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ABSTRACT:  We present here a framework for developing a generic talking head capable of 

reproducing the anatomy and the facial deformations induced by speech movements with only 

a few parameters. Speech-related facial movements are controlled by six parameters. We 

characterize the skull and mandible variability by six and seven free parameters respectively. 

Speaker-specific skull, jaw and face data are normalized using generic meshes of these 

organs and a robust 3D-to-3D matching procedure. Further analysis of these normalized data 

is performed using a decomposition of the 3D variance based on iterative principal component 

analysis aimed at identifying and predicting kinematic consequences of anatomical settings. 

INTRODUCTION 

Speech articulation has clear visible consequences. While the movements of the lips and the cheeks 

are immediately visible, the movements of the underlying musculo-skeletal structure (jaw, larynx and 

tongue) also have visible consequences on the skin. Building biomechanical/statistical models that can 

reproduce/capture the visible characteristics of speech articulation is a prerequisite for comprehensive 

models of audiovisual integration, multimodal speech production and control. Most models of articulatory 

control of speech articulators (see Badin, Bailly et al. 2002, for a review) are based on data from only a 

few subjects, sometimes only one. A main challenge of speech production studies is now to consider 

the problem of inter-speaker variability: if we share the same underlying anatomical structures, speakers 

differ in the way they recruit and coordinate speech organs. Part of this variability is effectively due to the 

anatomical differences (Hashi, Westbury et al. 1998) but part is also due to different control strategies 



Bérar et al.  Morphing generic speech organs 

 2/26 

exploiting articulatory degrees-of-freedom in excess. Besides understanding inter-speaker variability in 

articulation, there is also a clear technological need for generic models that can be adapted to speaker-

specific anatomy and movements: systems such as model-based computer vision (Eisert and Girod 

1998; Pighin, Szeliski et al. 1999) or MPEG-4/SNHC coding scheme (Pandzic and Forchheimer 2002) 

require a generic mesh to be adapted to a real speaker via separate conformation and animation 

parameters to a real speaker. MPEG-4 Facial Animation Parameters (FAP) and Facial Definition 

Parameters (FDP) constitute a tentative separation between speaker-independent articulation 

parameters and speaker-specific conformation parameters. FAP (respectively FDP) describe movements 

(respectively neutral position) of facial/lingual fleshpoints in terms of normalized values related to five 

FAP units, i.e. reference lengths for nose length, lip width at rest, etc. This normalization scheme that 

shapes both conformation (FDP) and articulation (FAP) has no real experimental grounds and should be 

tested using real data. 

The first aim of this work is to relate free dimensions of speaker anatomy – supposed to be mainly due 

to bony structures such as shape of the skull and jaw – to free dimensions of its facial appearance and 

movements. Static relations are primarily of interest for anthropology and forensic medicine (see for 

example Kähler, Haber et al. 2003) when there is only access to dry bones for building hypotheses 

about subjects’ appearance. For this purpose, statistical models can effectively provide reconstructions 

together with statistical precision. Kinematic relations , by contrast, are of interest not only for vision 

applications but also for maxillofacial surgery, where prediction of functional behavior from anatomical 

changes is of crucial for pre-surgical planning. 

Another challenge of this work is to relate these detailed shape models to the dimensions of feature 

points - such as cephalometric points (e.g. glabella, porion for the skull) or to motion capture data 

typically restricted to a few hundred dots glued on the speaker’s face - that can be rapidly and easily 

acquired using simple 3D measurements. 

Our approach consists in building a articulated atlas that can be adapted to the speaker’s anatomy via 

conformation parameters. These conformation parameters relate both to free parameters of the 

underlying bony structure (skull, jaw, hyoid bone, etc) and their relative positioning but also to mean 
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shape of skin tissues (lips, cheeks, etc). These conformation parameters further determine how basic 

speech-specific articulatory movements (jaw rotation, lip rounding, etc) deform the speaker’s facial 

shape and appearance. An articulated atlas is built using a collection of speaker-specific data and 

intensive statistical analysis (see Figure XXX.1). The paper focuses here on the key component of the 

system: the 3D-to-3D matching procedure 

This paper describes our approach for building shape models by adapting a static generic model to 

speaker-specific static raw X-ray tomography (sections 1 and 2) and motion capture data (sections 3 

and 4). An extension of this approach to appearance models is also sketched. Section 1 describes how 

we obtain a normalized speaker-specific skull and mandible using a 3D-to-3D matching procedure. 

