
Supplementary Material —

JPEG Anti-Forensics with Improved Trade-off between Forensic
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This Supplementary Material is organized as follows. Sec. 1 shows why we set α = 1.51 in the first-round TV-
based deblocking. The p.m.f. of the rounded dithering signal when the Laplacian model is used is calculated in
Sec. 2. In Sec. 3, the constraints that λb should satisfy are described. Sec. 4 shows some example DCT histogram
results of our JPEG forgery. The two intermediate images generated during our JPEG forgery creation process
are compared with the JPEG image and our final JPEG forgery in Sec. 5. Finally, Secs. 6-7 present and compare
the experimental results for hiding traces of aligned double JPEG compression, and for fooling JPEG artifact
based image forgery localization, respectively, using JPEG anti-forensics.

1 Choosing the value for parameter α in the first-round TV-based

deblocking
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Figure 1: The quality and KL divergence change of the image after the first-round TV-based deblocking for
different values of α. The uncompressed image is used as the reference for computing the metric values. Results
are achieved by test on UCID92.

In order to select a good value for α (see the Eq. (8) in the paper) in the first-round TV-based deblocking,
we create a set of intermediate images F̂b for comparison. The test is conducted on UCID92. Each UCID92
image is JPEG compressed with a quality factor selected from {50, 51, · · · , 95}, and every two images have the
same quality factor. Then the processed images F̂b are generated from the JPEG images for different values of
α ranging from 0.5 to 3 with step 0.5.

As the first intermediate image during our JPEG anti-forensic image creation, the output of the JPEG
forensic detectors is not taken into account for comparison now. We hope F̂b to have a good image quality
and to recover as much DCT-domain information as possible for the consideration of the further perceptual
DCT histogram smoothing. From Figure 1-(a) to -(c), the average PSNR, SSIM, and KL divergence values
are respectively compared for different values of α. Note that all the metric values are computed using the
uncompressed image as the reference. We can see that the image quality, as well as the KL divergence, decreases
as α increases. When α > 2.5, the curve of the average KL divergence trends to be flat. We therefore only
consider α ≤ 2.5, as a high value of α will degrade too much the quality of the processed image, with limited
improvement on the KL divergence. In the end, we choose α = 1.5 as it appears to have a good trade-
off between the DCT histogram restoration quality (which will contribute to the perceptual DCT histogram
smoothing described in the Sec. IV-B of the paper) and the quality of the processed image.

1In this Supplementary Material, we may employ some notations or references in the paper without explanations, for the sake

of simplicity. Please refer to the paper for the details.
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2 Calculating the p.m.f. of the rounded dithering signal when the

Laplacian model is used

Here, we only consider AC components of the image. The probability density function (p.d.f.) of the distribution
of the dithering signal N is denoted as P (N = n|Y = y). P can be easily computed (please refer to the Eqs. (13)-
(15) in the paper for more information) according to the sign of the quantized DCT coefficient Y . Here, the
probability mass functions (p.m.f.) of the rounded dithering signal are calculated with domain defined as the

integer set {−⌊
Qr,c

2 ⌋,−⌊
Qr,c

2 ⌋+1, · · · , ⌊
Qr,c

2 ⌋}. Eqs. (1)-(2) below are the p.m.f. of the rounded dithering signal
for quantization bin 0 when Qr,c is an odd number and an even number, respectively. For quantization bin
b 6= 0, the p.m.f. of the rounded dithering signal are listed in Eqs. (3)-(6) according to the sign and the parity
of b.
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3 The constraints used for modeling the DCT coefficients

In the paper, for building the adaptive local dithering signal model for AC components, we combine the Laplacian
model and the uniform model together. A key point to establish the adaptive local model for the dithering
signal is that we try to find an appropriate parameter λb of the Laplacian model for each quantization bin b. If
we cannot find a valid value for λb, the uniform model is used instead for the current and following quantization
bin(s). The parameter λb is derived by solving a constrained weighted least-squares fitting problem (the Eq. (12)
in the paper), with λb bounded between λ−

b and λ+
b . In the paper, we show how to search for the bound λ+

b

(λ−
b is set as 10−3) for quantization bin 0 when Qr,c is an odd number, using a numerical method. Here we

explain how to search for the two bounds in other cases.

