

Stability

- Nonlinear control methods
 - Control Lyapunov functions
 - Sliding mode control
 - State and output linearization
 - Backstepping and feedforwarding
 - Stabilization of the X4 at a position

Observers

Nonlinear Control

Master PSPI 2009-2010 22 / 174

N. Marchand (gipsa-lab)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

The X4 helicopter

How it works ?

• 4 fixed rotors with controlled rotation speed *s_i*

Nonlinear Control

- Nonlinear Control
- N. Marchand
- References
- Outline
- Introduction
- Linear/Nonlinear The X4 example
- Linear approach
- Antiwindup Linearization Gain scheduling
- Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

The X4 helicopter

How it works ?

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

The X4 helicopter

How it works ?

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter

How it works ?

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

$$\Gamma_r = I(F_4 - F_2)$$

Nonlinear Control

N. Marchand

Reference

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

The X4 helicopter

How it works ?

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

 $\Gamma_r = I(F_4 - F_2)$

 Pitch movement generated with a dissymmetry between front and rear forces:

$$\Gamma_p = I(F_1 - F_3)$$

N. Marchand

Reference

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter

How it works ?

- 4 fixed rotors with controlled rotation speed *s_i*
- 4 generated forces F_i
- 4 counter-rotating torques Γ_i
- Roll movement generated with a dissymmetry between left and right forces:

 $\Gamma_r = I(F_4 - F_2)$

 Pitch movement generated with a dissymmetry between front and rear forces:

 $\Gamma_{p} = I(F_1 - F_3)$

• Yaw movement generated with a dissymmetry between front/rear and left/right torques:

$$\Gamma_y = \Gamma_1 + \Gamma_3 - \Gamma_2 - \Gamma_4$$

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

The X4 helicopter

Building a model (1/3)

• Electrical motor: A 2nd order system with friction and saturation usually *approximated* by a 1^{rst} order system:

$$\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\text{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i) \quad i \in \{1, 2, 3, 4\}$$
(1)

- s_i: rotation speed
- U_i : voltage applied to the motor; real control variable
- τ_{load} : motor load: $\tau_{load} = k_{gearbox} \kappa |s_i| s_i$ with κ drag coefficient
- Aerodynamical forces and torques: Very complex models exist

N. Marchand (gipsa-lab)

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter

Building a model (1/3)

• Electrical motor: A 2nd order system with friction and saturation usually *approximated* by a 1^{rst} order system:

$$\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\text{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i) \quad i \in \{1, 2, 3, 4\}$$
(1)

s_i: rotation speed

 U_i : voltage applied to the motor; real control variable

 τ_{load} : motor load: $\tau_{load} = k_{gearbox} \kappa |s_i| s_i$ with κ drag coefficient

• Aerodynamical forces and torques: Very complex models exist but overcomplicated for control, better use the *simplified* model:

$$\begin{array}{rcl} F_{i} &=& bs_{i}^{2} \\ \Gamma_{r} &=& lb(s_{4}^{2}-s_{2}^{2}) \\ \Gamma_{p} &=& lb(s_{1}^{2}-s_{3}^{2}) \\ \Gamma_{y} &=& \kappa(s_{1}^{2}+s_{3}^{2}-s_{2}^{2}-s_{4}^{2}) \end{array} \qquad (2)$$

b: thrust coefficient, κ: drag coefficient

N. Marchand (gipsa-lab)

Nonlinear Control

- N. Marchand
- References
- Outline
- Introduction
- Linear/Nonlinear The X4 example
- Linear approaches
- Antiwindup Linearization Gain scheduling
- Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

The X4 helicopter

Building a model (2/3)

- Two frames
 - a fixed frame $E(\vec{e}_1, \vec{e}_2, \vec{e}_3)$
 - a frame attached to the X4 $T(\vec{t}_1, \vec{t}_2, \vec{t}_3)$
- Frame change
 - a rotation matrix R from T to E
 - State variables:
 - Cartesian coordinates (in E)
 - position **p**
 - velocity \vec{v}
 - Attitude coordinates:
 - angular velocity $\vec{\omega}$ in the moving frame T
 - *either:* Euler angles three successive rotations about \vec{t}_3 , \vec{t}_1 and \vec{t}_3 of angles angles ϕ , θ and ψ giving R
 - or: Quaternion representation $(q_0, \vec{q}) = (\cos \beta/2, \vec{u} \sin \beta/2)$ represent a rotation of angle β about \vec{u}

N. Marchand (gipsa-lab)

Nonlinear Control

The X4 helicopter

Building a model (3/3)

• Cartesian coordinates:

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF

Sliding mode Geometric control Recursive techniques

X4 stabilization

Observers

$\begin{cases} \dot{\vec{p}} = \vec{v} \\ m\vec{v} = -mg\vec{e}_3 + R(\sum_i F_i(s_i)\vec{t}_3) \end{cases}$ (3)

• Attitude:

• Euler angles formalism:

$$\begin{cases} \dot{R} = R\vec{\omega}^{\times} & \text{with } \vec{\omega}^{\times} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix}$$
(4)

$\vec{\omega}^{\times}$ is the skew symmetric tensor associated to $\vec{\omega}$ $\bullet\,$ Quaternion formalism:

$$\begin{cases} \dot{\vec{q}} = \frac{1}{2}\Omega(\vec{\omega})q & \\ & = \frac{1}{2}\Xi(q)\vec{\omega} & \text{with} \\ \dot{J}\dot{\vec{\omega}} = -\vec{\omega}^{\times}J\vec{\omega} + \Gamma_{\text{tot}} & \\ \end{cases} \begin{cases} \Omega(\vec{\omega}) = \begin{pmatrix} 0 & -\vec{\omega}^{T} \\ \vec{\omega} & -\vec{\omega}^{\times} \end{pmatrix} \\ \Xi(q) = \begin{pmatrix} -\vec{q}^{T} \\ l_{h_{x3}q_{0}} + \vec{q}^{\times} \end{pmatrix} \end{cases}$$
(5)

where
$$\Gamma_{\text{tot}} = \underbrace{-\sum_{i} I_{r} \vec{\omega}^{\times} \vec{t}_{3} s_{i}}_{I_{r}} + \Gamma_{pert} + \begin{pmatrix} \Gamma_{r}(s_{2}, s_{4}) \\ \Gamma_{p}(s_{1}, s_{3}) \\ \Gamma_{y}(s_{1}, s_{2}, s_{3}, s_{4}) \end{pmatrix}$$

gyroscopic torque

N. Marchand (gipsa-lab)

Nonlinear Control

The X4 helicopter

Review of the nonlinearities

In red: the nonlinearities In blue: where the control variables act

Observers

Sliding mode

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter

Identification of the parameters

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- \overline{U}_i is found on the data-sheet of the motor (damage avoidance)
- Aerodynamical parameters: *b* and κ
- **b** and κ measured with specific test beds,

N. Marchand (gipsa-lab)

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter

Identification of the parameters

• Electrical motor:

- For small input steps, the system behaves very close to a **linear** first order system
- Hence, use linear identification tools
- *U_i* is found on the data-sheet of the motor (damage avoidance)
- Aerodynamical parameters: *b* and κ

b and κ measured with specific test beds, depends upon temperature, distance from ground, etc.

• Mechanical parameters:

- I length of an arm of the helicopter, easy to measure
- m total mass of the helicopter, easy to measure
- J body inertia, hard to have precisely
- I_r rotor inertia, hard to have precisely

The X4 helicopter

Values of the parameters

Nonlinear Control

• Motor parameters:

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

```
Linear
approache
```

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches
CLF
Sliding mode
Geometric
control
Pocurcino

techniques

X4 stabilization

Observers

parameter	description	value	unit
k _m	motor constant	$4.3 imes 10^{-3}$	N.m/A
J _r	rotor inertia	$3.4 imes10^{-5}$	J.g.m ²
R	motor resistance	0.67	Ω
k _{gearbox}	gearbox ratio	$2.7 imes10^{-3}$	-
\bar{U}_i	maximal voltage	12	V

• Aerodynamical parameters:

parameter	description	value	
b	thrust coefficient	$3.8 imes10^{-6}$	
к	drag coefficient	$2.9 imes10^{-5}$	

• Body parameters:

parameter	description	value	unit
		$(14.6 \times 10^{-3} 0 0)$	
J	inertia matrix	$0 7.8 imes 10^{-3} 0$	kg.m ²
		$\begin{pmatrix} 0 & 0 & 7.8 \times 10^{-3} \end{pmatrix}$	
т	mass of the UAV	0.458	kg
1	radius of the UAV	22.5	cm
g	gravity	9.81	m/s^2

N. Marchand (gipsa-lab)

Nonlinear Control

Monlinear

The X4 helicopter

Open-loop behavior with roll initial speed

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 30 / 174

Open-loop behavior with pitch initial speed

Observers

N. Marchand (gipsa-lab)

Open-loop behavior with yaw initial speed

Nonlinear Control
N. Marchand
References
Outline
Introduction Linear/Nonlinear The X4 example
Linear approaches Antiwindup Linearization Gain scheduling
Stability
Nonlinear approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 32 / 174

Open-loop behavior with roll and yaw initial speed

Nonlinear Control
N. Marchand
References
Outline
Introduction Linear/Nonlinear The X4 example
Linear approaches Antiwindup Linearization Gain scheduling
Stability
Nonlinear approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilization

N. Marchand (gipsa-lab)

Open-loop behavior with pitch and yaw initial speed

Nonlinear Control
N. Marchand
References
Outline
Introduction Linear/Nonlinear The X4 example
Linear approaches Antiwindup Linearization Gain scheduling
Stability
Nonlinear approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilization

N. Marchand (gipsa-lab)

N Marchand

Linear/Nonlinear

Linear approaches

Antiwindup Linearization Gain scheduling

Sliding mode

Linear versus nonlinear

The X4 example

I inearization

Antiwindup

Gain scheduling

- Control Lyapunov functions
- Sliding mode control
- State and output linearization
- Stabilization of the X4 at a position

Linear control methods for nonlinear systems

N. Marchand (gipsa-lab)

Nonlinear Control

UTLINE

Master PSPI 2009-2010 35 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

OUTLINE

Introduction

- Linear versus nonlinear
- The X4 example

2 Linear control methods for nonlinear systems

Antiwindup

- Linearization
- Gain scheduling

Stability

Nonlinear control methods

- Control Lyapunov functions
- Sliding mode control
- State and output linearization
- Backstepping and feedforwarding
- Stabilization of the X4 at a position

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 36 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Linear systems with saturated inputs Impact of input saturations on the control of the X4's rotors (1/4)

• We go back to the X4 example and focus on the rotors:

$$\left\{\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{1}{J_r} \tau_{\text{load}} + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)\right\}$$

• If one wants to **act on the X4 with desired forces** F_i^d , it is necessary to be able to **set the rotors speeds** s_i **to** s_i^d with

$$s_i^d = \sqrt{rac{1}{b}F_i^d}$$

- A usual way to control the electrical motor consist in
 - taking τ_{load} as un unknown load
 - neglecting the voltage limitations \bar{U}_i

N. Marchand

References

Outline

Introduction

Linear/Nonlinea The X4 example

Linear approaches

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Linear systems with saturated inputs Impact of input saturations on the control of the X4's rotors (2/4)

• The so obtained system is linear

$$\frac{s_i(s)}{J_i(s)} = \frac{\frac{1}{k_m}}{1 + \frac{J_r R}{k_m^2}s} = \frac{G}{1 + \tau s}$$

• Define a **PI controller** for it:

$$C(s) = K_p + \frac{K_i}{s}$$

• Taking $K_i = \frac{1}{\tau_{CL}G}$ and $K_p = \tau K_i$, the closed loop system is:

$$\frac{s_i(s)}{U_i(s)} = \frac{1}{1 + \tau_{CL}s}$$

N. Marchand (gipsa-lab)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

approaches Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode

Geometric

Recursive

techniques

Observers

Linear systems with saturated inputs

Impact of input saturations on the control of the X4's rotors (3/4)

- Make a step that **compensates the weight**, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum_i F_i^d = mg$
- Taking $\tau_{CL} = 50$ ms, one gets with saturations

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 39 / 174

Linear systems with saturated inputs

Saturation may cause instability

• The result could be worse:

• For $u \in [-1.2, 1.2]$, the closed-loop behavior is:

• Saturations may lead to instability especially in the presence of integrators in the loop

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 40 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Linear systems with saturated inputs Key idea of the anti-windup scheme

• Consider a linear system with a PID controller:

- The instability comes from the **integration** of the error
- Key idea: soften the integral effect when the control is saturated

Nonlinear Control

Master PSPI 2009-2010 41 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Linear systems with saturated inputs

PID controller with anti-windup

• Structure of the PID controller with anti-windup:

- If $u = \bar{u}$, that is if u is not saturated, then the PID controller with anti-windup is identical to the classical PID controller
- If u is saturated $(u \neq \bar{u})$, K_s tunes the reduction of the integral effect of the PID

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

Linear systems with saturated inputs

General controller with anti-windup

• Structure of the general dynamic controller:

• with dynamics given by:

$$\begin{cases} \dot{x}_c = Fx_c + Ge \\ u = Cx_c + De \end{cases}$$

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approach

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Linear systems with saturated inputs

General controller with anti-windup

• Anti-windup structure of the general dynamic controller:

• with dynamics given by:

$$\dot{x}_c = Fx_c + Ge + K(u - Cx_c - De)$$

=
$$(F - KC)x_c + (G - KD)e + Ku$$

Choice of the antiwindup parameters

Take K such that (F - KC) is stable and $|\lambda_{\max}(F - KC)| > |\lambda_{\max}(F)|$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 44 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Linear systems with saturated inputs

A short Lyapunov explanation of the behavior

- Consider a **stable closed loop linear system**: it is globally asymptotically stable. A **saturation on the input** may:
 - transform the global stability into local stability. In this case, the aim of the anti-windup is to increase the radius of attraction of the closed loop system
 - keep the global stability property. In this case, the aim of the anti-windup is to renders the saturated system closer to its unsaturated equivalent
- However, there is **no formal proof of stability** of anti-windup strategies

Other approaches for saturated inputs

- Optimal control
- Nested saturation function (under development)

Linear systems with saturated inputs

Back to the unstable case

- N. Marchand
- References
- Outline
- Introduction
- Linear/Nonlinear The X4 example
- Linear approaches
- Antiwindup
- Linearization Gain scheduling
- Stability

Nonlinear

- CLF Sliding mode Geometric control
- Recursive techniques
- X4 stabilizatio

Observers

• The closed-loop behavior is:

The unstable case:

• However, nothing is magic and divergent behavior may occur because of the level of the step input

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

approaches

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

approaches

Sliding mode Geometric

Recursive

techniques

X4 stabilizatio

Observers

Linear systems with saturated inputs

Impact of input saturations on the control of the X4's rotors (4/4)

- Make a step that **compensates the weight**, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum_i F_i^d = mg$
- Taking $\tau_{CL} = 50$ ms, one gets with anti-windup

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 47 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Introduction

- Linear versus nonlinear
- The X4 example

Linear control methods for nonlinear systems

- Antiwindup
- Linearization
- Gain scheduling

Stability

Nonlinear control methods

- Control Lyapunov functions
- Sliding mode control
- State and output linearization
- Backstepping and feedforwarding
- Stabilization of the X4 at a position

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 48 / 174

- Nonlinear Control
- N. Marchand
- References
- Outline
- Introduction
- Linear/Nonlinear The X4 example
- Linear
- approaches
- Antiwindup
- Linearization Gain scheduling
- · · · · ·

Nonlinear

- approaches
- CLF Sliding mode Geometric
- Recursive
- techniques
- X4 stabilization
- Observers

Linearization of nonlinear systems

Impact of the load on the control of the X4's rotors

Make a step that compensates the weight, that is such that s^d_i = √ mg/4b so that Σ_i F^d_i = mg
Taking τ_{CL} = 50 ms, one gets with load

• The PI controller seems badly tuned: for t > 1.3 s, the control is not saturated but the convergence is very slow. What's wrong ?

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 49 / 174

- N. Marchand
- References
- Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Linearization of nonlinear systems Impact of the load on the control of the X4's rotors

• Back to the rotor dynamical equation:

$$\dot{s}_{i} = -\frac{k_{m}^{2}}{J_{r}R}s_{i} - \frac{k_{gearbox}\kappa}{J_{r}}\left|s_{i}\right|s_{i} + \frac{k_{m}}{J_{r}R}\operatorname{sat}_{\bar{U}_{i}}(U_{i})$$

 Taking τ_{load} as unknown implies that the PI control law was tuned for:

$$\dot{s}_i = -rac{k_m^2}{J_r R} s_i + rac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)$$

Implicitly, the second order terms were neglected
 Unfortunately, these two systems behave similarly iff s_i is small, which is not the case for s^d_i = √(mg/4b) ≈ 544 rad s⁻¹

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup

Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Linearization of nonlinear systems

Linearization at the origin

Linearization at the origin

Take a nonlinear system

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x, u) \end{cases}$$

with f(0,0) = 0. Then, near the origin, it can be approximated by its linear Taylor expansion at the first order:

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 51 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization

Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Linearization of nonlinear systems

Linearization at a point

Linearization at a point

Take a nonlinear system

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x, u) \end{cases}$$

then, near the equilibrium point (x_0, u_0) , it can be approximated by its linear Taylor expansion at the first order:

which is linear in the variables $\tilde{x} = x - x_0$ and $\tilde{u} = u - u_0$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 52 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Linearization of nonlinear systems

Some properties of the linearization

Controllability properties

Take a nonlinear system

$$\dot{x} = f(x, u) \tag{6}$$

and its linearization at (x_0, u_0) :

$$\dot{\tilde{x}} = A\tilde{x} + B\tilde{u} \tag{7}$$

- If (7) is controllable then (6) is locally controllable
- Nothing can be concluded if (7) is uncontrollable

Example

The car is controllable but not its linearization

$$\begin{array}{rcl} \dot{x}_1 &=& u_1 \\ \dot{x}_2 &=& u_2 \\ \dot{x}_3 &=& x_2 u_1 \end{array} \xrightarrow{\Rightarrow} \\ \end{array}$$

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 53 / 174

 u_2)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Linearization of nonlinear systems

Some properties of the linearization

Stability properties

Take a nonlinear system

$$\dot{x} = f(x, u) \tag{8}$$

and its linearization at (x_0, u_0) :

$$\dot{\tilde{x}} = A\tilde{x} + B\tilde{u} \tag{9}$$

Assume that one can build a feedback law $\tilde{u} = k(\tilde{x})$ so that:

- (9) is asymptotically stable (ℜ < 0): then (8) is locally asymptotically stable with u = u₀ + k(x̃)
- (9) is unstable $(\Re > 0)$: then (8) is locally unstable with $u = u_0 + k(\tilde{x})$
- Nothing can be concluded if (9) is simply stable $(\mathfrak{R} \leq 0)$

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

approaches

Antiwindup Linearization

Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode Geometric control Recursive techniques

A4 stabilizatio

Observers

Linearization of nonlinear systems

Impact of the load on the control of the X4's rotors

• Back to the rotor dynamical equation:

$$\dot{s}_i = -\frac{k_m^2}{J_r R} s_i - \frac{k_{gearbox} \kappa}{J_r} |s_i| s_i + \frac{k_m}{J_r R} \operatorname{sat}_{\bar{U}_i}(U_i)$$

• Define U_i^d , the constant control that keeps the steady state speed:

$$U_{i}^{d} = k_{m}s_{i}^{d} + \frac{Rk_{gearbox}\kappa}{k_{m}}\left|s_{i}^{d}\right|s_{i}^{d}$$

• The linearization of the rotor dynamics near s_i^d gives:

$$\dot{\tilde{s}}_{i} = -\left(\frac{k_{m}^{2}}{J_{r}R} + \frac{2k_{gearbox}\kappa}{J_{r}}\left|s_{i}^{d}\right|\right)\tilde{s}_{i} + \frac{k_{m}}{J_{r}R}\tilde{\operatorname{sat}}_{\bar{U}_{i}}(\tilde{U}_{i})$$

$$\begin{split} \tilde{U}_i &= U_i - U_i^d \\ \tilde{s}_i &= s_i - s_i^d \\ \tilde{sat}_{\bar{U}_i}(\tilde{U}_i) &= \begin{cases} \tilde{U}_i & \text{ if } U_i \in [-\bar{U}_i, +\bar{U}_i] \\ \bar{U}_i & \text{ if } U_i \geq \bar{U}_i \\ -\bar{U}_i & \text{ if } U_i \geq -\bar{U}_i \end{cases} \end{split}$$

N. Marchand (gipsa-lab)

with:

Nonlinear Control

Master PSPI 2009-2010 55 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

approaches

Antiwindup

Linearization

Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode Geometric

control

Recursive

techniques

Observers

Linearization of nonlinear systems

Impact of the load on the control of the X4's rotors

- Make a step that **compensates the weight**, that is such that $s_i^d = \sqrt{\frac{mg}{4b}}$ so that $\sum_i F_i^d = mg$
- Taking $\tau_{CL} = 50$ ms and a PI controller tuned at s_i^d on the system with load, one has:

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 56 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization

Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Introduction

- Linear versus nonlinear
- The X4 example

Linear control methods for nonlinear systems

- Antiwindup
- Linearization
- Gain scheduling

Stability

Nonlinear control methods

- Control Lyapunov functions
- Sliding mode control
- State and output linearization
- Backstepping and feedforwarding
- Stabilization of the X4 at a position

Observers

Nonlinear Control

N. Marchand (gipsa-lab)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization

Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control

Recursive techniques

X4 stabilization

Observers

Towards gain scheduling

Impact of a change in the steady state speed of the X4's rotors

- Take again $\tau_{CL} = 50$ ms and a PI controller tuned at s_i^d
- Make speed steps of different level

range of use

N. Marchand (gipsa-lab)

Master PSPI 2009-2010 58 / 174

Towards gain scheduling

Local linearization may be inadequate for large excursion

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode Geometric control Recursive

X4 stabilization

Observers

The result could be worse:

• Take the inverted pendulum

 $\begin{pmatrix} \ddot{\theta} \\ \ddot{y} \end{pmatrix} = \frac{1}{\Delta(\theta)} \begin{pmatrix} m+M & -ml\cos\theta \\ -ml\cos\theta & l+ml^2 \end{pmatrix} \begin{pmatrix} mg/\sin\theta \\ u+ml\theta^2\sin\theta-k\dot{y} \end{pmatrix}$

where

- *I* is the inertia of the pendulum
- $\Delta(\theta) = (I + mI^2)(m + M) m^2I^2\cos^2\theta$
- Linearize it near the upper position ($\theta = 0$) with m = M = I = g = 1, k = 0 and $x = (\theta, \dot{\theta}, y, \dot{y})$:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{2}{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{1}{3} & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} + \begin{pmatrix} 0 \\ -\frac{1}{3} \\ 0 \\ \frac{2}{3} \end{pmatrix} u$$

Nonlinear Control

N. Marchand (gipsa-lab)

N. Marchand

Towards gain scheduling

Local linearization may be inadequate for large excursion

- $\bullet\,$ Build a linear feedback law that places the poles at -1
- Starting from $\theta(0) = \pi/5$, it converges, from $\theta(0) = 1.1 \times \pi/5$, it diverges

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 60 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Towards gain scheduling

- For some systems, **the radius of attraction** of a stabilized linearization **may be very small** (less than one degree on the double inverted pendulum for instance)
- Linearization is not suitable for large range of use of the closed-loop system
 - For other systems, the controller **must be very finely tuned** in order to meet performance requirements (e.g. automotive with more and more restrictive pollution standards)
- Linearization is not suitable for high accuracy closed loop systems
 - Either for stability reasons or performance reasons, it may be necessary to tune the controller at more than one operating point

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Towards gain scheduling

• Gain scheduling uses the idea of using a collection of linearization of a nonlinear system at different operating points

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 62 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Gain scheduling

• Take a nonlinear system

$$\dot{x} = f(x, u)$$

• Define a family of equilibrium points

 $s = (x_{eq}, u_{eq})$ such that $f(x_{eq}, u_{eq}) = 0$

• At each point *s*, linearize the system assuming *s* is constant:

 $\dot{\tilde{x}} = A(s)\tilde{x} + B(s)\tilde{u}$ with $\tilde{x} = x - x_{eq}$ and $\tilde{u} = u - u_{eq}$

$$\begin{split} u &= u_{eq}(s) - K(s)(x - x_{eq}(s)) \\ \text{with } \Re(\text{Eig}(A(s) - B(s)K(s))) < 0 \end{split}$$

N. Marchand (gipsa-lab)

Master PSPI 2009-2010 63 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Gain scheduling

- The controller is then obtained by changing *s* in the a priori defined collection of points
- The change of *s* can be done discontinuously or continuously by interpolation

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 64 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatior

Observers

Gain scheduling

- Drawbacks of gain scheduling :
 - X Convergence only if s varies slowly
 - X The performance within a linearization area may be poor
 - The mapping may be prohibitive if the number of states is large
 - X The stability issues are not clear
- Recent evolution of gain scheduling:
 - Dynamic gain scheduling: improve the transition between the different controllers, limits the importance of the slow motion of *s*
 - LPV: Linear parameter varying methods considers the nonlinear system as

$$\dot{x} = A(\rho(x))x + B(\rho(x))u$$

and, under some conditions, uses LMI to build a feedback. Improves the performance within a linearization area.

Nonlinear

Control

N Marchand

Gain scheduling

Handling changes in the steady state speed of the X4's rotors

- Take again $\tau_{CL} = 50$ ms and a PI controller tuned at s_i
 - Make speed steps of different level

References Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization

Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive

techniques

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 66 / 174

N Marchand

References

Linear/Nonlinear

Antiwindup Linearization

Sliding mode

STABILITY

- Linear versus nonlinear
- The X4 example

approaches

Gain scheduling

Stability

- Antiwindup
- I inearization
- Gain scheduling

Stability

- Control Lyapunov functions
- Sliding mode control
- State and output linearization
- ۲
- Stabilization of the X4 at a position

Nonlinear Control

Master PSPI 2009-2010 67 / 174

Stability

 $\dot{x} = f(x, u(x)) = g(x)$

Consider the autonomous nonlinear system:

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatior

Observers

System (10) is said to be **stable** at the origin iff: $\forall R > 0, \exists r(R) > 0$ such that $\forall x_0 \in \mathcal{B}(r(R)), x(t;x_0)$, solution of (10) with x_0 as initial condition, remains in $\mathcal{B}(R)$ for all t > 0.