Section 2 explores the free dimensions of skull and mandible shape models using CT-scans from 12 

subjects. Section 3 presents how fine-grained speaker-specific facial movements have been collected 

and modelled for 5 subjects. Section 4 focuses on how the 3D-to-3D matching procedure has been 

extended to speaker-specific shape models able to reproduce faithfully speech-related facial movements 

of our five subjects. Finally, section 5 presents the guidelines for further linking kinematic degrees-of-

freedom to morphological parameters. 
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Figure XXX.1. Building an articulated atlas dedicated to speech articulation from speaker-specific data. A 

3D-to-3D matching procedure delivers meshes with the same number of vertices. The matched vertices 

should refer to identical – in structural terms - facial and bony landmarks. A further statistical analysis 

then identifies the speaker-specific impact of basic speech–specific articulations (jaw rotation, lip 

rounding, etc). 

 

 (a) (b) (c) 

Figure XXX.2. (a) raw scan data (only coronal slices were collected; midsagital and axial have been 

reconstructed here by image processing), (b) shape reconstructed using the marching cube algorithm 

(Lorensen and Cline 1987); (c) generic mesh obtained from the Visible Woman Project®. 

1 BUILDING NORMALIZED SHAPES FOR THE SKULL 

In order to quantify the anatomical differences between speakers, we would like to construct a statistical 

model of the variability of the morphology of the skull. As each skull shape should share the same mesh 

structure with the same number of vertices (see section 5), we need to register all the meshes in a 

subject-shared reference system. In our system, the triangles for a region of the skull are the same for 

all subjects, while the variability of the position of the vertices will reflect the anatomical characteristics 

of each subject. The vertices of these shared meshes can be considered as semi-landmarks, i.e. as 

points that do not have names but that correspond to each other across all the cases of a data set 

under a reasonable model of deformation from their common mean (Bookstein 1997). The shared 

meshes are obtained by matching generic meshes of the skull and the jaw (see Figure XXX.2c) to 

several speaker-specific meshes (see section 1.2 and Figure XXX.2b) using our 3D-to-3D matching 

algorithm. 
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 (a) (b) 

Figure XXX.3. Applying a trilinear transformation to a cube. (a) 2D simplification of a subdivision into n=4 

elementary volumes of the original space and new transformation vectors; (b) elementary 3D 

transformation within a cube. 

1.1 3D-to-3D matching 

The basic principle of the 3D-to-3D matching procedure developed by Couteau et al (2000) consists 

basically of the deformation of the initial 3D space by a series of trilinear transformations Tl (see 

Wolberg 1990, for more details) applied to all vertices qi of elementary cubes (see also Figure XXX.3): 
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The parameters p of each trilinear transformation Tl are computed iteratively using the minimization of a 

cost function (see Eq.2 below). The elementary cubes are determined by iteratively subdividing the input 

space (see Figure XXX.3) in order to minimize the Euclidian distance between the 3D surfaces: 
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where SS is the source surface to be adjusted to the set of points {ti} of the target surface ST, p the 

parameters of the transformations T (6 parameters of the initial rototranslation of the reference 

coordinate system plus 3x8 parameters for each embedded trilinear transformation) applied to the set of 

points {si} of SS. P(p) is a regularization function that guarantees the continuity of the transformations at 

the limits of each subdivision of the 3D space and that allows larger deformations for smaller 

subdivisions. The second term weighted by the factor Rw deals with feature points and was added for 
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this study. Rw compensates for the few paired points usually available. Its value is set with a high value 

at the first mapping for forcing pairing. It can then be decreased once transformed and target surfaces 

are close enough. In Eq.2, the first term deals with the distance between the points and the surface 

(considering the projection of each point onto the deformed surface). The second term deals with point-

to-point distance: a set of 3D feature points {tk} of the target surface ST are identified and paired with {sk} 

vertices of the source surface SS. The minimization is performed using the Levenberg-Marquardt 

algorithm (Szeliski and Lavallée 1996). 

