Output-Sensitive Algorithm
for the Edge-Width
of an Embedded Graph’

Sergio Cabello

Department of Mathematics, IMFM
Department of Mathematics, FMF
University of Ljubljana, Slovenia

sergio.cabello@fmf.uni-lj.si

Eric Colin de Verdiére
Laboratoire d'informatique
Ecole normale supérieure
CNRS, Paris, France
Eric.Colin.de.Verdiere@ens.fr

Francis Lazarus
GIPSA-Lab, CNRS, Grenoble, France
Francis.Lazarus@gipsa-lab.grenoble-inp.fr

ABSTRACT

Let G be an wnweighted graph of complexity n cellularly
embedded in a surface (orientable or not) of genus g. We
describe improved algorithms to compute (the length of)
a shortest non-contractible and a shortest non-separating
cycle of G.

If k is an integer, we can compute such a non-trivial cycle
with length at most k in O(gnk) time, or correctly report
that no such cycle exists. In particular, on a fixed surface, we
can test in linear time whether the edge-width or face-width
of a graph is bounded from above by a constant. This also
implies an output-sensitive algorithm to compute a shortest
non-trivial cycle that runs in O(gnk) time, where k is the
length of the cycle.

Categories and Subject Descriptors: F.2.2 [Analy-
sis of Algorithms and Problem Complexity]: Nonnumerical
algorithms and problems—Computations on discrete struc-
tures; Geometric problems and computations; G.2.2 [Dis-
crete Mathematics]: Graph theory— Graph algorithms; path
and circuit problems; 1.3.5 [Computer Graphics]: Compu-
tational geometry and object modeling— Geometric algo-
rithms, languages, and systems

General Terms: Algorithms, Performance, Theory

Keywords: Topological graph theory, computational topol-
ogy, edge-width, face-width, surface, embedded graph

*Research partially supported by the Slovenian Research Agency,
program P1-0297 and project BI-FR/09-10-PROTEUS-014,
funded by the French Ministry of Foreign and European Affairs.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SCG'10, June 13-16, 2010, Snowbird, Utah, USA.

Copyright 2010 ACM 978-1-4503-0016-2/10/06 ...$10.00.

1. INTRODUCTION

Let X be a surface (orientable or not) of genus g with b
boundaries. Let G be an (unweighted, undirected) graph
embedded on X of complexity n (this is the total number of
vertices and edges of G), where all the faces of G are disks.
In this paper, we are interested in the edge-width and face-
width of G, which roughly measure how G “locally looks
planar”. Specifically, the edge-width of G is the minimum
number of edges in a non-contractible cycle of G [2, 23]. The
face-width of G (also known as representativity) is the mini-
mum number of points in the image of G that are contained
in a non-contractible curve on X [24]. There are also the
corresponding concepts of non-separating edge-width and
non-separating face-width, where the requirement of being
non-contractible is strengthened into being non-separating.

This paper gives improved algorithms to compute these
parameters. Before describing our new results in detail, we
present some motivations and related works.

Topological Graph Theory. Edge-width and face-width
were introduced in the field of topological graph theory (see
Mohar and Thomassen [22, Chapter 5] for a survey). Graph
embeddings with large face-width share many properties
with planar graphs; we list a selection of them. Every graph
embedded in a surface with sufficiently large face-width or
edge-width, that depends on the surface, is 5-choosable and
thus 5-colorable [27, 9]. Every graph with large face-width
can be made planar by cutting along cycles that are far
apart from each other [28]. A given graph is a minor of
every graph of face-width k embedded on the same surface,
when £ is sufficiently large [23]. Finally, for any fixed surface
there exists a constant bounding the number of embeddings
with face-width at least 3 that any 3-connected graph may
have [21, 16], thus extending Whitney’s result for planar
graphs to arbitrary surfaces.

