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Abstract— In this paper, we deal with the problem of partially observed objects. These objects are defined by a
set of points and their shape variations are represented by a statistical model. We presents two model in this
paper : a linear model based on PCA and a non-linear model based on KPCA. The present work attempts to
localize of non visible parts of an object, from the visible part and from the model, using the variability
represented by the models. Both are applied to synthesis data and to cephalometric data with good results.
Keywords—  PCA, KPCA, statistical models, Image, Pattern recognition.

1 INTRODUCTION

ATA compression, reconstruction, estimation and de-noising are common applications of linear
Principal Component Analysis (PCA) [1,2]  and Kernel PCA [3,4]. In the latter case, this is a non-
trivial task as the results provided by Kernel PCA live in some high dimensional feature space. The

main problem of KPCA reconstruction and denoising scheme is to retrieve the data in the input space
whose image in Kernel Space is known : in fact, every point of the kernel space does not have a pre
image in the input space. This is the pre-image problem [3-5].

In this paper, the estimation of a partially observed object in the input space, using a model learned in
the feature space F. is addressed. Some part of the observation is known. To solve this problem, spatial
relationships between the known part of the observation and the unknown one are represented in a
statistical model and used to localize the unknown part. Those relationships are automatically learned in
the model. Like in KPCA reconstruction problem, there are two possible approaches to solve this
problem.

The first one use an explicit mapping function ϕ, the second one use Kernel PCA making ϕ implicit.
In the first case estimation consists in computing the inverse of ϕ (step 2 in Fig. 1) : a global model
(polynomial, sigmoid) of the relations is
an a-priori knowledge in this case. In the
second case the problem is much more
complicate (step 5 in Fig. 1).

The paper is organized as follow : First,
the extension of the PCA model to spatial
relationship and partial object recognition
is presented. Next, the KPCA model is
described and the extension to partial
object localization is given. Polynomial
Kernels are detailed and results are
illustrated with synthetic and real
examples.

2 LINEAR PCA MODEL

The extension of the linear PCA model [6] defined here is an elegant way to take into account spatial
relations between landmarks and can also estimate the unknown part of the partially visible or occulted
model.

Missing data estimation using polynomial
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Figure 0: Three different observations space



Principal Component Analysis is an orthogonal basis transformation, where the new basis is found by
diagonalizing the covariance matrix of a dataset.
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approximation for the original dataset and any of n+m points can represented or retrieved with the

 tt < n+ m
values of the vector b.

Under this hypothesis, if some points (says t=n points) are known, the remaining unknown points can
be determined using PCA. Without any approximations, we can write :
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This is a linear system with n+m equations and unknowns that can not be resolved. Since PCA can

represent the dataset with t<n+m values, suppose t=n, the unknown vector    (b
1
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n
, X
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m
)  in the

following system. Notice, that if we choose t<n, the system become overdetermined and a least square
method can be used to resolve the system :
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In this framework, a linear approximation of spatial relations between known and unknown points are
explicitly determined from the eigenvectors of the covariance matrix.

3 KPCA MODELS

Kernel PCA can be considered as a natural generalization of linear PCA and is very well suited to extract
interesting non-linear structures in the data. Closely related to methods applied in Support Vector
Machines, it has proved useful for various applications, such as de-noising [] and as a pre-processing step
in regressions problems.

3.1 Kernel PCA and Reconstruction

Kernel PCA first map the data from an input space I into a feature space F via a (usually non-linear)
function and then perform linear PCA on the mapped data. As the feature space F  can be very high
dimensional, kernel PCA employs Mercer kernels instead of carrying out the mapping explicitly such as

Gaussian kernels 
  
k(x, y) = exp(− x − y

2

/ c)  and polynomial kernels   k(x, y) = (1+ x • y)d .



Consider data points x and y in the input space I  = Rn . The non-linear mapping    Φ : Rn → F  is
defined such that :

  Φ(x) • Φ( y) ≡ k(x, y)

where • is the vector dot product in the high dimensional feature space F. For a data set { xi
 i=1 to N},

we have the corresponding set of mapped data points {  Φi
= Φ(x

i
)  : i =1 to N }in the feature space F.