1.2 Data Collection Protocol 

Data collection 

Coronal CT slices (see Figure XXX.2a) were collected for the partial skulls of 12 subjects (helical scan 

with a 1-mm pitch and slices reconstructed every 0.31 mm or 0.48 mm). The Marching Cubes algorithm 

(Lorensen and Cline 1987) has been implemented to reconstruct the skull from CT slices on isosurfaces 

(see Figure XXX.2b). The mandible and the skull are separated before the beginning of the matching 

process, our subjects having different mandible apertures. Speaker-specific meshes for the skull and jaw 

have respectively around 180000 and 30000 vertices. The respective generic meshes recovered from the 

female speaker of the Visible Human Project (Banvard 2002) have 3473 and 1100 vertices (see Figure 

XXX.2c). We then use our 3D-to-3D matching algorithm, obtaining separate normalized meshes of these 

organs. 

 

Figure XXX.4: Projection of the transformed mesh on the original data. Except in the condyle region, each 

part of the mesh is well matched (red and orange less than 1 and 2 mm respectively). 
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Mandible Registration 

The transformed mandible is well-matched to the closest surface but the correspondence between the 

two surfaces is false (see Figure XXX.4). The “single distance” approach leads to many mismatches in 

the condyle and gonial angle regions: this is due to the necessary difference of density between the 

source and target meshes (number of vertices respectively 30 and 70 times larger in the source meshes 

than in the target meshes). In this case, the distance from the transformed source to the target 

( )( )Ti SpsTd ,,  is very low whereas the adaptation of the target to the source may result in a much larger 

distance ( )( )Si SptTd ,,  (see Figure XXX.5). Part of this mismatch is due to the problem of identification 

of the internal vs. external surfaces from CT scans. This could be solved by exploiting more intensively 

surface normals if reliable. Paired feature points could also have been used (as for the skin in section 

4.1 below) but the dramatic disproportion between the number of vertices and feature points cause for 

instance too many problems of convergence: point-to-point pairing in this case should be replaced by 

the association of a target point with an entire region of the source. However this point-to-region pairing 

should be adapted during the matching process and often results in too many local deformations. 

    

 (a) source cone (b) target sphere (c) standard matching (d) symmetric matching 

Figure XXX.5: Matching a cone (a) to a sphere (b). (c) Mismatched cone using the standard matching 

method. (d) Matched cone using the symmetric matching method. 

The problem of matching symmetry can be better observed using very different synthetic shapes. In 

Figure XXX.5, the mismatched cone is well-matched considering the first distance but is flattened on one 

border of the sphere. We therefore symmetrize the minimization function of Eq.2 (as in Moshfeghi 1991) 
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by adding a term that computes also the distance of the target mesh to the transformed source mesh 

using the pseudo-inverse transform T-1 in the following way: 

( )( )[ ] ( )( )[ ] ( )( )[ ] ( )
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Figure XXX.6: Projection of the transformed mesh on the original data using the symmetric matching. 

Using such a symmetric matching to mandible meshes (see Figure XXX.6), the maximal distances are 

located now on the teeth and on the coronoid process. The mean distances can be considered as the 

registration noise, again due to the difference of density (see Table XXX.1). 

Table XXX.1: Mean distances between transformed and target jaw meshes. 

Generic->Scan Scan->Generic Distances 
(mm) mean max. mean max. 

Single 1.27 9.28 5.80 56.87 

Symmetric 1.33 8.42 2.57 22.78 
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Figure XXX.7: Histogram of distances (mm) between points of the transform mesh to the target mesh. Left 

: for the jaw; right for the skull. 