3.1 In the quantization bin 0 when Qr,c is an even number

The empirical observation tells us that in the distribution of DCT coefficients of AC component, the probability
of DCT coefficient decreases when the coefficient magnitude increases. Now we consider the quantization bin 0
when Qr,c is an even number.

As illustrated in Figure 2, the probability of DCT coefficient falling in the leftmost (or rightmost) integer
bin should be no smaller than either that in the rightmost integer bin of quantization bin −1 or that in the
leftmost integer bin of quantization bin 1. For the moment, the neighboring quantization bins −1 and 1 are
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quantization bin

Figure 2: For the quantization bin 0, the probability of DCT coefficient falling in the leftmost (or rightmost)
integer bin should be no smaller than either that in the rightmost integer bin of quantization bin −1 or that in
the leftmost integer bin of quantization bin 1.

assumed to follow a uniform distribution. Similarly to the case in the quantization bin 0 when Qr,c is an odd
number, we still set λ−

b = 10−3, whereas λ+
b can be found by solving:
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10−3≤λ≤1

λ, subject to: P e
m

(

N =
Qr,c

2 − 1|Y = 0
)

×M0 ≥ P e
m

(

N =
Qr,c

2 |Y = 0
)

×M0 +
1
2 max

(

M
−1

Qr,c
, M1

Qr,c

)

,

(7)
using a numerical method. Note that Mb (b = B−

r,c, B
−
r,c+1, · · · , B+

r,c) denotes the approximate probability that
the DCT coefficient falls in quantization bin b.

3.2 In the quantization bin b > 0

quantization bin

(a) Qr,c is an odd number

quantization bin

(b) Qr,c is an even number

Figure 3: For the quantization bin b > 0, the probability of DCT coefficient falling in the leftmost integer bin
should be no bigger than that in the rightmost integer bin of the neighboring quantization bin b− 1, meanwhile
the probability of coefficients falling in the rightmost integer bin of quantization bin b should be no smaller than
that in the leftmost integer bin of quantization bin b+ 1.

As illustrated in Figure 3 (a)-(b), we consider a quantization bin b > 0, when Qr,c is an odd number and an
even number, respectively. The probability of DCT coefficient falling in the leftmost integer bin of quantization
bin b should be no bigger than that in the rightmost integer bin of quantization bin b − 1. Meanwhile, the
probability of DCT coefficient falling in the rightmost integer bin of quantization bin b should be no smaller
than that in the leftmost integer bin of quantization bin b+ 1. As the building of the dithering signal model is
an iterative procedure, the distribution of the dithering signal N in the quantization bin b− 1 has already been
estimated in the last iteration. Hence, P o

m(N = n|Y = b − 1) or P e
m(N = n|Y = b − 1) is known. Moreover,

for the quantization bin b+ 1, its dithering signal is assumed to follow a uniform distribution for the moment.
Therefore, when Qr,c is an odd number, the constraints that λ−

b and λ+
b can be respectively found by solving:
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when Qr,c is an even number.

In other words, using a numerical method, λ−
b and λ+

b are found respectively as the smallest and largest
number in the interval [10−3, λb−1] satisfying certain constraints. Note that λb−1 is estimated from the last
iteration. If λ−

b and λ+
b cannot be found, the uniform model will be adopted for the current and following

quantization bin(s).

3.3 In the quantization bin b < 0

For the quantization bin b < 0, the procedure of building the dithering signal model is very similar to that for
quantization bin b > 0. For the sake of simplicity, we do not present the details here, but only give the equations
for searching λ−

b and λ+
b , that are:
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when Qr,c is an odd number, or:
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when Qr,c is an even number.
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4 Example DCT histogram results of our JPEG forgery

Figure 4 shows the DCT histograms of subbands (2, 2), (6, 4), (3, 7), and (8, 8) of the JPEG forgery (whose
close-up image is shown in the Fig. 9-(d) in the paper) created using the proposed JPEG anti-forensic method.
It can be seen that no noticeable artifacts appear in the DCT histogram.
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Figure 4: Example DCT histograms of the JPEG forgery created using the proposed JPEG anti-forensic method.
No noticeable comb-like DCT quantization artifacts appear.