Attractivity

Stability

The origin is said to be **attractive** iff: $\lim_{t\to\infty} x(t; x_0) = 0.$

Asymptotic stability

System (10) is said to be **asymptotically stable** at the origin iff it is stable and attractive

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 68 / 174

(10)

Stability

Graphical interpretation

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

- For linear systems: Attractivity \rightarrow Stability
- - Stability and attractivity : properties hard to check ?

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Asymptotic stability and local linearizaton

- Consider $\dot{x} = g(x)$ and its linearization at the origin
- $\dot{x} = \left. \frac{\partial g}{\partial x} \right|_{x=0} x$. Then:
 - Linearization with eig< 0 \rightleftarrows Nonlinear system is locally asymptotically stable

Stability Using the linearization

- Linearization with eig= 0: nothing can be concluded on the nonlinear system (may be stable or unstable)

Only local conclusions

Stability

Lyapunov theory: Lyapunov functions

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Aleksandr Mikhailovich Lyapunov

Markov's school friend, Chebyshev's student

Master Thesis : On the stability of ellipsoidal forms of equilibrium of a rotating liquid in 1884 Phd Thesis : The general problem of the stability of motion in 1892

6 June 1857 - 3 Nov 1918

Definition: Lyapunov function

Let $V : \mathbb{R}^n \to \mathbb{R}$ be a continuous function such that:

- (definite) $V(x) = 0 \Leftrightarrow x = 0$
- (positive) $\forall x, V(x) \ge 0$
- (radially unbounded) $\lim_{\|x\|\to\infty} V(x) = +\infty$

Lyapunov functions are energies

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Stability

Lyapunov theory: Lyapunov theorem

Aleksandr Mikhailovich Lyapunov

Markov's school friend, Chebyshev's student

Master Thesis : On the stability of ellipsoidal forms of equilibrium of a rotating liquid in 1884 Phd Thesis : The general problem of the stability of motion in 1892

6 June 1857 - 3 Nov 1918

Theorem: (First) Lyapunov theorem

- If \exists a Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}^+$ s.t.
 - (strictly decreasing) V(x(t)) is strictly decreasing for all $x(0) \neq 0$

then the origin is asymptotically stable.

- If \exists a Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}^+$ s.t.
 - (decreasing) V(x(t)) is decreasing

then the origin is stable.

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

N. Marchand (gipsa-lab)

Stability

Lyapunov theorem: a graphical interpretation

Master PSPI 2009-2010 73 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

Stability Stability and robustness

$$\begin{split} \dot{x} &= g(x) \text{ stable } \Rightarrow \dot{V} = \frac{\partial V}{\partial x}g(x) < 0 \\ \Rightarrow \frac{\partial V}{\partial x}(g(x) + \varepsilon(x)) < 0 \\ \Rightarrow \dot{x} = g(x) + \varepsilon(x) \text{ stable} \end{split}$$

~ . .

Master PSPI 2009-2010 74 / 174

N Marchand

Linear/Nonlinear

Linearization Gain scheduling

Nonlinear

Sliding mode

UTLINE

- Linear versus nonlinear
- The X4 example

approaches

approaches

- Antiwindup
- I inearization
- Gain scheduling

- 4 Nonlinear control methods
 - Control Lyapunov functions
 - Sliding mode control
 - State and output linearization
 - Backstepping and feedforwarding
 - Stabilization of the X4 at a position

Nonlinear Control

Master PSPI 2009-2010 75 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

The X4 helicopter

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 76 / 174

N Marchand

References

Linear/Nonlinear

Antiwindup Linearization

CLE

Sliding mode

UTLINE

- Linear versus nonlinear
- The X4 example

approaches

Gain scheduling

Gain scheduling

Antiwindup I inearization

4 Nonlinear control methods

- Control Lyapunov functions
- Sliding mode control
- State and output linearization
- Stabilization of the X4 at a position

Nonlinear Control

Master PSPI 2009-2010 77 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approache

CLF

Sliding mode Geometric control Recursive techniques

Observers

Control Lyapunov functions Characterizing property (1/3)

- Control Lyapunov functions (CLF) where introduced in the 80's
- CLF are for controllability and control what Lyapunov functions are for stability
- Lyapunov: a tool for stability analysis of autonomous systems

Take

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& -x_1 - x_2 \end{array}$$

• Take the Lyapunov function

$$V(x) = \frac{3}{2}x_1^2 + x_1x_2 + x_2^2$$

• Along the trajectories of the system:

$$\dot{V}(x(t)) = \nabla V(x).f(x) = - ||x||^2$$

hence, $V \ge 0$ and the system is asymptotically stable

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 78 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF

Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Control Lyapunov functions Characterizing property (2/3)

- Control Lyapunov Functions: a tool for stabilization of controlled systems
 - Take now the controlled system

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& -x_1 + u \end{array}$$

• Take the Lyapunov function

$$V(x) = \frac{3}{2}x_1^2 + x_1x_2 + x_2^2$$

• Along the trajectories of the system:

$$\dot{V}(x(t), u(t)) = \nabla V(x) f(x, u)$$

= $-x_1^2 + x_1 x_2 + x_2^2 + (x_1 + 2x_2)u$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 79 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Control Lyapunov functions Characterizing property (3/3)

• Control Lyapunov Functions: a tool for stabilization of controlled systems

• Along the trajectories of the system:

$$\dot{V}(x(t), u(t)) = \nabla V(x) f(x, u)$$

= $-x_1^2 + x_1 x_2 + x_2^2 + (x_1 + 2x_2)u$

hence

- if $x_1 + 2x_2 \neq 0$, there exists *u* such that $V \searrow$
- otherwise (if $x_1 + 2x_2 = 0$)

$$\dot{V}(x(t), u(t)) = -4x_2^2 - 2x_2^2 + x_2^2 = -5x_2^2$$

which is negative unless $x_2 = 0 = -\frac{1}{2}x_1$: $V \searrow$

In conclusion: characterizing property of CLF

For any $x \neq 0$, there exists u such that $\dot{V}(x(t), u(t)) < 0$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 80 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Control Lyapunov functions

Formal definitions

Definition: Lyapunov function

- A continuous function $V: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is called a Lyapunov function if
 - [positive definiteness] V(x) ≥ 0 for all x and V(0) = 0 if and only if x = 0
 - 2 [radially unbounded] $\lim_{x\to\infty} V(x) = +\infty$

or:

- [positive definiteness] V(x) ≥ 0 for all x and V(0) = 0 if and only if x = 0
- **②** [proper] for each *a* ≥ 0, the set $\{x | V(x) \le a\}$ is compact or, alternatively:

 $(\exists \underline{\alpha}, \overline{\alpha} \in \mathcal{K}_{\infty}) \quad \underline{\alpha}(\|x\|) \leq V(x) \leq \overline{\alpha}(\|x\|) \quad \forall x \in \mathbb{R}^{n}$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 81 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Control Lyapunov functions

Formal definitions

Definition: Control Lyapunov Function

A differentiable control Lyapunov function denotes a differentiable Lyapunov function being *infinitesimally decreasing*, meaning that there exists a positive continuous definite function $W : \mathbb{R}^n \to \mathbb{R}_{>0}$ and such that:

 $\sup_{x \in \mathbb{R}^n} \min_{u \in \mathbb{R}^m} \nabla V(x) f(x, u) + W(x) \le 0$

- Roughly speaking a CLF is a Lyapunov function that one can force to decrease
- Extensions to nonsmooth CLF exist and are necessary for the class of system that can not be stabilized by means of smooth static feedback

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Control Lyapunov functions

Control affine systems

Definition: Directional Lie derivative

For any f and g with values in appropriate sets, the Lie derivative of g along f is defined by:

$$L_f g(x) := \nabla g(x) \cdot f(x)$$

Iteratively, one defines:

$$L_f^k g(x) := L_f L_f^{k-1} g(x)$$

Theorem

Consider a control affine system $\dot{x} = g_0(x) + \sum_{i=1}^m u_i g_i(x)$ with f smooth and f(0) = 0. Assume that the set

$$\mathcal{S} = \left\{ x | L_f V(x) = 0 \text{ and } L_f^k L_{g_i} V(x) = 0 \text{ for all } k \in \mathbb{N}, \ i \in \{1, \dots, m\} \right\} = \{0\}$$

then, the feedback

$$k(x) := -\left(\nabla V(x) \cdot G(x)\right)^{T} = \begin{pmatrix} L_{g_{1}}V(x) & \cdots & L_{g_{m}}V(x) \end{pmatrix}^{T}$$

globally asymptotically stabilizes the system at the origin.

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 83 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Control Lyapunov functions

Control affine systems

Theorem: Sontag's universal formula (1989)

Consider a control affine system $\dot{x} = g_0(x) + \sum_{i=1}^m u_i g_i(x)$ with f smooth and f(0) = 0. Assume that there exists a differentiable CLF, then the feedback

$$k_i(x) = -b_i(x)\phi(a(x), \beta(x))$$
 (= 0 for x = 0)

- $a(x) := \nabla V(x)f(x)$ and $b_i(x) := \nabla V(x)g_i(x)$ for $i = 1, \dots, m$
- $B(x) = (b_1(x) \cdots b_2(x))$ and $\beta(x) = ||B(x)||^2$
- $q:\mathbb{R}\to\mathbb{R}$ is any real analytic function with q(0)=0 and bq(b)>0 for any b>0
- ϕ is the real analytic function:

$$\varphi(a, b) = \begin{cases} \frac{a + \sqrt{a^2 + bq(b)}}{b} & \text{if } b \neq 0\\ 0 & \text{if } b = 0 \end{cases}$$

is such that k(0) = 0, k smooth on $\mathbb{R}^n \setminus 0$ and

$$\sup_{x\in\mathbb{R}^n}\nabla V(x)f(x,k(x))+W(x)\leq 0$$

N. Marchand (gipsa-lab)

Master PSPI 2009-2010 84 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Control Lyapunov functions

Control affine systems

Definition: Small control property

A CLF V is said to satisfies the *small control property* if for any ε , there is some δ so that:

 $\sup_{x \in \mathcal{B}(\delta)} \min_{u \in \mathcal{B}(\varepsilon)} \nabla V(x) f(x, u) + W(x) \le 0$

The small control property implicitly means that if ε is small (hence the control), the system can still be controlled as long as it is sufficiently close to the origin

Theorem: Sontag's universal formula (1989)

Consider an control-affine system $\dot{x} = g_0(x) + \sum i = 1^m u_i g_i(x)$ with f smooth and f(0) = 0. Assume that there exists a differentiable CLF, then the previous feedback k with q(b) = b is smooth on $\mathbb{R}^n \setminus 0$ and continuous at the origin

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Control Lyapunov functions

Robustness issues

Model			Real system			
ſ	ż	=	f(x, u)	∫ ż	=	$f(x, u) + \varepsilon$
J	и	=	k(x)	lu	=	$k(x+\delta)$

Definition: Robustness w.r.t. model errors

A feedback law $k : \mathbb{R}^n \to \mathbb{R}^m$ is said to be *robust with respect to model errors* if $\lim_{t\to\infty} x(t) \in \mathcal{B}(r(\varepsilon))$ with $\lim_{\varepsilon\to 0} r(\varepsilon) = 0$ (x(t) denotes the solution of $\dot{x} = f(x, k(x)) + \varepsilon$)

Definition: Robustness w.r.t. measurement errors

A feedback law $k : \mathbb{R}^n \to \mathbb{R}^m$ is said to be *robust with respect to measurement* errors if $\lim_{t\to\infty} x(t) \in \mathcal{B}(r(\delta))$ with $\lim_{\delta\to 0} r(\delta) = 0$ (x(t) denotes the solution of $\dot{x} = f(x, k(x + \delta))$)

Theorem: Smooth CLF = robust stability (1999)

The existence of a feedback law robust to measurement errors and model errors is equivalent to the existence of a smooth CLF

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 86 / 174

N. Marchand

References

- Outline
- Introduction
- Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Control Lyapunov functions Conclusion

• A CLF is a theoretical tool, not a magical tool

• A CLF is not a constructive tool

- Finding a stabilizing control law and finding a CLF are at best the same problems. In all other cases, finding a stabilizing control law is easier than finding a CLF
- Even if one can find a CLF for a system, the universal formula often gives a feedback with poor performances
- However, this is an important field of research in the control system theory community that proved important theoretical results, for instance the equivalence between asymptotic controllability and stabilizability of nonlinear systems (1997)

Other structural tools

Passivity

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

A system

Definition: Passivity

$$\begin{cases} \dot{x} = f(x, u) \\ y = h(x, u) \end{cases}$$

is said to be passive if there exists some function $S(x) \ge 0$ with S(0) = 0 such that

$$S(x(T)) - S(x(0)) \leq \int_0^T u^T(\tau) y(\tau) d\tau$$

- Roughly speaking, S(x(0)) (called the *storage function*) denotes the largest amount of energy which can be extracted from the system given the initial condition x(0).
- Passivity eases the design of control law and is a powerful tool for interconnected systems
- Important literature

N. Marchand (gipsa-lab)

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

- CLF
- Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Other structural tools

Input-to-State Stability (ISS)