Skull Registration 

We possess complete skull volume data for only 2 of our subjects (since these data were collected 

during regular medical exams and excitation of the brain volume is avoided if not necessary). We 

therefore choose to first register a partial mesh of each skull, using cutting planes adjusted by hand. 

Symmetric matching insures better registration, as the partial mesh and the original data have equivalent 

shapes. 

We then register the whole mesh to its transformed part ensuring a transformation with low noise as 

each vertex of the transformed partial mesh has an equivalent in the whole mesh. During this step, the 

cranial vault is (most of the time) inferred from the border of the skull, using the continuity of the 

transformation; hence, it cannot be considered accurate. 

 

 (a) (b) (c) 

Figure XXX.8. (a) partial transformed mesh; (b) final transformed generic mesh with its distance to the 

scan  (red less than 1 mm, orange less than 2 mm, yellow, less than 5 mm); (c) projection of the 

transformed mesh on the original data. The location of the styloid processes is emphasized. 

The maximal distances found in the resulting mesh are situated in the spikes beneath the skull, where 

the individual variability is large and the surface noise too high to be fitted even with elastic 

transformations. Moreover calcified styloid processes are only partially recovered from the scans. The 

nasal bone and the back of the skull are often matched to the internal scan contour (which should be 

corrected using normal information). At the end of the process, the mean and maximum absolute 

distances between the target and transformed meshes - cumulated across subjects - are respectively 2 

and 8 mm for the jaw and 4 and 36 mm for the skull (see distance histograms for one subject in Figure 

XXX.7). The mean RMS noise level at the end of the process is 5 mm. The large maximal error for the 
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skull is due to the high variable shape (or more exactly the length) of the styloid processes (see Figure 

XXX.8). This part of the skull is too small and thin – like the anterior nasal spine and teeth - to be exactly 

morphed by a trilinear transformation of the space without any further surface pairing. When these 

regions are discarded, the maximum error is less than 6mm. 

2 A GENERIC SHAPE MODEL FOR THE SKULL 

We first fit the twelve matched skulls and jaws on mean configurations using Procrustes normalization 

(Dryden and Mardia 1998). 7 degrees of freedom due to initial location and scale are retrieved by this fit 

(three due to translation along three axes, three due to rotations about three axes, one for scale 

adjustment). We then perform a Principal Component analysis on the normalized data to build a linear 

model of shape variation. We compress the model to six principal modes of deformation for the skull and 

seven principal modes of deformation for the mandible. These principal modes of deformation represent 

95% of the variance of the data and explain a large amount of shape variation. 

2.1 Skull 

For the case of the skull, six principal dimensions explain over 95% of the variability of the shapes (see 

Table XXX.2). Figure XXX.9 displays these dimensions. The first parameter influences variations of the 

volume of the skull (this should not be considered since part of this skull is obtained by extrapolation 

using the T transform outside of the fitting volume) together with the advance of the lacrimal and nasal 

bones. The second parameter acts upon the relative width of the skull and the prominence of the 

maxilla. The third parameter is linked to the size of the temporal bones. The fourth parameter is 

correlated to the height of the orbita. The fifth parameter is linked to the shape of the forehead. The sixth 

parameter deals with an asymmetry of the left part of the skull (temporal bone and orbita). 

The accuracy of the reconstruction (see Figure XXX.10) is under the millimeter in the shape space (after 

rigid registration) even for the “worst” individual. Before Procrutes registration, the mean reconstruction 

accuracy is less than 1 mm but the worst individual is at 3 mm. 

Table XXX.2: Percentage (cumulative) of variance explained for the 3D skull and jaw data explained. 

Factors F1 F2 F3 F4 F5 F6 F7 
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Skull 46.1 19.9(66.0) 14.4(80.4) 6.2(86.6) 4.8(91.4) 3.7(95.1)  
Jaw 28.4 25.3(53.7) 14.8(68.5) 9.2(77.7) 8.0(85.7) 6.3(91.9) 4.2(96.1) 

Jaw by skull 
factors 

5.7 10.8(16.5) 19.8(36.2) 22.6(58.9) 9.5(68.4) 10.1(78.5)  

 

Figure XXX.9: Variations of the skull shape according to the six modes for parameters varying between +3 

and –3 times the standard deviation. Maximum and minimum fitting volume (that depends on available CT 

scan data) is indicated on the first mode. 

