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Abstract 

Although the segmental intelligibility of converted speech 

from silent speech using direct signal-to-signal mapping 

proposed by Toda et al. [1] is quite acceptable, listeners have 

sometimes difficulty in chunking the speech continuum into 

meaningful words due to incomplete phonetic cues provided 

by output signals. This paper studies another approach 

consisting in combining HMM-based statistical speech 

recognition and synthesis techniques, as well as training on 

aligned corpora, to convert silent speech to audible voice. By 

introducing phonological constraints, such systems are 

expected to improve the phonetic consistency of output 

signals. Facial movements are used in order to improve the 

performance of both recognition and synthesis procedures. 

The results show that including these movements improves 

the recognition rate by 6.2% and a final improvement of the 

spectral distortion by 2.7% is observed. The comparison 

between direct signal-to-signal and phonetic-based mappings 

is finally commented in this paper. 

Index Terms: audiovisual voice conversion, non-audible 

murmur, whispered speech, silent speech interface, HMM-

based conversion. 

1. Introduction 

Silent speech consists in articulating sounds with no or little 

vibration of the vocal cords in order to avoid being overheard 

[2]. Silent speech is commonly used in situations where 

private and confidential communication is required. However, 

it is hard to use it directly in telecommunication, especially 

with a cellular phone because of its poor intelligibility and 

unfamiliar perception. This problem challenges researchers 

with two questions: how to better capture silent speech/ 

articulation and how to convert it to audible voice? To cope 

with these challenges, several silent speech interfaces (SSI) 

have been proposed in the literature: motion capture of 

fleshpoints on the main speech articulators using 

Electromagnetic Articulography (EMA) sensors [3], real-time 

characterization of the vocal tract using ultrasound (US) and 

optical imaging of the tongue and lips [4][5], digital 

transformation of signals from a Non Audible Murmur 

(NAM) microphone [2][1][6][7], surface electromyography 

(sEMG) of the muscles or the larynx [8][9]. Together with 

these technologies, two main different approaches have been 

proposed to generate audible – and visible – speech from 

signatures of non audible articulation: 

1. Plugging a speech synthesis system to a speech 

recognizer [4][5]. The generation is quite straight-

forward: the recognizer segments the speech flow 

into phonemic units using both signal-dependent 

information and a more or less sophisticated 

language model. A standard speech synthesis 

system then converts this phonetic string into a 

synthetic voice either using the pre-recorded modal 

voice of the speaker or built-in available resources. 

The performance of such a system is mainly 

dependent on the recognition performance: correct 

recognition will result in a perfect reconstructed 

speech while recognition failures or inadequate 

language models result in drastic degradations. 

2. Mapping technique based on GMM model [10] 

[11][1] can be used to directly convert these signals 

into sound using aligned corpora: joint multi-frame 

representations of subvocal signals and speech are 

either stored or modeled and then used to perform 

direct estimation – or inversion – of speech given 

the sole representation of subvocal signals. This can 

be seen as a quantization or optimization process 

that estimates the most probable speech signal given 

the subvocal signals and an a priori joint model of 

the combination. The overall quality of the 

generated speech signals is more homogenous here 

since the active perception of the listener may 

compensate for impoverished output signals. No 

decision is made by the mapping system concerning 

the phonetic content of the message. Top-down 

constraints driving speech intelligibility are  all 

provided by the human perceiver. 

In both cases, a remaining challenge is the generation of 

voicing decision and melody – speaker-specific and language-

specific tones, accents and intonational patterns – that need to 

be estimated from non-modal phonation characterized by the 

absence of vocal folds vibration. Although subvocal 

articulation seems to still recruit motor neurons driving 

movements of laryngeal effectors resulting in observable 

EMG or small displacements of the larynx [12], this 

“phantom” activity has to be captured and transformed into 

meaningful melodic movements. So far most systems generate 

flat melody. Systems combining recognition and synthesis 

should rely either on language models or recognition of 

prosodic constituents to drive an intonation model. No such 

attempts have been reported in the literature so far. Although 

not completely flat, the synthetic melody computed by voice 

conversion techniques has a reduced dynamics. First attempts 

to focus on this generation step have been performed by Tran 

et al. [6]. We notably used large windows over the subvocal 

signals to estimate  suprasegmental features. The naturalness 

score is noticeably better but there is still much space left for 

improvement. 

In this paper, we focus on the segmental intelligibility of 

converted speech. We first study the impact of visual 

information for the HMM-based speech conversion system, 

for both recognition and synthesis tasks. Then, this system is 

compared with the GMM-based system proposed by Toda et 

al [1]. 



The paper is organized as follows. Section 2 describes 

some characteristics of the NAM microphone. Section 3 

describes the HMM-based whisper-to-speech conversion 

system, the promising contribution of visual information to 

this system and the comparison between the two approaches 

mentioned above. Finally, conclusions are drawn in Section 4. 