- $\begin{array}{l} \text{Class \mathcal{K}} \ \text{A continuous function $\gamma:\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0}$ is said in \mathcal{K} if it is strictly increasing $and $\gamma(0)=0$ } \end{array}$
- $\begin{array}{l} \text{Class \mathcal{KL} A continuous function $\beta:\mathbb{R}_{\geq 0}\times\mathbb{R}_{\geq 0}\to\mathbb{R}_{\geq 0}$ is said in \mathcal{KL} if $\beta(\cdot,s)\in\mathcal{K}$ for each fixed s and $\beta(r,\cdot)$ is decreasing for each fixed r and $\lim_{s\to\infty}\beta(r,s)=0$ } \end{array}$

Definition: Input-to-State Stability

A system

```
\dot{x} = f(x, u)
```

is said to be input-to-state stable if there exists functions $\beta \in \mathcal{KL}$ and $\gamma \in \mathcal{K}$ such that for each bounded $u(\cdot)$ and each x(0), the solution x(t) exists and is bounded by:

$$|x(t)|| \le \beta(||x(0)||, t) + \gamma(\sup_{0 \le \tau \le t} ||u(\tau)||)$$

- Roughly speaking, ISS characterizes a relation between the norm of the state and the energy injected in the system: the system can not diverge in finite time with a bounded control
 - ISS eases the design of control law
 - Important literature

Nonlinear Control

N Marchand

References

Linear/Nonlinear

Antiwindup Linearization

Sliding mode

UTLINE

- Linear versus nonlinear
- The X4 example

approaches

Gain scheduling

- Antiwindup
- I inearization
- Gain scheduling

4 Nonlinear control methods

- Control Lyapunov functions
- Sliding mode control
- State and output linearization
- Stabilization of the X4 at a position

Nonlinear Control

Master PSPI 2009-2010 90 / 174

N. Marchand (gipsa-lab)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode

Geometric control Recursive techniques X4 stabilizatio

Observers

Sliding mode control

An introducing example

• Take again the linear system

$$\begin{array}{rcl} \dot{x}_1 &=& x_2 \\ \dot{x}_2 &=& -x_1 + u \end{array}$$

• Assume *u* is forced to remain in [-1,1] In practical applications, *u* is always constrained in an interval [*u*, *u*]. We will see later on how to handle it. To begin, we take the above simplified constraint.

Take the CLF

$$V(x) = \frac{3}{2}x_1^2 + x_1x_2 + x_2^2 = x^T \begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 \end{pmatrix} x$$

Goal

Find u in [-1,1] that makes V decrease as fast as possible

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 91 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

```
Linear
approache
```

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF

Sliding mode

Geometric control Recursive techniques X4 stabilizatic

Observers

N. Marchand (gipsa-lab)

• Why does it work ?

Sliding mode control

An introducing example

• Making V decrease as fast as possible is equivalent to minimizing \dot{V} :

$$u = \operatorname{Argmin}_{u \in [-1,1]} \{\dot{V}\}$$

=
$$\operatorname{Argmin}_{u \in [-1,1]} \{-x_1^2 + x_1 x_2 + x_2^2 + (x_1 + 2x_2)u\}$$

=
$$-\operatorname{sign}(x_1 + 2x_2)$$
 minimal for $u = -\operatorname{sign}(x_1 + 2x_2)$

• Simulating the closed loop system with initial condition x(0) = (2, -3), it gives:

Master PSPI 2009-2010 92 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approach

CLF

Sliding mode

Geometric control Recursive techniques X4 stabilizatio

Observers

Sliding mode control

An introducing example

• Define $\sigma(x) = x_1 + 2x_2$. The set $\{S(x) = \{x | \sigma(x) = 0\}\} \cap \{|x_1| \le 0.6, |x_2| \le 0.3\}$ is attractive:

Nonlinear Control

Master PSPI 2009-2010 93 / 174

N. Marchand (gipsa-lab)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approach

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF

Sliding mode

Geometric control Recursive techniques X4 stabilizatio

Observers

Sliding mode control

An introducing example

• Define $\sigma(x) = x_1 + 2x_2$. The set $\{S(x) = \{x | \sigma(x) = 0\}\} \cap \{|x_1| \le 0.6, |x_2| \le 0.3\}$ is attractive:

Nonlinear Control

Master PSPI 2009-2010 93 / 174

N. Marchand (gipsa-lab)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF

Sliding mode

Geometric control Recursive techniques X4 stabilization

Observers

Sliding mode control

An introducing example

- The set $\{S(x) = \{x | \sigma(x) = 0\}\} \cap \{|x_1| \le 0.6, |x_2| \le 0.3\}$ is attractive
- Once the set is joined, the control is such that x remains on S(x), that is:

$$\dot{S}(x) = 0 = \dot{x}_1 + 2\dot{x}_2 = x_2 - x_1 + u_1$$

- Hence, on S(x), u = -sign(x₁ + 2x₂) has the same influence on the system as the control u_{eq} = x₁ - x₂
- On S(x), the system behaves like:

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -x_1 + u = -x_2$

• x_2 and hence also x_1 clearly exponentially go to zero without leaving $\{S(x) = \{x|x_1 + 2x_2 = 0\}\} \cap \{|x_1| \le 0.6, |x_2| \le 0.3\}$

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode Geometric

control Recursive techniques X4 stabilization

Observers

Sliding mode control

Principle of sliding mode control

Principle:

- Define a sliding surface $S(x) = \{x | \sigma(x) = 0\}$
- A stabilizing sliding mode control is a control law
 - discontinuous in on S(x)
 - that insures the **attractivity of** S(x)
 - such that, on the surface S(x), the states "slides" to the origin

Main characteristic of sliding mode control:

- ✔ Robust control law
- Discontinuities may damage actuators (filtered versions exist)

- N. Marchand
- References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF

Sliding mode

Geometric control Recursive techniques X4 stabilization

Observers

Sliding mode control

Notion of sliding surface and equivalent control

• With a sliding mode control, the system takes the form:

- What happens for $\sigma(x) = 0$?
- The solution on $\sigma(x) = 0$ is the solution of $\dot{x} = \alpha f^+(x) + (1 \alpha)f^-(x)$ where α satisfies $\alpha f_n^+(x) + (1 - \alpha)f_n^-(x) = 0$ for the normal projections of f^+ and f^-

Nonlinear Control

Master PSPI 2009-2010 96 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF

Sliding mode

Geometric control Recursive techniques X4 stabilizatio

Observers

Sliding mode control

A sliding mode control for a class of affine systems

Theorem: Sliding mode control for a class of nonlinear systems

• Take the nonlinear system:

$$\begin{pmatrix} \dot{x}_1\\ \dot{x}_2\\ \vdots\\ \dot{x}_n \end{pmatrix} = \begin{pmatrix} f_1(x) + g_1(x)u\\ x_1\\ \vdots\\ x_{n-1} \end{pmatrix} = f(x) + g(x)u$$

• Choose the control law

$$u = -\frac{p^T f(x)}{p^T g(x)} - \frac{\mu}{p^T g(x)} \operatorname{sign}(\sigma(x))$$

with $\mu > 0$, $\sigma(x) = p^T x$ and $p^T = (p_1 \cdots p_n)$ is a stable polynomial (all roots have strictly negative real parts) • Then the origin of the closed loop system is asymptotically

 Then the origin of the closed loop system is asymptotically stable

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 97 / 174

N Marchand

approaches

Linearization Gain scheduling

Sliding mode

Sliding mode control

Sliding mode control for some affine systems: proof of convergence Proof:

• Take the Lyapunov function

$$V(x) = \frac{1}{2} x^T p p^T x$$

- Note that $V(x) = \frac{\sigma^2(x)}{2}$
- Along the trajectories of the system, one has:

$$\dot{V}(x) = \sigma^{T}(x)\dot{\sigma}(x) = x^{T}\rho\left(\rho^{T}f(x) + \rho^{T}g(x)u\right)$$

with the chosen control, it gives:

$$\dot{V}(x) = -\mu\sigma(x)\operatorname{sign}(\sigma(x)) = -\mu|\sigma(x)|$$

• x tends to $S = \{x | \sigma(x) = 0\}$

• μ tunes how fast the system converges to $S = \{x | \sigma(x) = 0\}$

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF

Sliding mode

Geometric control Recursive techniques X4 stabilizati

Observers

Sliding mode control

Sliding mode control for some affine systems: proof of convergence

• On S, the system is such that

$$\sigma(x) = 0 = p_1 x_1 + \dots + p_{n-1} x_{n-1} + p_n x_n$$

But:

$$\begin{array}{rcl} x_{n-1} & = & \dot{x}_n \\ x_{n-2} & = & \dot{x}_{n-1} = x_n^{(2)} \\ & \vdots \\ x_1 & = & \dot{x}_2 = \dots = x_n^{(n-1)} \end{array}$$

• That can be written with $z_i = x_{n-i+1}$ in the form:

• Hence, x asymptotically goes to the origin

$$\dot{z} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ -\frac{p_2}{p_1} & -\frac{p_3}{p_1} & \cdots & \cdots & -\frac{p_n}{p_1} \end{pmatrix} z$$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 99 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

```
Linear
```

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF

Sliding mode

Geometric control Recursive techniques X4 stabilizatio

Observers

Sliding mode control

Sliding mode control for some affine systems: time to switch

• Consider an initial point x_0 such that $\sigma(x_0) > 0$.

Since

$$\sigma(x)\dot{\sigma}(x) = -\mu\sigma(x)\operatorname{sign}(\sigma(x))$$

it follows that as long as $\sigma(x)>0$

$$\dot{\sigma}(x) = -\mu$$

• Hence, the instant of the first switch is

$$t_s = \frac{\sigma(x_0)}{\mu} < \infty$$

• Moreover,
$$t_s
ightarrow 0$$
 as $\mu
ightarrow \infty$

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approad

CLF

Sliding mode

Geometric control Recursive techniques X4 stabilizatio

Observers

Sliding mode control

Robustness issues

Assume that one knows only a model

$$\dot{x} = \hat{f}(x) + \hat{g}(x)u$$

$$\dot{x} = f(x) + g(x)u$$

• The time derivative of the Lyapunov function is:

$$\dot{V}(x) = \sigma(x) \left[\frac{p^{T}(f\hat{g} - \hat{f}g^{T})p}{p^{T}\hat{g}} - \mu \frac{p^{T}g}{p^{T}\hat{g}} \operatorname{sign}(\sigma(x)) \right]$$

If sign(p^Tg) = sign(p^Tĝ) and μ > 0 sufficiently large, V < 0
The closed-loop system is robust against model errors

N Marchand

References

Linear/Nonlinear

Antiwindup Linearization Gain scheduling

Geometric

Recursive

UTLINE

- Linear versus nonlinear
- The X4 example

approaches

Sliding mode

control

- Antiwindup
- I inearization
- Gain scheduling

4 Nonlinear control methods

- Control Lyapunov functions
- Sliding mode control

State and output linearization

- Stabilization of the X4 at a position

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 102 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode Geometric

control

Recursive techniques X4 stabilization

Observers

State and output linearization

Introducing examples

• Consider nonlinear the system

$$\dot{x}_1 = -2x_1 + ax_2 + \sin(x_1)$$

$$\dot{x}_2 = -x_2\cos(x_1) + u\cos(2x_1)$$

• Take the new set of state variables

 $\begin{array}{rcl} z_1 &=& x_1 & x_1 &=& z_1 \\ z_2 &=& ax_1 + \sin(x_1) & x_2 &=& \frac{z_2 - \sin(z_1)}{a} \end{array}$

• The state equations become:

$$\dot{z}_1 = -2z_1 + z_2 \dot{z}_2 = -2z_1 \cos(z_1) + \cos(z_1) \sin(z_1) + au \cos(2z_1)$$

• The nonlinearities can then be canceled taking the new control *v*:

$$u = \frac{1}{a\cos(2z_1)} \left(v - \cos(z_1)\sin(z_1) + 2z_1\cos(z_1) \right)$$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 103 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode

Geometric

control

Recursive techniques

Observers

State and output linearization

Introducing examples

• The system then becomes linear:

$$\dot{z} = \begin{pmatrix} -2 & 1 \\ 0 & 0 \end{pmatrix} z + \begin{pmatrix} 0 \\ 1 \end{pmatrix} v$$

- Taking $v = -2z_2$ places the poles of the closed-loop in $\{-2, -2\}$
- Hence, $\lim_{t\to\infty} z = 0$
- Looking back to the transformation:

$$x_1 = z_1$$

$$x_2 = \frac{z_2 - \sin(z_1)}{a}$$

one also have $\lim_{t\to\infty}x=0$

• In the original coordinates, the control writes:

$$u = \frac{1}{a\cos(2x_1)} [-2ax_2 - 2\sin(x_2) - \cos(x_1)\sin(x_1) + 2x_1\cos(x_1)]$$

Nonlinear Control

Master PSPI 2009-2010 104 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode

Geometric

control

Recursive techniques

Observers

State and output linearization

Introducing examples

• Consider nonlinear the system

$$\dot{x}_1 = \sin(x_2) + (x_2 + 1)x_3 \dot{x}_2 = x_1^5 + x_3 \dot{x}_3 = x_1^2 + u$$

Take x1 as "output": y = x1
When not imposed, the choice of the appropriate output is often delicate
Compute the first time derivative of y:

$$\dot{y} = \dot{x}_1 = \sin(x_2) + (x_2 + 1)x_3$$

• Compute the second time derivative of y:

$$\ddot{y} = (x_2 + 1)u + \underbrace{(x_1^5 + x_3)(x_3 + \cos(x_2)) + (x_2 + 1)x_1^2}_{m(x)}$$