Mode 1 

Mode 3 

Mode 5 

Mode 2 

Mode 4 

Mode 6 
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Figure XXX.10: Mean and maximum reconstruction errors of the skull and jaw using an increasing number 

of modes. 

We processed scan data from two test individuals not included in the training database. Mode values 

obtained by regression are less than 3 standard deviation (see Table XXX.3) and in most cases less than 

1 standard deviation. The mean accuracy of their reconstruction is 4 mm for the skull, which is less than 

the RMS registration noise. 

Table XXX.3: Mode values of two test subjects (normalized by standard deviation) 

Factors F1 F2 F3 F4 F5 F6 F7 
Skull -1.2/-0.7 0.4/-0.5 0.4/ 0.0 0.3/-3,0 0.6/-0.7 0.6/-0.3 

Mandible 0.1/ 0.4 0.3/-0.4 0.1/-0.8 0.2/-1.8 1.3/ 0.3 0.0/-0.1 0.9/-0.1 

 

2.2 Mandible 

Seven principal modes (see Table XXX.2) emerge from Principal Component analysis performed on the 

mandible data. Figure XXX.11 displays these dimensions. The first parameter explains the variation of 

the goniac angle and the size of the alveolar region, while the second parameter controls the relative 

size of the condylar and coronoid processes and correction of the goniac angle. 
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Figure XXX.11: : Variations of the mandible shape according to the six modes for parameters varying 

between +3 and –3 standard deviation. . 

2.3 Co-dependency of mandible and skull 

If we perform regression analysis on the mandible data using the shape parameters found for their skull 

counterparts, we can explain up to 78 % of the variability of the shape of the mandibles (see Table 

XXX.2). The parameters with strong influences are the third and first skull parameters, which are 

responsible for the relative width of the skull and the shape and size of the maxilla. 

 

Figure XXX.12: Augmented reality obtained by merging a speaker-specific shape model of the face and 

tongue with morphed generic models of the skull and the jaw. 
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Mode 6 
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2.4 Comments 

This enhanced 3D-to-3D matching procedure has been intensively used for regularizing and morphing 

meshes to patient data in the context of medical applications. The transformed meshes registered from 

static scans are then often used to track organs in motion. This is of particular interest for non-rigid 

organs such as soft tissues. (Bio-)mechanical properties bound to the generic mesh can effectively be 

used to restrict deformations. These properties can be inherited from biomechanical models (Couteau, 

Payan et al. 2000). We propose here to build generic models of soft tissues that can be adapted to the 

target subject. We follow the same procedure as above, relying on intensive collection of motion-capture 

data. The ultimate aim of this work is to be able to morph generic models of rigid and soft tissues to a 

target speaker (see Figure XXX.12) while predicting as much as possible the mechanical properties of 

the transformed articulations and soft tissues. 
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.  

(a) building an articulated mesh from fleshpoints 

    

(b) the generic and transformed meshes 

Figure XXX.13: Combining a low-definition articulated mesh with a static high-definition facial mesh 

developed by Pighin et al. (1998). 

3 SPEAKER-SPECIFIC TALKING HEADS 

When using video rewriting (Ezzat, Geiger et al. 2002; Bregler, Covell et al. 1997b) or 3D animation models 

(Guenter, Grimm et al. 1998; Pighin, Szeliski et al. 1999), all systems use a speaker-specific shape that 

computes the displacement of key facial fleshpoints. Motion capture devices (e.g. Qualisys, Vicon) 

deliver in real-time and with excellent precision (typically less than half a millimeter) the 3D positions of 

pellets or beads glued on the subject’s face. Due to the technique used (retro-luminescent markers 

illuminated with infra-red light), the number and density of facial fleshpoints is actually quite limited. 