2. Non-audible murmur microphone 

Nakajima et al. [2] proposed a new communication interface 

which can capture acoustic vibrations in the vocal tract from a 

sensor placed on the skin, below the ear, called a NAM 

microphone. This microphone offers a high quality recording 

of various types of body transmitted speech such as normal 

speech, whisper and NAM. Body tissue and lip radiation act 

as a low-pass filter and the high frequency components are 

attenuated. However, the recorded spectral components still 

provide sufficient information to distinguish and recognize 

sound accurately. Currently, the NAM microphone can record 

sound with frequency components up to 4 kHz. Although this 

microphone is little sensitive to noise when using simulated 

noise, its performance decreases in real noise environment 

because of the Lombard reflex effect [13]. Figure 1 shows an 

example of whispered speech captured by this microphone. 

Note that the signal delivered by the NAM microphone is 

highly sensitive to bursts of stop consonants. 

 

 

Figure 1: Whispered speech captured by a NAM 

sensor for the French utterance: “Armstrong tombe 

et s'envole” ([amstRõg tõb e sãvol]). 

3. Audiovisual HMM-based conversion 

During speech production, humans produce sounds by 

controlling the configuration of oral cavities. The speech 

articulators determine the resonance characteristics of the 

vocal tract. Movements of visible articulators such as the jaw 

and lips are known to significantly contribute to the 

intelligibility of speech during face-to-face communication. In 

the field of person-machine communication, visual 

information can be helpful both as input and output 

modalities, especially in the case of silent speech [6][7]. 

3.1. Audiovisual corpus 

The conversion system is built using audiovisual data 

pronounced by a native Japanese speaker (the corpus is 

described in [6]). Two speech modes were recorded: whisper 

and normal (modal) speech. The system captures, at a 

sampling rate of 50 Hz, the 3D positions of 142 coloured 

beads glued on the speaker's face (see Figure 2) in synchrony 

with the acoustic signal sampled at 16000 Hz. 

 

 

Figure 2: Characteristic points used for capturing the 

movements. 

3.2. Visual parameters extraction 

A shape model is built using a so-called guided Principal 

Component Analysis (PCA) where a priori knowledge is 

introduced during a linear decomposition. We compute and 

iteratively subtract predictors using carefully chosen data 

subsets [14], for a given speaker and a given language. For 

speech movements and for our particular Japanese speaker, 

this methodology extracts 5 components that are directly 

related to the rotation of the jaw, to lip rounding, to upper and 

lower lip vertical movements and to movements of the throat 

associated with underlying movements of the larynx and 

hyoid bone. The resulting articulatory model also includes 

components for head movements and facial expressions but 

only components related to speech articulation are considered 

here. 

3.3. Conversion system overview 

In order to compare the performance of the GMM-based 

voice conversion technique [1][6] with the approach of 

combining NAM recognition and speech synthesis, a multi-

streams HMM-based whisper-to-speech conversion system 

was developed. It combines 2 modules, namely HMM 

recognition and HMM synthesis: instead of the corpus-based 

synthesis proposed in [5], we use HMM-based synthesis, as 

described in [15]. The voice conversion is performed in three 

steps: 

1. Using aligned training utterances, the joint probability 

densities of source and target parameters and duration 

probability distribution are modeled by context-

dependent phone-sized HMM. Static and dynamic 

acoustic and visual parameters of source and target 

are stored separately in 4 streams (whispered spectral 

stream, whispered visual stream, speech spectral 

stream and speech visual stream). Because of limited 

training data, we only used the right context for the 

acoustic models, where subsequent phonemes are 

classified coarsely into 3 groups for vowels ({/a/}, 

{/i/,/e/}, {/u/,/o/} without distinguishing between long 

and short vowels) and 7 groups for consonants: 

bilabials ({/p/,/pj/},{/b/,/bj/},{/m/,/mj/}), alveolars 

(/d/,/t/,/n/,/nj/,/s/,/ts/,/z/,/j/), palatals  (/�/,/t�/,/�/), ve-

lars ({/k/,/kj/},{/g/,/gj/}), /f/, /w/ and others ({/h/,/hj/}, 

{/r/,/rj/}). We add /f/ and /w/ to the context because 

they are visually distinguished from other consonants 

(see figure 3). Silences are also classified into 2 

groups for utterance-final and internal silences. 

Gaussian mixtures with two Gaussians and diagonal 

covariance matrices are used to model the joint 

observations of each HMM state. 

2. HMM-based recognition is performed using the 

source streams (acoustic and visual) with the HTK 

toolkit [16]. The linguistic model is limited to phone 

bi-grams learnt on the training corpus. 



3. HMM-based synthesis of the recognized context-

dependent phone sequence and target streams 

(separately acoustic and visual) is performed using the 

HTS software [15][17]. 