Taking
$$u = \frac{v - m(x)}{x_2 + 1}$$
 gives the linear system: $\ddot{y} = v$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 105 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques

Observers

State and output linearization

Introducing examples

X Potential problem if $x_2 = -1$

- Here again, take the linear feedback v = y + 2y that places the poles of the closed loop system in {-1, -1}
- Hence, y and \dot{y} asymptotically converges to the origin
- The state of the system is of dimension 3. Only two variables have been brought to the origin, what about the third one ?
- Write the system with the new coordinates $(z_1, z_2, z_3) = (y, \dot{y}, x_3)$:

Linearized sub-system:

Internal dynamics:

$$\begin{cases} \dot{z}_1 = z_2 \\ \dot{z}_2 = v \\ \{ \dot{z}_3 = z_1^2 + u(z) \end{cases}$$

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode

Geometric

control

Recursive techniques X4 stabilizatior

Observers

State and output linearization

Introducing examples

• One has to check that the internal dynamics is stable. For this, we assume that $y = \dot{y} = 0$ (which happens asymptotically):

$$\dot{z}_{3} = \overbrace{z_{1}^{2}}^{\rightarrow 0} + \underbrace{\overbrace{v}^{\rightarrow 0} - ((\overbrace{z_{1}^{5}}^{\rightarrow 0} + z_{3})(z_{3} + \cos x_{2}) + \overbrace{(x_{2} + 1)z_{1}^{2})}^{\rightarrow 0}}_{x_{2} + 1}$$
$$= -\frac{z_{3}(z_{3} + \cos x_{2})}{x_{2} + 1}$$

- If x₂ and z₃ are small enough, ż₃ ≈ -z₃(z₃ + 1) ≈ -z₃: the internal dynamics is locally asymptotically stable
- The approach can be applied if and only if the internal dynamics is stable
- If the internal dynamics is unstable, the system is called non-minimum phase
 - Change the input
 - Use additional inputs to stabilize the internal dynamics
 - Other approach in the literature like approximate linearization

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 107 / 174

- N Marchand

Linear/Nonlinear

Antiwindup Linearization Gain scheduling

Sliding mode Geometric control Recursive

State and output linearization Introduction

• Consider again nonlinear systems affine in the control:

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ y = h(x) \end{cases}$$

- The linearization approach tries to find a feedback control law

$$u = \alpha(x) + \beta(x)v$$

z = T(x)

and a change of variable

that transforms the nonlinear systems into:

Input-State linearization	Input-Output linearization
$\dot{z} = Az + Bv$	$y^{(r)} = v$
✗ No systematic approach	✓ Systematic approach

N. Marchand (qipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 108 / 174

Take

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ y = h(x) \end{cases}$$

State and output linearization

• The time derivative of y is then given by:

$$\dot{y} = \frac{\partial h}{\partial x}(f(x) + g(x)u) = L_f h(x) + L_g h(x)u$$

• If $L_g h(x) \neq 0$, the control is

$$u = \frac{1}{L_g h(x)} (-L_f h(x) + v)$$

ches yiel

yielding $\dot{y} = v$ • Otherwise (that is $L_g h(x) \equiv 0$), differentiate once more:

$$\ddot{y} = \frac{\partial L_f h}{\partial x} (f(x) + g(x)u) = L_f^2 h(x) + L_g L_f h(x)u$$

Reference

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode

Geometric

control

Recursive

techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 109 / 174

N Marchand

approaches

Antiwindup Linearization Gain scheduling

Sliding mode Geometric control Recursive

State and output linearization The SISO case

• If $L_{\sigma}L_{f}h(x) \neq 0$, the control is

$$u = \frac{1}{L_g L_f h(x)} (-L_f^2 h(x) + v)$$

yielding to
$$\ddot{y} = v$$

Ο...

Definition: Relative degree

There exists an integer $r \leq n$ such that $L_{g}L_{f}^{i}h(x) \equiv 0$ for all $i \in \{1, \ldots, r-2\}$ and $L_g L_f^{r-1} h(x) \neq 0$ that is called the relative degree of the system

The control law

yields the linear system $y^{(r)} = v$

$$u = \frac{1}{L_g L_f^{r-1} h(x)} (-L_f^r h(x) + v)$$

N. Marchand (qipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 110 / 174

State and output linearization The MIMO case

Nonlinear Control

• Take

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

Sliding mode

Geometric control

Recursive

tecnniques

Observers

$\begin{cases} \dot{x} = f(x) + g_1(x)u_1 + g_2(x)u_2 \\ y_1 = h_1(x) \\ y_2 = h_2(x) \end{cases}$

• The relative degree {r₁, r₂} is then given by:

$$\begin{array}{ll} L_{g_1}L_f^{i-1}h_1(x) = L_{g_2}L_f^{i-1}h_1(x) = 0 & \forall i < r_1 \\ L_{g_1}L_f^{i-1}h_2(x) = L_{g_2}L_f^{i-1}h_2(x) = 0 & \forall i < r_2 \end{array}$$

• Assume that the Input-Output decoupling condition is satisfied, that is:

$$\operatorname{rank} \begin{pmatrix} L_{g_1} L_f^{r_1-1} h_1(x) & L_{g_2} L_f^{r_1-1} h_1(x) \\ L_{g_1} L_f^{r_2-1} h_2(x) & L_{g_2} L_f^{r_2-1} h_2(x) \end{pmatrix} = 2$$

Nonlinear Control

State and output linearization The MIMO case

Nonlinear	
Control	

• One has:

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF

Sliding mode

Geometric

control

Recursive techniques

Vandues

Observers

N. Marchand (gipsa-lab)

The MIMO case as: $\dot{y}_1 = L_f h_1(x) + L_{g_1} h_1(x) u_1 + L_{g_2} h_1(x) u_2$

$$\ddot{y}_1 = L_F^2 h_1(x) + \underbrace{L_{g_1}L_f h_1(x)}_{=0} u_1 + \underbrace{L_{g_2}L_f h_1(x)}_{=0} u_2$$

$$\mu_1^{(r_1)} \ = \ L_f^{r_1} h_1(x) + \underbrace{L_{g_1} L_f^{r_1-1} h_1(x)}_{\text{either } \neq 0} u_1 + \underbrace{L_{g_2} L_f^{r_1-1} h_1(x)}_{\text{or } \neq 0} u_2$$

• Make the same for y₂:

$$\begin{array}{rcl} \dot{y}_2 & = & L_f h_2(x) + \underbrace{L_{g_1} h_2(x)}_{=0} u_1 + \underbrace{L_{g_2} h_2(x)}_{=0} u_2 \\ \dot{y}_2 & = & L_f^2 h_2(x) + \underbrace{L_{g_1} L_f h_2(x)}_{=0} u_1 + \underbrace{L_{g_2} L_f h_2(x)}_{=0} u_2 \\ & \vdots \\ y_2^{(r_2)} & = & L_f^{r_2} h_2(x) + \underbrace{L_{g_1} L_f^{r_2-1} h_2(x)}_{f} u_1 + \underbrace{L_{g_2} L_f^{r_2-1} h_2(x)}_{f} u_2 \\ \end{array}$$

Nonlinear Control

either $\neq 0$

or ≠0

Master PSPI 2009-2010 112 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode Geometric

control Recursive techniques X4 stabilizati

Observers

State and output linearization The MIMO case

• Hence, one has:

$$\begin{pmatrix} y_1^{(r_1)} \\ y_2^{(r_2)} \end{pmatrix} = \underbrace{\begin{pmatrix} L_f^{r_1} h_1(x) \\ L_f^{r_2} h_2(x) \end{pmatrix}}_{b(x)} + \underbrace{\begin{pmatrix} L_{g_1} L_f^{r_1-1} h_1(x) & L_{g_2} L_f^{r_1-1} h_1(x) \\ L_{g_1} L_f^{r_2-1} h_2(x) & L_{g_2} L_f^{r_2-1} h_2(x) \end{pmatrix}}_{A(x)} \underbrace{\begin{pmatrix} u_1 \\ u_2 \end{pmatrix}}_{u}$$

• Thanks to the decoupling condition, one can take:

$$u = -A(x)^{-1}b(x) + A(x)^{-1}v$$

which gives two chains of integrators:

$$y_1^{(r_1)} = v_1 \qquad y_2^{(r_2)} = v_2$$

• This approach can be extended to any output and input sizes

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 113 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approach

Sliding mode

Geometric

control

Recursive

techniques

X4 stabilization

Observers

N. Marchand (gipsa-lab)

State and output linearization

A block diagram representation

Linearization techniques can be interpreted as:

Nonlinear Control

Master PSPI 2009-2010 114 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

State and output linearization The general case

- The internal dynamics or zero-dynamics is then of dimension n r; its stability has to be checked
- For linear systems *r* =number of poles-number of zeros
- This approach took a rapid development in the 80's
- ✓ Maybe the only "general" approach for nonlinear system with predictive control
- ✓ Can be extended to MIMO systems with a decoupling condition
- ✓ Many extensions in particular with the notion of flatness
- ✓ Power tool for path generation
- Non robust approach since it is based on coordinate changes that can be stiff
- X The control may take too large values
- ✗ "Kills" nonlinearities even if they are good

N Marchand

References

Linear/Nonlinear

Antiwindup Linearization

Sliding mode

Recursive techniques

UTLINE

- Linear versus nonlinear
- The X4 example

approaches

Gain scheduling

- Antiwindup
- I inearization
- Gain scheduling

4 Nonlinear control methods

- Control Lyapunov functions
- Sliding mode control
- State and output linearization
- Backstepping and feedforwarding
- Stabilization of the X4 at a position

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 116 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinea The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control

Recursive techniques

X4 stabilization

Observers

Backstepping

Main results

Theorem: backstepping design

Assume that the system $\dot{\chi} = f(\chi, \nu)$ with f(0, 0) = 0 can asymptotically be stabilized with $\nu = k(\chi)$. Let V denote a C^1 Lyapunov function (definite, positive and radially unbounded) such that $\frac{\partial V}{\partial \chi} f(\chi, k(\chi)) < 0$ for all $\chi \neq 0$. Then, the system

$$\dot{\chi} = f(\chi, \xi)$$

 $\dot{\xi} = h(\chi, \xi) + \iota$

with h(0,0) = 0 is also asymptotically stabilizable with the control:

$$u(\chi,\xi) = -h(\chi,\xi) + \frac{\partial k}{\partial \chi} f(\chi,\xi) - \xi + k(\chi) - \left[\frac{\partial V}{\partial \chi} G(\chi,\xi-k(\chi))\right]^{T}$$

with

$$G(\chi,\xi) = \int_0^1 \frac{\partial f}{\partial \xi}(\chi,k(\chi)+\lambda\xi)d\lambda$$

The Lyapunov function

$$W(\chi, \xi) = V(\chi) + \frac{1}{2} \|\xi - k(\chi)\|^2$$

is then strictly decreasing for any $(\chi,\xi) \neq (0,0)$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 117 / 174

N. Marchand

References	The theorem can recursively be applied to		
Outline			······································
Introduction Linear/Nonlinear The X4 example	$\dot{\chi}$ $\dot{\xi}_1$	=	$f(\chi,\xi_1)$ $a_1(\chi,\xi_1) + b_1(\chi,\xi_1)\xi_2$
Linear approaches Antiwindup Linearization	ξ ₂	=	$a_2(\chi, \xi_1, \xi_2) + b_2(\chi, \xi_1, \xi_2)\xi_3$
Gain scheduling Stability	$\dot{\xi}_{n-1}$	=	$a_{n-1}(\chi,\xi_1,\xi_2,\ldots,\xi_{n-2}) + b_{n-1}(\chi,\xi_1,\xi_2,\ldots,\xi_{n-2})\xi_{n-1}$ $a_n(\chi,\xi_1,\xi_2,\ldots,\xi_{n-2}) + b_n(\chi,\xi_1,\xi_2,\ldots,\xi_{n-2})u_n$
Nonlinear approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilization	ς _η	_	$a_n(\chi, \varsigma_1, \varsigma_2, \ldots, \varsigma_{n-1}) + b_n(\chi, \varsigma_1, \varsigma_2, \ldots, \varsigma_{n-1})^{d}$
<u></u>			

Backstepping Main results

Nonlinear Control

Master PSPI 2009-2010 118 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric

Recursive techniques

X4 stabilization

Observers

Forwarding

Strict-feedforward systems

• Consider the class of *strict-feedforward systems*:

$$\dot{x}_{1} = x_{2} + f_{1}(x_{2}, x_{3}, \dots, x_{n}, u)$$

$$\dot{x}_{2} = x_{3} + f_{2}(x_{3}, \dots, x_{n}, u)$$

$$\vdots$$

$$\dot{x}_{n-1} = x_{n} + f_{n-1}(x_{n}, u)$$

$$\dot{x}_{n} = u$$

- Strict-feedforward systems are in general no feedback linearizable
- Backstepping is not applicable