Moreover lip shape could not be tracked this way: beads could only be glued onto the dry part of the lips 

and such a setting would strongly affect the speaker’s performance. 
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3.1 Speaker-specific shape models 

Using a very simple photogrammetric method and up-to-date calibration procedures, we recorded several 

dozen prototypical configurations of our speakers whose faces were marked with n>200 colored beads 

(on the cheek, mouth, nose, chin and front neck areas), as depicted in the leftmost image of Figure 

XXX.13.a. In a coordinate system linked with the bite plane, every viseme is characterized by a set of n 

3D points including positions of the lower teeth and of 30 points characterizing the speaker’s lip shape 

(for further details see Revéret, Bailly et al. 2000; Elisei, Odisio et al. 2001). Although these shapes have 

potentially 3*n geometric degrees-of-freedom (DOF), we show that 6 DOFs already explain over 95% of 

the variance of the data. Using Principal Component Analysis (PCA) Yehia et al. (1998) have also 

obtained similar results. In our case, the DOFs are derived by successive PCA applied to residual data 

of specific regions. The DOFs have thus a clear articulatory interpretation and can be labeled a priori. 

For jaw opening, the first component of a PCA applied to the feature points along the jaw line and the 

chin is extracted. Lip protrusion and lip opening DOFs are also identified considering only the 

movements of the lips. Although determined using only a subset of the residual data, a linear regression 

between each DOF and the entire residual is performed and the residual for the next DOF computed for 

a further reduction of the explained variance. More subtle parameters such as lip raising, jaw advance or 

independent vertical movements of the throat clearly emerge from this guided linear analysis. In Eq.4 

below, M is the mean position of the facial points and A is a matrix containing the set of linear 

regressions successively performed using the DOFs α : 

α⋅+= AMP  (Eq. 4) 

The control parameters a influence independently the movements of the whole lower face (e.g. the 

grooving of the nasogenian wrinkles and the expansion of the nose wings accompanying lip spreading in 

Figure XXX.14.c). These influences are sometimes subtle and distributed all over the face, but should not 

be neglected since interlocutors should be quite sensitive to laws governing biological motion (e.g. the 

experiments of Runeson et al (1981; 1983) with body movements when carrying imaginary versus real 

loads). Although its crude linear assumptions do not take into account, for now, saturation due to tissue 

compression, this technique nevertheless renders nicely the subtle interaction between speech organs 

and facial parts (such as the formation of wrinkles or movements of the nose wings mentioned above). 
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Furthermore these “subtle” movements are necessary for rendering faithfully certain visemes: 

labiodentals (e.g. [v], [f]) require both retraction of the jaw and raising of both lips to ensure contact 

between the lower lip and the upper teeth; whereas palatal fricatives (e.g. [S] [Z] require both lip rounding 

and large aperture. Similarly jaw protrusion is required in all allophonic variations of [s] for carrying the 

tongue front and upwards. 

 

 (a) jaw down/up (b) jaw back/front 

 

 (c) lips spread/round (d) upper lip up/down 

Figure XXX.14: Elementary speech movements extracted from statistical analysis of motion capture data. 
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Figure XXX.15: Shape and appearance changes associated with extreme variations along the first lip 

component (rounding/spreading) for two speakers. Shape-free textures (as in Cootes, Edwards et al. 

2001) have been obtained from image data with colored beads. 

3.2 Speaker-specific appearance models 

Shape changes are obviously accompanied by texture changes. We thus computed shape-free textures 

associated with all configurations used for estimating the shape model (by warping all images to the 

neutral configuration). Instead of combining a posteriori separate shape and appearance models as in 

Cootes et al. (2001), we estimated a simple linear model that relates RGB colors of each pixel of the 

shape-free images to shape parameters. Figure XXX.15 illustrates the change of shape-free appearance 

accompanying the rounding/spreading gesture: the grooving nasogenian wrinkle results clearly in a 

change of skin color and shades. We thus clearly need to use texture blending to properly render these 

changes of appearance. If the optimal statistical appearance model typically requires 6+1 textures 

(number of shape parameters + one average shape-free texture), 3 textures are sufficient to guarantee 

the most important changes of appearance around the lips: one rounded viseme with close lips (e.g. [u]), 

one rounded viseme with open lips (e.g. [S]) and one spread viseme with open lips (e.g. [i]). 