Related Algorithmic ResultS. The computational aspects
of the edge-width and face-width have also been studied.
The face-width of G is half the edge-width of the vertez-face
incidence graph of GG, and similarly for the non-separating
edge-width; therefore, the problem boils down to computing
a shortest non-trivial cycle on an embedded graph, where

non-trivial means either non-contractible or non-separating.
Such cycles are the fundamental tool to perform surgery on
embedded graphs. The first algorithm, by Thomassen [26],
finds a shortest non-trivial cycle in cubic time. In essence,
for each vertex of G, the algorithm computes a breadth-first
search (BFS) tree T rooted at that vertex, and, for every
non-tree edge e, tests whether the cycle formed by 7" and e
is non-trivial; finally, the shortest such cycle is returned.
In particular, the shortest non-trivial cycle has no repeated
vertex.

Other papers on this topic study the computation of short-
est non-trivial cycles in the more general situation of (non-
negatively) weighted graphs. Erickson and Har-Peled [11]
extend Thomassen’s algorithm to this setting and decrease
its complexity to O(n*logn), by interleaving Dijkstra’s al-
gorithm with tests for triviality. This is the best current
result, and an algorithm with subquadratic running time
would give rise to a subquadratic-time algorithm to find
the girth of sparse graphs [5]. Some other papers study
the problem parameterized by the genus [6, 19]. The best
known algorithm by Cabello and Chambers [3] computes the
shortest non-contractible (resp. non-separating) cycle on an
orientable surface in O((g+b)g?nlogn) (resp. O(g*nlogn)).
As a consequence, the (possibly non-separating) edge-width
and face-width of a graph in a fixed orientable surface can be
computed in O(nlogn) time. In a companion paper [4], we
also consider the more general scenario of finding shortest
non-trivial cycles in directed graphs.

Kawarabayashi and Mohar (private communication) point
out that their results in [16] imply that the face-width k of
a graph can be computed in 200F) p time, assuming that
k > 3. This approach relies on graph minors, and in par-
ticular, the relations between the face-width and tree-width
of embedded graphs. Their algorithm has an exponential
dependency on the genus and the face-width, it uses an un-
known (but computable) list of minimal graphs, and it does
not extend to the problem of computing the edge-width.

A Faster Algorithm. A natural question arises: are there
faster algorithms to compute these parameters, i.e., to find
shortest non-trivial cycles in the restricted setting of un-
weighted graphs? All known algorithms for this purpose use
shortest path trees, which are computed in O(nlogn) time.
However, for unweighted graphs, any BFS tree is a short-
est path tree. While a BFS tree can be computed in linear
time, current results are also relying on the minimum cut
problem in planar graphs [19] or on dynamic trees [3], and
require an extra logarithmic factor that is independent from
the shortest path tree computation. The O(n? logn) time al-
gorithm by Erickson and Har-Peled [11, Lemma 5.2] immedi-
ately gives an O(n?) time algorithm for the non-contractible
case, but in the non-separating case, the complexity is still
O(n2 logn), because the extra logarithmic factor appears
in their recurrence, independently of the shortest path tree
computation.

The problem of computing the edge-width and face-width
efficiently is an ingredient of several algorithms. In partic-
ular, the following problem has been raised in recent pa-
pers [16, 17, 18]: Let go,ko be constants. Is there an al-
gorithm to decide in linear time if the edge-width (or face-
width) of a given graph embedded in a surface of genus go
is bounded by ko? Previous results imply that this problem
can be solved in O(nlogn) time. We solve it in O(n) time:

Our Results

THEOREM 1. Let G be an unweighted graph of complex-
ity n cellularly embedded on a surface ¥ (orientable or not)
of genus g with b boundaries. Given an integer k, we can
decide in O((g+b)nk) time (resp. O(gnk) time) if the edge-
width (resp. non-separating edge-width) of G is at most k. If
it is the case, we can also obtain a shortest non-contractible
(resp. non-separating) cycle in G.