We suppose that our mapped data are centered in F.
To perform PCA in feature space, we need to find Eigenvalues _ > 0 and Eigenvectors  V ∈F\{0}

satisfying  λV = CV with 
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i
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i
)T , the covariance matrix computed on the mapped data.

Substituting  C into the Eigenvector equation, we note that all solutions V must lie in the span of the
Φ -images of the training data. This implies that we can consider the equivalent system:
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Substituting  C and (2) into (1), and defining the NxN matrices K  (Kernel matrices):

  
K
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solve  Nλα = Kα  (3)
To extract non-linear principal components for the Φ -image of a test point   
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projection onto the k-th component by:
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For feature extraction, N kernel functions have to be evaluated instead of a dot product in F, which is
expensive if F is high dimensional (and infinite dimensional for Gaussian kernels). To reconstruct the

Φ -image of a vector x from its projections  βk
onto the first n principal component in F (assuming that

the Eigenvectors are ordered by decreasing Eigenvalue size), a projection operator  Pn
is defined by
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When observations are not centered, previous relations are no more satisfied. Observations centering is
difficult to achieve in the feature space F, as mapped observations in the feature space and their mean
values are not computed for efficiency :

   
Φ(x) ≡ Φ(x) − 1

N
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In term of dot product, this leads to replace the Kernel matrix by the Gramm matrix. The matrix to
diagonalize is then :
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3.2 Missing Data Estimation
The problem to solve is the reconstruction of partially unknown examples from the KPCA model and

from the known part of the data.

Let    z = (c
1
,…,c

n
,x

1
,…,x

m
)  be an example to reconstruct, with the n first coordinates known. The

statistical model can be seen as some variability parameters (b in PCA model, β in KPCA model) around
a mean shape. Finding the unknown part of x is equivalent to find the shape belonging to the model (i.e.
variability parameters) whose first coordinates are given by the known part of x . However we are
interested in an estimation in the input space (x1,x2,…xm) rather than in feature space (β1,β2,…βk). So the



solution is given by a vector satisfying   Pn
Φ(c) = Φ(z) , which is the pre-image with

(x1,x2,…xm,β1,β2,…βk) as unknown. Remember that in the classical pre-image, the feature space
coordinates (β1,β2,…βk) are known.

When the vector has no pre-image z, the vector z, such as its image is the nearest one to the model, is
found by minimizing
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Using equations (5) and (4), kernel notation is introduce to obtain:

  
ρ(x) = k(z, z) − α

i

k k(c, x
i
)

i=1

L

∑⎛⎝⎜
⎞
⎠⎟

k =1

N

∑ α
i

k 2k(z, x
i
) − k(c, x

i
)( )

i=1

L

∑⎛⎝⎜
⎞
⎠⎟

(9)

The projection of c and z on the KPCA space are the same :
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This is the general case and minimize ρ(z) depends upon the chosen kernel. This equation can be solve by
numerical optimization, but this function presents in general a great number of local minima, sometimes
numerically instable. Now, the paper is focused on the polynomial kernels.

3.3 Estimation for polynomial Kernel
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which is a polynomial of degree 2d with m unknowns. The mapping ϕ  is easily retrieved and is
explained using a linear combination of monomial and dot product.

3.3.1 Polynomial degree one
As the observation must be centered in the Feature space   k(x, y) = (x • y) . The mapping in this case is
linear.
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For an extremum, the gradient has to vanish:
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This lead to a necessary condition for the extremum :
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Not surprisingly, this is the classical PCA solution related in §II.

3.3.2 Polynomial degree 2

The mapping ϕ is given by     ϕ(x) = (x
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Data in the feature space have to be centered.
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For an extremum, the gradient with respect to x has to vanish:
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is done by classical numerical method such as newton’s one or brent’sone. Note that the solution must be
close enough to the mean value of the model and between 3 times the eigenvalue around the mean. This
is used as initial value and/or bracketed range.
Finding the solution of the general equation (11) give simultaneously the unknown input space data
(unknown part of object) and the variability parameter β of the model.