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode

control Recursive

techniques

X4 stabilization

Observers

Forwarding

Forwarding procedure

At step 0: Begin with stabilizing the system x_n = u_n. Take e.g. u_n = -x_n and the corresponding Lyapunov function V_n = ¹/₂x_n²
At step 1: Augment the control law

$$u_{n-1}(x_{n-1}, x_n) = u_n(x_n) + v_{n-1}(x_{n-1}, x_n)$$

such that u_{n-1} stabilizes the cascade

$$\dot{x}_{n-1} = x_n + f_{n-1}(x_n, u_{n-1})$$

 $\dot{x}_n = u_{n-1}$

• At step k: Augment the control law

$$u_{n-k}(x_{n-k},...,x_n) = u_{n-k+1}(x_{n-k+1},...,x_n) + v_{n-k}(x_{n-k},...,x_n)$$

such that u_{n-k} stabilizes the cascade

$$\dot{\xi}_{n-k} = x_{n-k+1} + f_{n-k}(x_{n-k+1}, \dots, x_n, u_{n-k}) \vdots \dot{x}_{n-1} = x_n + f_{n-1}(x_n, u_{n-k}) \dot{x}_n = u_{n-k}$$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 120 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control

Recursive

techniques X4 stabilization

Observers

Forwarding

Forwarding procedure

- The control law u_{n-k} always exists for all $k \in \{1, ..., n-1\}$
- The Lyapunov function at step k can be given by:

$$V_{k} = V_{k+1} + \frac{1}{2}x_{k}^{2} + \int_{0}^{\infty} x_{k}(\tau)f_{k}(x_{k+1}(\tau), \dots, x_{n}(\tau))d\tau$$

- To avoid computations of the integrals, low-gain control can be used. It gave rise to an important litterature on bounded feedback control (Teel (91), Sussmann et al. (94))
- Various extensions for more general system exist but are still based on the same recursive construction
- Forwarding can be interpreted with passivity, ISS or optimal control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control

Recursive techniques

X4 stabilization

Observers

Backstepping/Forwarding

An interpretation of the names

Backstepping structure

Feedforward structure

Nonlinear Control

Master PSPI 2009-2010 122 / 174

N. Marchand (gipsa-lab)

N Marchand

References

Linear/Nonlinear

Antiwindup Linearization

Sliding mode

UTLINE

- Linear versus nonlinear
- The X4 example

approaches

Gain scheduling

X4 stabilization

- Antiwindup
- I inearization
- Gain scheduling

4 Nonlinear control methods

- Control Lyapunov functions
- Sliding mode control
- State and output linearization
- Stabilization of the X4 at a position

Nonlinear Control

Master PSPI 2009-2010 123 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (qipsa-lab)

The X4 helicopter

X4 position stabilization

- The aim is now to apply nonlinear control techniques to the stabilization problem of an X4 helicopter at a point
- Input-Ouput Linearization techniques can not be applied since the system is non minimum phase
- The backstepping approach is inspired from

S. Bouabdallah and R. Siegwart, ''Backstepping and sliding-mode techniques applied to an indoor micro quadrotor'', at the EPFL (Lausanne, Switzerland) presented at the International Conference on Robotics and Automation 2005 (ICRA'05, Barcelonna, Spain)

• The PVTOL control strategy comes from

A. Hably, F. Kendoul, N. Marchand and P. Castillo, Positive Systems, chapter: "Further results on global stabilization of the PVTOL aircraft", pp 303-310, Springer Verlag, 2006

• The saturated control law is taken in:

N. Marchand and A. Hably, "Nonlinear stabilization of multiple integrators with bounded controls", Automatica, vol. 41, no. 12, pp 2147-2152, 2005.

• Revealing example of what often happens in nonlinear: a solution comes from the combination of different methods

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

$\frac{\dot{s}_{i}}{\dot{p}} = -\frac{k_{m}^{2}}{J_{r}R}s_{i} - \frac{k_{gearbox} K}{J_{r}}|s_{i}|s_{i} + \frac{k_{m}}{J_{r}R}sat_{\overline{U}}(U_{i}) \\ \vec{p} = \vec{v} \qquad Position control problem \\ m\vec{v} = -mg\vec{e}_{3} + R\begin{pmatrix}0\\\\0\\\\\sum_{i}F_{i}(s_{i})\end{pmatrix} \\ \vec{R} = R\vec{\omega}^{\times} \qquad Attitude control problem \\ J\vec{\omega} = -\vec{\omega}^{\times}J\vec{\omega} - \sum_{i}l_{r}\vec{\omega}^{\times}\begin{pmatrix}0\\\\0\\\\\sum_{i}S_{i}\end{pmatrix} + \begin{pmatrix}\Gamma_{r}(s_{2},s_{4})\\\Gamma_{p}(s_{1},s_{3})\\\Gamma_{V}(s_{1},s_{2},s_{3},s_{4})\end{pmatrix}$

The X4 helicopter A two steps approach

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 125 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

• The aim of this first step is to be able to bring (ϕ, θ, ψ) to any desired configuration $(\phi_d, \theta_d, \psi_d)$

• Attitude equations (with an appropriate choice of Euler angles):

$$\begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = a_1 x_4 x_6 + b_1 \Gamma_r \\ \dot{x}_3 = x_4 \\ \dot{x}_4 = a_2 x_2 x_6 + b_2 \Gamma_p \\ \dot{x}_5 = x_6 \\ \dot{x}_6 = a_3 x_2 x_4 + b_3 \Gamma_y \end{cases}$$

with $(x_1, \ldots, x_6) = (\phi, \dot{\phi}, \theta, \dot{\theta}, \psi, \dot{\psi}), a_1 = \frac{J_2 - J_3}{J_1}, a_2 = \frac{J_3 - J_1}{J_2}, a_3 = \frac{J_1 - J_2}{J_3}, b_1 = \frac{1}{J_1}, b_2 = \frac{1}{J_2} \text{ and } b_3 = \frac{1}{J_3}$

- The system would be trivial to control if (x₂, x₄, x₆) was the control instead of (Γ_r, Γ_p, Γ_y)
- This is precisely the philosophy of backstepping

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization

Recall of backstepping main result

Theorem: backstepping design

Assume that the system $\dot{\chi} = f(\chi, \nu)$ with f(0, 0) = 0 can asymptotically be stabilized with $\nu = k(\chi)$. Let V denote a C^1 Lyapunov function (definite, positive and radially unbounded) such that $\frac{\partial V}{\partial \chi} f(\chi, k(\chi)) < 0$ for all $\chi \neq 0$. Then, the system

$$\dot{\chi} = f(\chi, \xi)$$

 $\dot{\xi} = h(\chi, \xi) + \iota$

with h(0,0) = 0 is also asymptotically stabilizable with the control:

$$u(\chi,\xi) = -h(\chi,\xi) + \frac{\partial k}{\partial \chi} f(\chi,\xi) - \xi + k(\chi) - \left[\frac{\partial V}{\partial \chi} G(\chi,\xi-k(\chi))\right]^{T}$$

with

$$G(\chi,\xi) = \int_0^1 \frac{\partial f}{\partial \xi}(\chi,k(\chi)+\lambda\xi)d\lambda$$

The Lyapunov function

$$W(\chi, \xi) = V(\chi) + \frac{1}{2} \|\xi - k(\chi)\|^2$$

is then strictly decreasing for any $(\chi,\xi) \neq (0,0)$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 127 / 174

- N. Marchand
- References
- Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

• Define first the tracking error:

$$\begin{cases} z_1 = x_1 - x_{1_d} = \phi - \phi_d \\ z_2 = x_3 - x_{3_d} = \theta - \theta_d \\ z_3 = x_5 - x_{5_d} = \psi - \psi_d \end{cases}$$

• It gives the subsystem

$$\begin{cases} \dot{z}_1 = x_2 - \dot{x}_{1_d} \\ \dot{z}_2 = x_4 - \dot{x}_{3_d} \\ \dot{z}_3 = x_6 - \dot{x}_{5_d} \end{cases}$$

where, at this step, (x_2, x_4, x_6) is the control vector • Take first $V_1 = \frac{1}{2}z_1^2$.

Master PSPI 2009-2010 128 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

Along the trajectories of the system, the Lyapunov function gives:

$$\dot{V}_1 = z_1(x_2 - \dot{x}_{1_d})$$

• Hence taking as fictive control $x_2 = \dot{x}_{1_d} - \alpha_1 z_1$ with $\alpha_1 > 0$ insures the decrease of V_1 :

$$\dot{V}_1 = -\alpha_1 z_1^2$$

- x₁ will asymptotically converge to x_{1_d} ... unfortunately x₂ is not the control and we have to build thanks to backstepping approach "the Γ_r that will force x₂ to make x₁ converge to x_{1_d}"
- For this, define the tracking error for x₂:

$$z_2 = x_2 - \underbrace{(\dot{x}_{1_d} - \alpha_1 z_1)}_{(d_1 - \alpha_1 z_1)}$$

input of subsystem in z_1 we would like to put

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization

A backstepping approach

One has

$$\dot{z}_2 = \underbrace{a_1 x_4 x_6 + b_1 \Gamma_r}_{\dot{x}_2} - \ddot{x}_{1_d} + \underbrace{\alpha_1 x_2 - \alpha_1 \dot{x}_{1_d}}_{\alpha_1 \dot{z}_1}$$

• Recall we have to build "the Γ_r that will force x_2 to make x_1 converge to x_{1_d} ". For this, we use the formula of the backstepping theorem:

Theorem: backstepping design

$$u(\chi,\xi) = -h(\chi,\xi) + \frac{\partial k}{\partial \chi} f(\chi,\xi) - \xi + k(\chi) - \left[\frac{\partial V}{\partial \chi} G(\chi,\xi - k(\chi))\right]^{T}$$

with in our case:

 $\begin{array}{rcl} \chi & = & z_1 & k & = & \dot{x}_{1_d} - \alpha_1 z_1 \\ \xi & = & z_2 & f & = & x_2 - \dot{x}_{1_d} \\ h & = & a_1 x_4 x_6 - \ddot{x}_{1_d} + \alpha_1 x_2 - \alpha_1 \dot{x}_{1_d} & V & = & \frac{1}{2} z_1^2 \end{array}$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 130 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

• Or more simply, we construct it:

$$W(z_1, z_2) = V(z_1) + \frac{1}{2} \|x_2 - (\dot{x}_{1_d} - \alpha_1 z_1)\|^2 = \frac{1}{2} (z_1^2 + z_2^2)$$

• Along the trajectories of the system:

$$\dot{W} = z_1(x_2 - \dot{x}_{1_d}) + z_2 \left(a_1 x_4 x_6 + \overbrace{b_1 \Gamma_r}^{\text{control}} - \ddot{x}_{1_d} + \alpha_1 x_2 - \alpha_1 \dot{x}_{1_d} \right)$$

• Taking v as new control variable:

$$v = a_1 x_4 x_6 + b_1 \Gamma_r - \ddot{x}_{1_d} + \alpha_1 x_2 - \alpha_1 \dot{x}_{1_d}$$

$$b_1 \Gamma_r = v - a_1 x_4 x_6 + \ddot{x}_{1_d} - \alpha_1 x_2 + \alpha_1 \dot{x}_{1_d}$$

gives:

$$\dot{W} = z_1(x_2 - \dot{x}_{1_d}) + z_2 v$$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 131 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

• Trying to write

$$\begin{array}{rcl} x_2 - \dot{x}_{1_d} & = & \underbrace{-\alpha_1 z_1}_{\text{ideal case}} + ?\underbrace{(x_2 - \dot{x}_{1_d} + \alpha_1 z_1)}_{\substack{\text{difference between real} \\ \text{and ideal cases}}} \\ & = & -\alpha_1 z_1 + \underbrace{x_2 - \dot{x}_{1_d} + \alpha_1 z_1}_{z_2} \end{array}$$

$$\dot{W} = -\alpha_1 z_1^2 + \underbrace{z_1 z_2}_{z_1} + z_2 v$$

can be compensated with v

• Taking:

$$v = -z_1 - \alpha_2 z_2$$

where $\alpha_2 > 0$ in order to insure

$$\dot{W}=-\alpha_1 z_1^2-\alpha_2 z_2^2<0$$

\bullet Repeating this for θ and ψ gives the wanted control law

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 132 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization

A backstepping approach

Attitude stabilization

The control law given by

$$\begin{array}{rcl} b_{1}\Gamma_{r} &=& -z_{1} - \alpha_{2}z_{2} - a_{1}x_{4}x_{6} + \ddot{x}_{1_{d}} - \alpha_{1}x_{2} + \alpha_{1}\dot{x}_{1_{d}} \\ b_{2}\Gamma_{p} &=& -z_{3} - \alpha_{4}z_{4} - a_{2}x_{2}x_{6} + \ddot{x}_{3_{d}} - \alpha_{3}x_{4} + \alpha_{3}\dot{x}_{3_{d}} \\ b_{3}\Gamma_{y} &=& -z_{5} - \alpha_{6}z_{6} - a_{3}x_{2}x_{4} + \ddot{x}_{5_{d}} - \alpha_{5}x_{6} + \alpha_{5}\dot{x}_{5_{d}} \end{array}$$

with
$$z_1 = x_1 - x_{1_d}$$
, $z_2 = x_2 - \dot{x}_{1_d} + \alpha_1 z_1$, $z_3 = x_3 - x_{3_d}$,
 $z_4 = x_4 - \dot{x}_{3_d} + \alpha_3 z_3$, $z_5 = x_5 - x_{5_d}$ and $z_6 = x_6 - \dot{x}_{5_d} + \alpha_5 z_5$
asymptotically stabilizes (x_1, x_3, x_5) to their desired position
 $(x_{1_d}, x_{3_d}, x_{5_d})$