5 Comparing intermediate images

Table 1: From the 2nd to the 8th columns, the minimal decision error for different kinds of images when tested
against different JPEG forensic detectors is listed; the image quality (with I as the reference) comparison is
reported in the last two columns. Results are achieved by test on UCID-v2 corpus

KF [3] KLuo [4] KQ
Luo [4] KV [7] KL [8] K1

U [12] K2
U [12] PSNR SSIM

J 0.0082 0 0.0052 0.0108 0.0374 0.0396 0.1928 37.0076 0.9920

F̂b 0.2948 0.4716 0.5000 0.1966 0.0893 0.3576 0.4447 36.6628 0.9891

F̂bq 0.1562 0.4817 0.4585 0.2182 0.0441 0.2556 0.3819 35.9023 0.9871
F 0.4477 0.3972 0.4996 0.3756 0.5000 0.4208 0.4701 35.9019 0.9866

In this section, we compare the two intermediate images, that are F̂b after the first-round TV-based de-
blocking, and F̂bq after the perceptual DCT histogram smoothing, with the JPEG image J and our final JPEG
forgery F .

As an extension of the Table V in the paper, Table 1 reports the anti-forensic performance against various
JPEG forensic detectors, and the image quality for the above four kinds of images. Results are achieved by
conducting test on UCID-v2 corpus. It can be seen that after the first-round TV-based deblocking, the anti-
forensic performance of F̂b against JPEG blocking artifact detectors KF , K

1
U , and K2

U has been improved,
though not as satisfactory as our final result F . Please note that it is important to explicitly smooth the DCT
histograms; otherwise the unfilled gaps in DCT histograms might be exposed, for example by the double JPEG
compression detector in [19] (see the Sec. VI-A and the Fig. 10 in the paper, the result of our previously proposed
method [12]). However, the cost is that, after the perceptual DCT histogram smoothing, some unnatural noise
and blocking artifacts must have been introduced in F̂bq. This is reflected by the minimal decision error change

for detectors KF , K
1
U , and K2

U , and by the image quality decrease of F̂bq compared with F̂b. Furthermore,
with the second-round TV-based deblocking and de-calibration operations, our final JPEG forgery F is able to
achieve satisfactory overall anti-forensic performance, with a very slight image quality loss compared to F̂bq.

Overall, by removing JPEG artifacts alternatively in the spatial and in the DCT domains, we are able to
drag the processed image out from the detection regions of multiple detectors working in different domains, at
the cost of a reasonable image quality loss.

6 Hiding traces of aligned double JPEG compression

In [17], Pevny and Fridrich proposed a method using the SVM with feature vectors formed by DCT histograms in
the low-frequency subbands to classify single and double JPEG compressed images. For constructing the feature
vector, they consider 9 low-frequency AC subbands, and for each of them a 16-bin histogram is computed. The
144-dimensional feature vectors are then fed to an SVM.

In order to train the SVM-based A-DJPG compression detector [17], each image in UCIDTrain is firstly
JPEG compressed with the primary quality factor QF1 and then compressed again with the secondary quality
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factor QF2 6= QF1 to create the A-DJPG compressed images. Here, QF1 ∈ {50, 56, 63, 69, 81, 88, 94}, and
QF2 = 75. The single JPEG compressed images are created by JPEG compressing the original uncompressed
images with QF2. Then we have 7× 669 + 669 = 5352 images for training the detector, using LIBSVM [41].

Each UCIDTest image is firstly JPEG compressed with QF1, and then compressed again with QF2 to create
the A-DJPG compressed images. During the two JPEG compressions, anti-forensic operations may occur.
Meanwhile, each UCIDTest image is JPEG compressed once with QF2 for creating the single JPEG compressed
image. For forensic testing, we create 7 datasets each of which has 5352 images as well. The name of the dataset
follows the pattern A-DJPG-R, as explained at the beginning of the Sec. VI of the paper.
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Figure 5: ROC curves of A-DJPG-R under the testing of the SVM-based A-DJPG compression detector [17].
Results are achieved by test on UCIDTrain and UCIDTest.

The ROC curves in Figure 5 show that the proposed method successfully masks the presence of double
JPEG compression artifacts. The minimal decision error of the A-DJPG compression detector [17] is increased
to 0.4985 for A-DJPG-F from 0.0915 for the training dataset and 0.1498 for A-DJPG-T. Other state-of-
the-art JPEG anti-forensic methods [5], [6], [9], [12], [13] achieve similar anti-forensic performance, however
with higher image quality loss than ours, as reported in Table 2. Among different anti-forensic double JPEG
compressed images, our forgeries have the highest visual quality (with the uncompressed image as the reference).