 

 

Figure 3: Confusion tree of whispered visual 

movements of consonants (the smaller the ordinate, 

the more confused the two categories are) 

3.4. Experiments and results 

The Japanese data consists in 150 utterances for training and 

40 utterances for the test. The 0th through 19th mel-cepstral 

coefficients extracted by STRAIGHT [18] and their first 

deltas are used as spectral features while 5 visual parameters 

and their first deltas are used to characterize the movements 

of the jaw and lips, for both aligned modal speech and 

whisper. 

3.4.1. Impact of visual information for recognition 

Table 1 provides the recognition scores for all phones as well 

as separately for all vowels and consonants presented in the 

test corpus. These results show the positive contribution of 

visual information for the recognition task. On average, all 

phones considered, the input facial movements improve 

recognition rate by 6.2 % (65.24 % to 71.43 %). In the case of 

vowel recognition, the accuracy obtained by using the visual 

information is 76.45 %, showing an improvement of 8.7 % 

compared with using acoustic information only. In the case of 

consonant recognition, this improvement is of 7%. The lesser 

improvement of consonants compare to that of vowels can be 

attributed to the large number of labial doubles for Japanese 

consonants. 

Table 2 shows the contribution of facial movements to the 

recognition of consonants considering the place of 

articulation. The consonants are classified into 4 groups: 

bilabials, alveolars, palatals and velars. The bilabials benefit 

from a very significant improvement (27.6%) while alveolars 

display only a slight improvement (4.5%). Note that facial 

movements also benefit surprisingly to the other consonants 

(17.4% improvement for velars and 14.4% degradation for 

palatals respectively). The small number occurrences of velars 

and palatals in the test corpus probably cause this 

phenomenon. The small facial movements cueing these 

phones should in fact have no significant impact on their 

recognition. 

Table 1. Recognition ratio for all vowels, consonants 

and all the phones represented in the test corpus. 

Phones AU (%) AUVI 

(%) 

Vowels 67.79 76.45 

Consonants 61.65 68.68 

All phones 65.24 71.43 

Table 2. Recognition ratio with different places of 

articulation. 

Phones AU (%) AUVI 

(%) 

Bilabials 53.27 80.83 

Palatals 74.98 60.6 

Alveolars 67.06 71.51 

Velars 63.25 80.65 

Table 3. Cepstral distortion between converted speech 

and target speech (dB). 

System AU AUVI 

GMM 5.99 5.77 

HMM 6.58 6.4 

3.4.2. Impact of visual information for synthesis 

The GMM-based system that we used as a reference for this 

comparison is described in [1][6]. A GMM with 16 gaussians, 

full covariance matrix is used for the spectral estimation. 

Global variance is also used to reduce the over-smoothing, 

which is inevitable in the conventional ML-based parameter 

estimation [19]. 

Table 3 compares the contribution of visual information 

for the intelligibility of converted speech in terms of cepstral 

distortion between target speech and synthesized speech, with 

the two systems. Although facial movements have a positive 

contribution in both systems (cepstral distortion relatively 

decreases by 2.7% from 6.58 dB to 6.4 dB), the performance 

of the HMM-based system is currently inferior compared with 

the direct signal-to-signal system based on GMM model. This 

inferior score could be explained by two reasons. First, the 

diagonal covariance currently used for each state of the 

models in the HMM-based system does not take into account 

the covariance between whispered speech parameters and 

speech parameters, but the GMM-based system does, by using 

a full covariance matrix. Second, synthesis and recognition 

are used separately, therefore the trained HMM models tend 

to minimize the recognition error, but not the final 

reconstruction error. 

Figure 4 shows an example of converted speech by the 

two systems. The formant structures of the GMM-based 

converted speech is clearer than the other one. 

4. Conclusions 

This paper describes audio-visual whisper to speech 

conversion that couples a speech synthesis system with a 

speech recognizer. The facial movements act as a 

compensation for lip radiation loss in the signal captured by 

the NAM microphone. This noticeably improves the 

performance of such a system, especially for the recognition 

task. The experimental results also show that this influence 

depends on place of articulation. Although the performance of 



such a system is currently inferior to the GMM based system, 

we hope that by modeling the covariance between whispered 

speech parameters and speech parameters, using more data, 

extending the acoustic models as well as the linguistic model, 

and by using global variance, the performance of this system 

will further improve. 

In particular, we  think that a more intimate coupling of 

recognition and synthesis – obtained for example by 

considering trajectory formation accuracy in HMM training or 

by considering N-best solutions in the synthesis process –  

should overcome the limitation of the proposed approach. 

/converted speech by GMM/ 

 
 

/converted speech by HMM/ 

 
 

/target speech/ 

 

Figure 4: Whispered speech captured by a NAM 

sensor for the utterance: “tamanegi jagaimo”. 
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