- This kind of approach appeared in the literature in the last 90's
- Now better approach based on forwarding are appearing taking into account practical saturation of the control torques

Nonlinear Control

N. Marchand

References

- Outline
- Introduction
- Linear/Nonlinear The X4 example

Linear approach

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode Geometric control Recursive techniques

X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

• Simulations: apply successive steps of 45 in roll, pitch and yaw

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 134 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

• Adjusting the α 's: with $\alpha_i = 0.2$

Roll, pitch and yaw answers

X Too many oscillations

 Γ_r , Γ_p and Γ_y controls

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 135 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

• Adjusting the α 's: with $\alpha_i = 2$

Roll, pitch and yaw answers

 Γ_r , Γ_p and Γ_y controls

✔ Seems to be a good choice

N Marchand

Linear/Nonlinear

-20

60

40

20 -20

10

10

10

approaches

Gain scheduling

Sliding mode X4 stabilization

The X4 helicopter: attitude stabilization A backstepping approach

• Adjusting the α 's: with $\alpha_i = 10$

 Γ_r , Γ_p and Γ_v controls

X The controls are **too large**, may be **two fast** to consider the rotors as instantaneous

The X4 helicopter: attitude stabilization

A backstepping approach

Nonlinear Control	
N. Marchand	
References	
Outline	
Introduction Linear/Nonlinear The X4 example	
Linear approaches Antiwindup Linearization Gain scheduling	
Stability	
Nonlinear approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilization	
Observers	Successive steps of 45 in roll, pitch and yaw with

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 138 / 174

 $\alpha_i = 2$

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

- The saturation of the possible control torques Γ_r, Γ_p, Γ_y may be problematic
- On the X4 system, the maximum speed of the rotors is given by the solution of:

$$k_m^2 s_{\max} + k_{gearbox} \kappa R s_{\max^2} - k_m \overline{U} = 0$$

which gives: $s_{max} = 604 \text{ rad.s}^{-1}$

• The maximum roll and pitch torques are when one rotor is at rest, the other one at is maximum speed (we assume that the rotation is in only one direction):

$$\Gamma_{r,p}^{\max} = lbs_{\max}^2 = 0.31 \text{ N.m}$$

• The maximum yaw torque is obtained when two opposite rotors turn at the s_{max} the two others are at rest:

$$\Gamma_y^{\rm max} = 2\kappa s_{\rm max}^2 = 21.2 \,\, {\rm N.m}$$

Nonlinear Control

Master PSPI 2009-2010 139 / 174

N. Marchand (gipsa-lab)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

The X4 helicopter: attitude stabilization A backstepping approach

- Adapt the parameters to the saturation:
 - Take larger $\alpha_{5,6}$ than the $\alpha_{1,...,4}$
 - Take small enough α_i to fulfill the saturation constraint

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

 \bullet Adjusting the $\alpha 's:$ with $\alpha_{1,\ldots,4}=0.4$ and $\alpha_{5,6}=8$

Roll, pitch and yaw answers

 Γ_r , Γ_p and Γ_y controls

✗ The controls are still too large

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

 \bullet Adjusting the $\alpha 's:$ with $\alpha_{1,\ldots,4}=0.2$ and $\alpha_{5,6}=8$

Roll, pitch and yaw answers

X Oscillations are now present

 Γ_r , Γ_p and Γ_y controls

Master PSPI 2009-2010 142 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: attitude stabilization A backstepping approach

• Taking $\alpha_{1,...,4} = 0.2$ and $\alpha_{5,6} = 8$ and applying it on the system with saturations, it gives:

✓ Seems to work

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 143 / 174

Monlinear

The X4 helicopter: attitude stabilization

A backstepping approach

Control				
N. Marchand				
References				
Outline				
Introduction Linear/Nonlinear The X4 example				
Linear approaches Antiwindup Linearization Gain scheduling				
Stability				
Nonlinear approaches CLF Sliding mode Geometric control Recursive techniques				
X4 stabilization	-	-1	 100.00	

Observers

The control law with the saturated system

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 144 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: position control Simplification of the problem

• First use the attitude control to adjust the X4 in the right direction:

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 145 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: position control Simplification of the problem

There exists a relation between (α, β, ψ) and (φ, θ, ψ) (a rotation about the yaw axis)

- Use the attitude control to drive and keep α and ψ to the origin
- Take now the system in the plane:

Nonlinear Control

Master PSPI 2009-2010 146 / 174

N. Marchand (gipsa-lab)

- N. Marchand
- References
- Outline
- Introduction
- Linear/Nonlinear The X4 example
- Linear approaches
- Antiwindup
- Linearization Gain scheduling
- Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: position control Simplification of the problem

- This problem is referred in the literature as the PVTOL aircraft stabilization problem (Planar Vertical Take Off and Landing aircraft)
- The "generic" equations are:
 - $\ddot{x} = -\sin(\theta)u$ $\ddot{y} = \cos(\theta)u - 1$ $\ddot{\theta} = v$

where '-1' represent the normalized gravity, v represents the equivalent control torque.

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

Sliding mode Geometric control Recursive

X4 stabilization

Observers

The X4 helicopter: position control

A saturation based control

• Define
$$z \triangleq (z_1, z_2, z_3, z_4, z_5, z_6)^T \triangleq (x, \dot{x}, y, \dot{y}, \theta, \dot{\theta})^T$$

• The system becomes:

Translational part:

- $\dot{z}_4 = u \cos(z_5) 1$
- The idea is to use v to drive z_5 to z_5^d such that:

$$z_{5_d} \triangleq \arctan(\frac{-r_1}{r_2+1})$$

with $\epsilon < \frac{1}{2}$ (tuning parameter) and $\sigma(\cdot) = \mathsf{max}(\mathsf{min}(\cdot,1),-1) \text{:}$

$$r_1 = -\varepsilon \sigma(z_2) - \varepsilon^2 \sigma(\varepsilon z_1 + z_2)$$

$$r_2 = -\varepsilon \sigma(z_4) - \varepsilon^2 \sigma(\varepsilon z_3 + z_4)$$

N. Marchand (gipsa-lab)

Master PSPI 2009-2010 148 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: position control A saturation based control

• When z_5 reaches z_{5_d} and applying the thrust control input u

$$u = \sqrt{r_1^2 + (r_2 + 1)^2}$$

the translational subsystem takes the form of two independent second order chain of integrators

 $\begin{cases} \dot{z_1} = z_2 \\ \dot{z_2} = r_1 \end{cases} \begin{cases} \dot{z_3} = z_4 \\ \dot{z_4} = r_2 \end{cases}$

If we could prove that

$$r_1 = -\varepsilon \sigma(z_2) - \varepsilon^2 \sigma(\varepsilon z_1 + z_2)$$

$$r_2 = -\varepsilon \sigma(z_4) - \varepsilon^2 \sigma(\varepsilon z_3 + z_4)$$

insures $(z_1, z_2, z_3, z_4) \rightarrow 0$

• Then, it will follow that once $(z_1, z_2, z_3, z_4) = 0$, $z_{5_d} = 0$ and $\dot{z}_{5_d} = z_{6_d} = 0$ hence also $(z_5, z_6) \rightarrow 0$

N. Marchand (gipsa-lab)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: position control

A saturation based control

Remain two problems:

• Prove that

$$r_1 = -\varepsilon \sigma(z_2) - \varepsilon^2 \sigma(\varepsilon z_1 + z_2)$$

$$r_2 = -\varepsilon \sigma(z_4) - \varepsilon^2 \sigma(\varepsilon z_3 + z_4)$$

brings (z_1, z_2, z_3, z_4) to zero

• Build a control so that (z_5, z_6) tends to $(z_{5_d}, \dot{z}_{5_d} = z_{6_d})$

Nonlinear Control

Master PSPI 2009-2010 150 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

The X4 helicopter: position control

A saturated control law for linear systems

• An integrator chain is defined by:

$$\dot{x} = \underbrace{\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & 1 & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & \dots & 0 \end{pmatrix}}_{=:\mathcal{A}} x + \underbrace{\begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \\ 1 \end{pmatrix}}_{=:\mathcal{B}} u$$

(11)

• **Problem**: stabilizing (11) with

$$-\bar{u} \le u \le \bar{u}$$

and \bar{u} is a positive constant

Master PSPI 2009-2010 151 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

Approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: position control

A saturated control law for linear systems

First compute

$$\prod_{i=1}^{n} (\lambda + \varepsilon^{i}) = p_{0} + p_{1}\lambda + \dots + p_{n-1}\lambda^{n-1} + \lambda^{n}$$

• Apply the coordinate change

$$y := \frac{\sum_{i=1}^{n} \varepsilon^{i}}{\bar{u}} T_{x} \text{ with } \begin{cases} T_{n} = B \\ T_{n-1} = (A + p_{n-1})B \\ T_{n-2} = (A^{2} + p_{n-1}A + p_{n-2})B \\ \vdots \\ T_{1} = (A^{n-1} + p_{n-1}A^{n-2} + \dots + p_{1})B \end{cases}$$

• The system becomes normalized in

$$\dot{\mathbf{y}} = \begin{pmatrix} 0 & \varepsilon^{n-1} & \varepsilon^{n-2} & \dots & \varepsilon \\ 0 & 0 & \varepsilon^{n-2} & \dots & \varepsilon \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & \varepsilon \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix} \mathbf{y} + \begin{pmatrix} 1 \\ \vdots \\ \vdots \\ 1 \end{pmatrix} \mathbf{v}$$

with
$$-\sum_{i=1}^{n} \varepsilon^{i} \leq v \leq \sum_{i=1}^{n} \varepsilon^{i}$$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 152 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: position control A saturated control law for linear systems

Theorem: An efficient saturated control

• Let $\overline{\epsilon}(n)$ denote the only root of $\epsilon^n - 2\epsilon + 1 = 0$ in]0, 1[.

• Then for all ε with $0 < \varepsilon < \overline{\varepsilon}(n)$,

$$u = -\frac{\bar{u}}{\sum_{i=1}^{n} \varepsilon^{i}} \sum_{i=1}^{n} \varepsilon^{n-i+1} \operatorname{sat}_{1}(y_{i})$$

globally asymptotically stabilizes the integrator chain.

Nonlinear Control

Master PSPI 2009-2010 153 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

The X4 helicopter: position control

A saturated control law for linear systems

• Sketch of the proof:

• Assume that $|y_n| > 1$ and take $V_n := \frac{1}{2}y_n^2$

• Then

$$\dot{V}_n = -y_n \underbrace{\varepsilon \operatorname{sat}_1(y_n)}_{=\varepsilon} - y_n \Big[\underbrace{\varepsilon^2 \operatorname{sat}_1(y_{n-1}) + \dots + \varepsilon^n \operatorname{sat}_1(y_1)}_{|\cdot| < \varepsilon^2 + \dots + \varepsilon^n} \Big]$$

• So V is decreasing if

 $\varepsilon > \varepsilon^2 + \cdots + \varepsilon^n \iff 1 - 2\varepsilon + \varepsilon^n > 0 \iff \varepsilon < \overline{\varepsilon}(n)$

- y_n joins [-1, 1] in finite time and remains there
- During that time, y_{n-1} to y_1 can not blow up
- Repeating this scheme for y_{n-1} to y_1 gives $y \in \mathcal{B}(1)$ after some time
- In $\mathcal{B}(1),$ the system is linear and stable \Rightarrow GAS
- The construction of this feedback law is based on feedforward

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 154 / 174

The X4 helicopter: position control

Nonlinear Control

N. Marchand

• Prove that

Remain two problems:

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

brings (z_1, z_2, z_3, z_4) to zero \rightarrow direct application of the saturated control law

• Build a control so that (z_5, z_6) tends to $(z_{5_d}, \dot{z}_{5_d} = z_{6_d})$ \rightarrow take:

$$v = \sigma_{\beta}(\dot{z}_{5_d}) - \varepsilon \sigma(z_6 - \dot{z}_{5_d}) - \varepsilon^2 \sigma(\varepsilon(z_5 - z_{5_d}) + (z_6 - \dot{z}_{5_d}))$$

 $r_1 = -\varepsilon \sigma(z_2) - \varepsilon^2 \sigma(\varepsilon z_1 + z_2)$ $r_2 = -\varepsilon \sigma(z_4) - \varepsilon^2 \sigma(\varepsilon z_3 + z_4)$

that work applying the saturated control law on the variables $z_5 - z_{5_d}$ and $z_6 - \dot{z}_{5_d}$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 155 / 174

The X4 helicopter

Second step: position control

Nonlinear Control	
N. Marchand	
References	
Outline	
Introduction Linear/Nonlinear The X4 example	
Linear approaches Antiwindup Linearization Gain scheduling	
Stability	
Nonlinear approaches CLF Sliding mode Geometric control Recursive techniques X4 stabilization	• $(\phi, \theta, \psi, x, y, z) = (\frac{p_i}{2}, \frac{p_i}{2}, \frac{p_i}{4}, 5, 5, 5)$
Observers	• $(\dot{\phi}, \dot{\theta}, \dot{\psi}, \dot{x}, \dot{y}, \dot{z}) = (0, 0, 0, 1, 2, 0)$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 156 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode Geometric control Recursive

X4 stabilization

Observers

The X4 helicopter

Second step: position control

Zoom on the 10 first seconds with a snapshot every second

Initial conditions:

- $(\phi, \theta, \psi, x, y, z) = (\frac{pi}{2}, \frac{pi}{2}, \frac{pi}{4}, 5, 5, 5)$ • $(\dot{\phi}, \dot{\theta}, \dot{\psi}, \dot{x}, \dot{y}, \dot{z}) = (0, 0, 0, 1, 2, 0)$
 - (0,0,0,1,2,0) = (0,0,0,1,2,0)

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 157 / 174

N Marchand

References

Linear/Nonlinear

Antiwindup Linearization Gain scheduling

Sliding mode

Observers

)UTLINE

- Linear versus nonlinear
- The X4 example

approaches

- Antiwindup
- I inearization
- Gain scheduling

- Control Lyapunov functions
- Sliding mode control
- State and output linearization
- ۲
- Stabilization of the X4 at a position

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 158 / 174

- N. Marchand
- References

Outline

Introduction

Linear/Nonlinea The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Nonlinear observers

Modelization

- To get a mathematical representation of the system
- Different kind of model are useful. Often:
 - a simple model to build the control law
 - a sharp model to check the control law and the observer
- Obesign the state reconstruction: in order to reconstruct the variables needed for control
- Oesign the control and test it

• Close the loop

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

• Linear systems: Simple observer

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) \end{cases}$$

• **Observability given by** $rank(C, CA, ..., CA^{n-1})$

• Once the observability has been checked, define the observer:

$$\begin{cases} \dot{\hat{x}}(t) = A\hat{x} + Bu(t) + L(\hat{y}(t) - y(t)) \\ \hat{y}(t) = C\hat{x}(t) \end{cases}$$

with *L* such that $\Re(\operatorname{eig}(A + LC)) < 0$.