3.3 Towards a generic shape and appearance model 

The parameters of all our speaker-specific models have a common semantics: open/close or 

advance/retract jaw, spread/round lips… These pseudo-articulatory parameters drive both the shape and 
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appearance of the face. The way and the extent to which they affect face shape is speaker-dependent, 

but their number and their main actions are universal since we share the same facial musculoskeletal 

structure; i.e. speakers and languages differ only in the way they exploit and synchronize these same 

elementary gestures. 

We can thus use PARAFAC analysis (Harshman and Lundy 1984) or more directly a simple linear 

regression to determine the speaker’s specific scaling of these universal commands. Prior to this 

analysis, each speaker-specific shape model should be characterized not only by the same number of 

commands but also drive the same mesh structure with the same number of vertices. Moreover the 

number of fleshpoints recorded during a motion-capture session is limited to a few hundred and does not 

entirely cover the whole head. Using the mesh-matching algorithm described in section 1.1 with paired 

feature points, we are able to scale a generic high-definition talking face to the low-resolution surface 

defined by the fleshpoints characterizing each viseme of a session (see Figure XXX.13.a and Figure 

XXX.16). 

4 SHAPING A GENERIC MODEL TO SPEAKER-SPECIFIC DATA 

The 3D-to-3D matching algorithm described in section 1.1 is now applied to the facial data. The generic 

3D facial mesh used here (Pighin, Szeliski et al. 1999) has 5826 vertices connected by 11370 triangles 

(see Figure XXX.13.b). The 3D articulatory model of the female speaker used here drives 304 fleshpoints 

: 245 beads for the face, 30 control points of the lip model and 29 markers for the skull as shown in 

Figure XXX.13.a. 

Table XXX.4: Average (maximum) distances in mm between the 3D data and the deformed mesh. FP 

stands for paired feature points and Rw is the weighting factor of Eq.2 and Eq.3. 

Iteration 1 Iteration 2 
Constraints 

All points Feature points Time (s) All points Feature 
points 

Time (s) 

no FP 0.86 (4.54) 5.49 (14.51) 18.23 0.62 (3.74) 5.25 (13.24) 12.6 
FP – Rw=1 0.74 (5.85) 1.97 (  5.22) 15.33 0.56 (3.47) 1.35 (  3.78) 15.1 

FP – Rw=10 0.79 (3.94) 2.05 (  5.05) 14.95 0.56 (3.50) 1.35 (  3.78) 15.2 
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4.1 Matching a neutral configuration 

The 3D-to-3D matching algorithm is applied to the articulatory configuration that provides the same 

neutral articulation as the static generic model. A minimal set of obvious paired fleshpoints {sk, tk} is first 

identified in order to constrain the global deformation in (Eq. 3). 30 paired fleshpoints have been 

selected: the nasion, the pogonion, the tip of the nose and fleshpoints around the eyes and the lips. 

Table XXX.4 shows the distances (average and max) between the 3D data and the deformed mesh for 

two iterations of the matching procedure for different weighting factors Rw: the use of fleshpoints also 

improves the surface match. The matching converges typically after 2 iterations of the algorithm. 

  

 

Figure XXX.16: Top: prepositioning the surface S. Bottom: after matching the surface to the 3D target 

surface and fleshpoints. 
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4.2 Matching all configurations 

We consider the transformed surface Sn obtained after matching the reference surface Ss to the neutral 

configuration. Sn is further transformed towards all articulatory configurations of the speaker-specific 

motion capture data. In order to further force the algorithm to mimic the biomechanical deformation, all 

fleshpoints are first paired by creating new vertices of the transformed surface Sn. These new vertices are 

just the projection of the remaining 3D points {qi} on Sn. The points {qj} are already paired (see section 

4.1) with existing vertices: the first term of equation (3) thus disappears since all 3D points are paired 

with vertices that will now behave as fleshpoints. 