Table 2: Image quality (with the uncompressed image as the reference) comparison of (anti-forensic) double
JPEG compressed images created from UCIDTest for different datasets A-DJPG-R

-T -S -SS -V -Su -F0 -F
PSNR 34.9854 32.7570 30.1157 32.6701 30.7715 34.0804 34.3273
SSIM 0.9881 0.9685 0.9432 0.9762 0.9653 0.9802 0.9823

7 Fooling JPEG artifact based image forgery localization

Bianchi and Piva [16] derived a likelihood-map indicating the probability for each 8 × 8 block of being double
JPEG compressed, under the hypothesis of the presence of A-DJPG or NA-DJPG compression artifacts in the
tampered image.

We randomly select 100 images from UCIDTest for forensic testing and we call this small dataset UCIDTest100.
Following [16], we first compress each UCIDTest100 image with QF1; the resulting image is partly replaced using
the original uncompressed image, and then compressed again with QF2. After the primary JPEG compression,
image cropping and/or anti-forensics may occur. In total, 42 datasets are created considering different scenarios.
We name the dataset as LOC-E -DJPG-K/L-R, where the italic letters may change to represent different
scenarios. E can be ‘A’, or ‘NA’. ‘NA’ indicates that before the second compression the image is cropped by
a random shift (i, j) 6= (0, 0), 0 ≤ i, j ≤ 7; whereas ‘A’ means there is no image cropping happening. K/L
indicates how much portion of the image has undergone double JPEG compression, which also implies how
much portion of the image has been replaced by the original uncompressed image before the second JPEG com-
pression. When K/L is ‘1/2’, it indicates the left half of the image is replaced using the original image; when
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K/L is ‘15/16’, the central 1/16 portion of the image is replaced; when K/L is ‘1/16’, the whole image except
its central 1/16 portion is replaced. In all datasets, QF1 and QF2 are taken from {50, 56, 63, 69, 75, 81, 88, 94}
and {50, 56, 63, 69, 75, 81, 88, 94, 100}, respectively. Therefore each dataset has 8× 9× 100 = 7200 images.
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Figure 6: Average minimal decision error as a function of QF2 of the forgery localization detector [16], when
tested on LOC-E -DJPG-1/2-R, created from UCIDTest100.

Figure 6 shows the average minimal decision error averaged over all possible QF1 (under a fixed value of
QF2) achieved by the detector [16] for the scenarios where K/L is ‘1/2’, for different kinds of images. Note
that the results shown here are computed from the standard map instead of the simplified map (see [16] for
details). The blue curves demonstrate the effectiveness of the detector when no JPEG anti-forensics is applied
after the first compression. With the help of JPEG anti-forensics, the forgery localization detector [16] is no
longer reliable. Similar results are obtained for scenarios where K/L is ‘15/16’ or ‘1/16’. As reported in
Tables 3-4, our forgeries again achieve the best image visual quality among all kinds of forgeries.

Table 3: Image quality (with the uncompressed image as the reference) comparison of (anti-forensic) double
JPEG compressed images created from UCIDTest100 for different datasets LOC-A-DJPG-1/2-R

-T -S -SS -V -Su -F0 -F
PSNR 36.4957 34.8282 32.7239 34.7915 33.2092 35.7707 35.9792
SSIM 0.9899 0.9830 0.9686 0.9853 0.9785 0.9857 0.9869

Table 4: Image quality (with the uncompressed image as the reference) comparison of (anti-forensic) double
JPEG compressed images created from UCIDTest100 for different datasets LOC-NA-DJPG-1/2-R

-T -S -SS -V -Su -F0 -F
PSNR 36.2184 34.5754 32.6795 34.4153 33.1158 35.6269 35.8131
SSIM 0.9517 0.9186 0.9142 0.9290 0.9321 0.9448 0.9471

In Secs. 6-7 and the Sec. VI-A of the paper, we have shown the effectiveness of the proposed JPEG anti-
forensic method in disguising double JPEG compression artifacts. Obviously, our method is not the only JPEG
anti-forensic method which is able to achieve this goal. The advantage of our method is that the created anti-
forensic double JPEG compressed images have the highest visual quality among all the six kinds of forgeries
(see Tables 2-4 and the Table VII of the paper). Hence, our JPEG anti-forensic method is again proven to
achieve a better trade-off between the forensic undetectability and the image quality, in three applications of
hiding double JPEG compression artifacts.
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