• Then \hat{x} tends to x asymptotically with a speed related to eig(A + LC)

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

• Linear systems (cntd.):

• convergence of the observer Define the error $e(t) := \hat{x}(t) - x(t)$. Then:

$$\dot{e}(t) = Ae(t) + L(\hat{y}(t) - y(t)) = (A + KC)e(t)$$

Hence, if $\Re(\operatorname{eig}(A + LC)) < 0$, $\lim_{t \to \infty} \hat{x}(t) = x(t)$

• Separation principle: the controller and the observer can be designed separately, if each are stable, their association will be stable

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approach

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

• Linear systems (cntd.): Kalman filter

.

$$\begin{cases} \dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(\hat{y}(t) - y(t)) \\ \hat{y}(t) = C\hat{x}(t) \end{cases}$$

• The way to chose L proposed by Kalman is:

$$AP + PA^{T} - PC^{T}W^{-1}CP + V + \delta P = 0$$
$$W = W^{T} > 0$$
$$L = -PC^{T}W^{-1}$$

with $\delta > 2 ||A||$ or $V = V^T > 0$.

- $\bullet~\delta$ enables to tunes the speed of convergence of the observer
- The observer can also be computed as $L = -S^{-1}C^TW^{-1}$ where

$$A^{\mathsf{T}}S + SA - C^{\mathsf{T}}W^{-1}C + SVS + \delta S = 0$$

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

• Time-varying linear systems:

$$\begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) \\ y(t) = C(t)x(t) \end{cases}$$

• Kalman filter:

with:

$$\begin{cases} \dot{\hat{x}} = A(t)\hat{x}(t) + B(t)u(t) + L(t)(\hat{y}(t) - y(t)) \\ \hat{y}(t) = C(t)\hat{x}(t) \end{cases}$$

$$\dot{P} = AP + PA^{T} - PC^{T}W^{-1}CP + V + \delta P$$

$$P(0) = P_{0} = P_{0}^{T} > 0$$

$$W = W^{T} > 0$$

$$L = -PC^{T}W^{-1}$$

$$\delta > 2 ||A|| \text{ or } V = V^{T} > 0$$

• δ enables to tunes the speed of convergence of the observer

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 163 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

• The observer can also be computed as $L = -S^{-1}C^TW^{-1}$ where

$$\dot{S} = A^{\mathsf{T}}S + SA - C^{\mathsf{T}}W^{-1}C + SVS + \delta S$$
$$S(0) = S_0 = S_0^{\mathsf{T}} > 0$$

• The observer is optimal in the sense that it minimizes

$$\int_{0}^{\tau} [C(\tau)z(\tau) - y(\tau)]^{T} W^{-1} [C(\tau)z(\tau) - y(\tau)] + [B(\tau)u(\tau)]^{T} V^{-1} [B(\tau)u(\tau)] d\tau + (x_{0} - \hat{x}_{0})^{T} P_{0}^{-1}(x_{0} - \hat{x}_{0})$$

- The observer is also optimal for
 - x is affected by a white noise w_x of variance V
 - y is affected by a white noise w_y of variance W
 - w_x and w_y are uncorrelated

• Nonlinear systems:

Observability

$$\begin{cases} \dot{x}(t) = f(x(t), u(t)) \\ y(t) = h(x(t)) \end{cases}$$

References

Nonlinear Control

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approach

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

• Linked with the notion that for two trajectories of the system x₁ and x₂ defined on [0, t], we must have

$$\int_{0}^{t} \|h(x_{1}(\tau)) - h(x_{2}(\tau))\| d\tau > 0 \text{ if } x_{1} \neq x_{2}$$

• Linked with the input:

$$\dot{x} = \begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix} x \quad y = \begin{pmatrix} 1 & 0 \end{pmatrix} x$$

is observable for any $u(t) \neq 0$ but not for u(t) = 0

• Extended Kalman filter (EKF):

with

$$\begin{cases} \dot{\hat{x}} = f(x(t), u(t)) - L(t)(\hat{y}(t) - y(t)) \\ \hat{y}(t) = h(\hat{x}(t)) \end{cases}$$

$$\dot{P} = AP + PA^{T} - PC^{T}W^{-1}CP + V + \delta P$$

$$P(0) = P_{0} = P_{0}^{T} > 0$$

$$W = W^{T} > 0$$

$$L = PC^{T}W^{-1}$$

$$\delta > 2 ||A|| \text{ or } V = V^{T} > 0$$

$$A = \frac{\partial f}{\partial x}(\hat{x}(t), u(t)) \quad C = \frac{\partial h}{\partial x}(\hat{x}(t))$$

• No guarantee of convergence (except for specific structure conditions)

Nonlinear Control N. Marchand

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 166 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approach

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

• Luenberger-Like observers

4

• For a system of the form:

$$\begin{cases} \dot{x}(t) = Ax(t) + \phi(Cx(t), u) \\ y(t) = Cx(t) \end{cases}$$

with (A, C) observable, if A - KC is stable, an observer is:

$$\dot{\hat{\mathbf{x}}}(t) = A\hat{\mathbf{x}}(t) + \phi(\mathbf{y}(t), \mathbf{u}(t)) - \mathcal{K}(C\hat{\mathbf{x}}(t) - \mathbf{y}(t))$$

• For a system of the form:

$$\begin{cases} \dot{x}(t) = A_0 x(t) + \varphi(x(t), u(t)) \\ y(t) = C_0 x(t) \end{cases}$$

with (A_0, C_0) are in canonical form, if $A_0 - K_0 C_0$ is stable, λ sufficiently large, φ global lipschitz and

$$\frac{\partial \phi_i}{\partial x_j}(x, u) = 0 \text{ for } j \ge i + 1$$

an observer is:

$$\dot{\hat{X}}(t) = A_0 \hat{X}(t) + \varphi(\hat{X}(t), u(t)) - \operatorname{diag}(\lambda, \lambda^2, \dots, \lambda^n) \mathcal{K}_0(C_0 \hat{X}(t) - y(t))$$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 167 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

• Kalman-Like observers

• For a system of the form:

$$\begin{cases} \dot{x}(t) = A(u(t))x(t) + B(u(t)) \\ y(t) = Cx(t) \end{cases}$$

an observer is:

$$\dot{\hat{\mathbf{X}}}(t) = A(u(t))\hat{\mathbf{X}}(t) + B(u(t)) - K(t)(C\hat{\mathbf{X}}(t) - \mathbf{y}(t))$$

with

$$\begin{split} \dot{P} &= A(u(t))P + PA^{T}(u(t)) - PC^{T}W^{-1}CP + V + \delta P \\ P(0) &= P_{0} = P_{0}^{T} > 0, \ W = W^{T} > 0 \\ \delta &> 2 \|A(u(t))\| \text{ or } V = V^{T} > 0 \\ L &= PC^{T}W^{-1} \end{split}$$

Master PSPI 2009-2010 168 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approach

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

• Kalman-Like observers (cntd.)

• For a system of the form:

$$\begin{cases} \dot{x}(t) = A_0(u(t), y(t))x(t) + \phi(x(t), u(t)) \\ y(t) = C_0 x(t) \end{cases}$$

with:

$$\begin{array}{rcl} A_0(u,y) & = & \begin{pmatrix} 0 & a_{12}(u,y) & & 0 \\ & & \ddots & & \\ 0 & & & 0 \end{pmatrix} \text{ bounded} \\ C_0 & = & \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} \\ \frac{\partial \varphi_i}{\partial x_j}(x,u) & = & 0 \text{ for } j \geq i+1 \end{array}$$

an observer is:

$$\begin{split} \dot{\hat{x}} &= A(u, y) \hat{x} + \varphi(\hat{x}, u) - \operatorname{diag}(\lambda, \lambda^2, \dots, \lambda^n) K_0(t) (C_0 \hat{x} - y) \\ \text{with} \quad \dot{P} &= \lambda \left(A(u(t)) P + P A^T(u(t)) - P C^T W^{-1} C P + \delta P \right) \\ P(0) &= P_0 = P_0^T > 0, \ W = W^T > 0 \\ \delta &> 2 \|A(u(t))\| \text{ and } \lambda \text{ large enough} \\ L &= P C^T W^{-1} \end{split}$$

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 169 / 174

References

Linear/Nonlinear

Not mentionned:

Sliding mode observers

 Optimal observers (robust, very efficient and easy to tune but costly)
 Based on something like:

$$\hat{x} = \operatorname{Arg\,min}_{x(\cdot)} \int_{t_0}^{t_1} \|h(x(\tau)) - y(\tau))\| d\tau$$

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 170 / 174

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear

approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatio

Observers

Observers

Application to the attitude estimation

• Application: attitude estimation

9 sensors:

- 3 triax accelerometers
- 3 triax gyrometers
- 3 triax magnetometers
- The accelerometers give:

where $C(q) = (q_0^2 - \vec{q}^T \vec{q})I_3 + 2(\vec{q}\vec{q}^T - q_0\vec{q}^{\times})$ is called the Rodrigues matrix, that is the rotation from the fixed frame to the mobile one.

• The magnetometers give:

$$\vec{b}_{mag} = C(q)\vec{h}_{mag} + \underbrace{\eta_{mag}}_{\text{noise}}$$

where \vec{h}_{mag} are the coordinates of the magnetic field in the fixed frame.

Nonlinear Control

Master PSPI 2009-2010 171 / 174

N. Marchand (gipsa-lab)

Observers

Application to the attitude estimation

• The gyrometers give:

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

N. Marchand (gipsa-lab)

$\vec{b}_{gyr} = \omega + \underbrace{\eta_{gyr_1}}_{\text{noise}} + \underbrace{\nu_{gyr_1}}_{\text{bias}}$

where \vec{h}_{mag} are the coordinates of the magnetic field in the fixed frame.

- The bias drift is the main error and it deteriorates the accuracy of the rate gyros on the low frequency band.
- We take:

$$\left\{ \begin{array}{l} \vec{b}_{gyr} = \omega + \eta_{gyr_1} + \nu_{gyr_1} \\ \dot{\nu}_{gyr_1} = -\frac{1}{\tau} \nu_{gyr_1} + \underbrace{\eta_{gyr_2}}_{\text{noise}} \end{array} \right.$$

Nonlinear Control

N. Marchand

References

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approaches

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilization

Observers

Observers

Application to the attitude estimation

Nonlinear observer for attitude estimation

An observer of the attitude can be:

$$\begin{cases} \dot{\hat{q}} = \frac{1}{2}\Omega(\vec{b}_{gyr} - \hat{\gamma}_{gyr_1} + K_1\varepsilon)\hat{q} \\ \dot{\hat{\gamma}} = -T^1\hat{\gamma} - K_2\varepsilon \end{cases}$$

where T is a diagonal matrix of time constant, K_i are positive definite matrices, ε is given by:

$$\varepsilon = \vec{q}_e \operatorname{sign}(q_{e_0})$$

where $q_e = (q_{e_0}, \vec{q}_e)$ is the quaternion error between the estimate \hat{q} and a direct projection obtained with \vec{b}_{mag} and \vec{b}_{acc}

Nonlinear Control

N. Marchand

References

Block diagram of the observer

Observers Application to the attitude estimation

Outline

Introduction

Linear/Nonlinear The X4 example

Linear approache

Antiwindup Linearization Gain scheduling

Stability

Nonlinear approaches

CLF Sliding mode Geometric control Recursive techniques X4 stabilizatior

Observers

N. Marchand (gipsa-lab)

Nonlinear Control

Master PSPI 2009-2010 174 / 174