       

 (a) (b) 

Figure XXX.17: Building a generic talking face. Using the 3D-to-3D matching algorithm, a generic “high 

definition” but static  face mesh (see Figure XXX.13.b) is scaled to multiple “low definition” motion capture 

data from each speaker. A “high definition” articulated clone for each speaker is then developed: (a) 

shows the neutral shape for two speakers (b) the shape deformation resulting from setting to +1 the “jaw 

opening” parameter. 

4.3 Articulating 

Once all configurations have been matched and the vertices added in the procedure above removed from 

the generic mesh, vertices Ps of the transformed surface Sn are collected and a step-by-step linear 

regression is performed using the articulatory parameters a identified on the low-definition data (see 

section 3.1). This results in (Eq. 4). Figure XXX.17.a shows the effect of the jaw parameter on the 

deformation of the speaker-specific high definition generic mesh. 
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5 SPEAKER-INDEPENDENT ARTICULATORY PARAMETERS VS. SPEAKER-SPECIFIC 

SHAPE MODEL 

These operations can be iterated using motion capture data from several speakers. Up to now, low 

definition facial models have been developed for five speakers (three French speakers, a German 

speaker and an Algerian speaker). All models share the same set of 6 articulatory parameters that in all 

cases explain more than 95% of the variance of the 3D motion data. Compare, in Figure XXX.17, the 

speaker-specific action of the same speaker-independent jaw rotation parameter for the female French 

speaker and the male German speaker. 

So, by simply using parameters of the low-resolution motion-capture data as linear predictors of the 

deformation of the high-definition mesh, we have sketched the first step towards a generic talking face 

where conformation and animation parameters (analogue to the MPEG-4 FDP and FAP outlined in the 

Introduction) are separated out. 

CONCLUSIONS & COMMENTS 

The current proposal gives access to normalized speaker-specific articulatory models of facial 

deformations. With reference to a generic face these models describe the speaker-specific 

consequences of six universal actions of essential speech segments i.e. jaw, lips and larynx. The 

dimensionality of the speaker-dependent variance of these actions can be further studied by collecting 

and analyzing the speaker-specific characteristics {M , A} in (Eq. 4). We plan to explain these 

characteristics using predictors of the skull and jaw morphology (see section 2.1). A similar scheme can 

then be envisaged for building appearance conformation and animation parameters using shape-free 

textures such as those shown in Figure XXX.15. 

Explaining mean face M from predictors of the skull/jaw morphology is quite helpful when facial shape 

and appearance are to be reconstructed from the bony structure. Similarly the inverse transform should 

enable the skull/jaw model to be calibrated from external measurements of the subject, to avoid the 

need for an MRI-scan. 
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Explaining the motion patterns A from predictors of the skull morphology will also help in reconstructing 

or planning functional behavior from static measurements. Our data-driven generic models are expected 

to achieve such extrapolations more reliably than ad hoc morphing procedures (Bregler, Covell et al. 

1997a). Of course only speech movements are considered here but this study could be extended to 

facial expressions, chewing, to name but two possibilities. 

The global aim of this work is to first identify sources of variation in facial shape and kinematics and 

secondly to investigate their contributions to observed speech movements. More speech organs can be 

taken into account (notably the tongue and velum) in this investigation and we hope to gather sufficiently 

precise and spatially dense 3D motion capture data for several speakers (see some efforts in this 

direction in Badin, Bailly et al. 2002). Biomechanical models (such as the one developed by Gérard, 

Wilhelms-Tricarico et al. 2003) will provide generic meshes with built-in elastic constraints that should 

satisfactorily replace the ad hoc grids (Badin, Bailly et al. 2002; Engwall 2000) or deformation models 

(Stone, Dick et al. 2000) used in the literature. 
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