4 RESULTS

4.1 Synthesis data
In this first experiment, a data set of three

points (i.e. six values) is generated (fig 2).
Three parameters are needed to perfectly
describe these data, i.e. 3 is the theoretical
optimal number of variability parameters for
PCA and KPCA methods. One point lies on a
circle, the two others are constant. Independent
Gaussian noise is added to every value.

The PCA and KPCA models are trained on a
set of 50 samples. The test set is composed of
200 samples.

In this experiment, the last value of each
sample is suppressed and this missing data is
estimated by our model.

First, the value of the minimization function
(6) in the second degree polynomial is plotted
on fig 3. A minima is clearly visible, and the
width of this minima is the width of the added
Gaussian noise

 The error of this estimated unknown value is summarized in the table 1, with respect to the number of
variability parameters retained, for 3 methods ::

1. Polynomial Kernel minimization
2.  Explicit second degree polynomial projection with PCA : variability parameters are first

estimated, following by pre-image computation
3. Classical PCA

Variability
parameters

1 2 3 4 5

Kernel minimization 478.94 54.811 60.662 58.685 56.088
Polynomial function 505.1 598.09 592.09 816.96 962.14
PCA 3504.7 27639 19549 39786 4.952e+005

Table 1. : Estimation error for a varying number of parameters

 The results exhibit a large advantage to the non linear method : the non linear aspect of the data is well
extracted  and represented by these models. Linear PCA cannot deal with such non linear data. The
second method, in which the variability parameters are first estimated and then the pre-image computed is

Figure 2 : 3 points with linear and non linear
relationships



less powerfull than the use of the kernel trick
and the estimation of the variability parameters
and the unknown values in one step.

Another Comparison between linear and
Kernel PCA can be achieved with the accuracy
of the reconstructed points when the number of
these reconstructed points grow. In this
example, 3 parameters are needed to described
the data. So, 3 values can be retrieved by this
method. Figure 4 plots the error of global
reconstruction when 1, 2 and 3 points are
missing, with number of parameters used on
the x-axis. It becomes clear that non linear
method has a large advantage, with an increase
of computational cost because more parameters
are used.

4.2 Cephalometric data
The goal of cephalometry [2,7] is the study of the skull growth of young children in order to improve

orthodontic therapy. It is based on the landmarking of cephalometrics
points on tele-radiography, two dimensional X-ray images of the sagittal
skull projection. These points are used for the computation of features, such
as the length or the angle between lines. The interpretation of these features
is used to diagnose the deviation of the patient form from an ideal one. It is
also used to evaluate the results of different orthodontic treatment.
Cephalometric landmarks are linked to the shape of the cranial contour. In
this context, the cranial contour is sampled and the landmark are learned
together with the sampled contour [8].

Landmarking a new cephalogram, knowing the contour, is to retrieve
unknown part of the model (landmarks), with the model and the known part
(sampled contour).

On these real data, linear PCA and KPCA give the same results, with
4mm of mean error. This means that the data are non really non linear, or
that the non-linearity cannot be represented by a polynomial of degree 2.
This is quite more than a previous non linear and affine invariant version,
which use an ad-hoc projection function.

5 CONCLUSION

In this paper, a polynonmial kernel based model has been presented. This non linear model is used to
resolve the problem of missing data in an image in a statistical framework.  We found equation 6, which
can be numerically solve in the general case. Shape parameters and missing data are then estimated. With
polynomial kernel, we have to found the roots of a polynomial equation and the solution more robust.

The polynomial kernel based model has been compared to classical linear PCA on synthetic and real
data. When there is  a non linear relationship between data, the kernel model has better accuracy than the
linear one, with a larger computational cost.
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Figure 4: cephalogram,
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Figure 3 : Reconstruction error for 3 missing points