Incidentally, we give alternate algorithms to find shortest
non-trivial loops and cycles (possibly in weighted graphs).
Our algorithms are (arguably) simpler to implement than
those by Erickson and Har-Peled [11, Lemma 5.2]; some
ideas of the proof are inspired from the paper by Erick-
son and Whittlesey to compute shortest homotopy gener-
ators [12]. Compared to Erickson and Har-Peled [11], our
algorithms are faster by a logarithmic factor for the non-
separating case in unweighted graphs, and have the same
asymptotic running-time otherwise:

THEOREM 2. Let G be an unweighted graph of complex-
ity n cellularly embedded on a surface ¥ (orientable or not,
possibly with boundary). We can compute a shortest non-
contractible or non-separating loop through a given basepoint
in G in O(n) time.

By running the algorithm of Theorem 1 for exponentially
increasing values of k, and combining with the result of The-
orem 2, we obtain:

COROLLARY 1. Let G be an unweighted graph of complex-
ity n cellularly embedded on a surface X (orientable or not)
of genus g with b boundaries. If k denotes the edge-width
or the face-width of G, we can compute k in O(nmin{(g +
b)k,n}) time. Similarly, if k denotes the non-separating
edge-width or the non-separating face-width of G, we can
compute k in O(nmin{gk,n}) time. The algorithm also
computes a shortest cycle of the corresponding type (non-
contractible or non-separating, in G or in its verter-face in-
cidence graph).

For finding shortest non-contractible cycles the best time
complexity known so far was O(nmin{(g + b)g?logn,n}),
while for finding shortest non-separating cycles the best time
complexity was O(nlognmin{g®,n}). Furthermore, our al-
gorithms are quite simple and do not require heavy data
structures like self-adjusting top trees (needed by Cabello
and Chambers [3]).

Our output-sensitive complexity can be combined with
combinatorial bounds on the edge-width and face-width that
are known. Hutchinson [15] showed that a triangulation
with m vertices in an orientable surface without bound-
ary has edge-width O(y/m/glogg) if g < m and O(logg)
if g > m. This result can be extended to non-orientable
surfaces, and the same bound applies to the face-width of
arbitrary embedded graphs [6, Lemma 13 and Theorem 14].
Therefore, our algorithm implies that the edge-width of a
triangulation and the face-width of an arbitrary graph in a
surface (orientable or not) without boundary can be com-
puted in O(n*2g'/?log g) time, provided that g < n. This
time bound is subquadratic unless glog? g = Q(n).

Applications. In topological graph theory there are several
results of the following form: for any fixed surface 3 there
exists a constant ¢ = ¢(3, IT) such that any graph embedded
in ¥ with face-width (or edge-width) at least ¢ has property
II. See for example [27, 9, 28, 23, 21], and [22, Chapter 5].
Our results provide a linear-time algorithm to test if the
hypotheses of those results are fulfilled.

Computing the edge-width or the face-width has been ex-
plicitly used as subroutine for computing crossing number
of graphs [17], for graph isomorphism of graphs that admit
polyhedral embeddings [16], and for finding certain induced
cycles in embedded graphs [18]. In these papers, the authors
make a detour computing a 2-approximation of the edge-
width using ideas of Erickson and Har-Peled [11, Lemma
5.6). Using a 2-approximation instead of the real edge-width
affects exponentially the running time; however, this is hid-
den in the O-notation because the authors consider a fixed
surface.

Also, there is a closed formula telling the orientable genus
of a graph that can be embedded in the projective plane.
Indeed, Fiedler et al. [13] have shown that a graph G that
can be embedded in the projective plane with face-width
k # 2 has orientable genus |k/2]|. Our results imply an al-
gorithm to compute the orientable genus ¢g(G) of such graphs
in O(g(G)n) time.

The techniques we use in this paper to prove Theorem 2
are also useful in our companion paper [4], where we obtain
efficient algorithms that find shortest non-trivial cycles in
a more general setting than previously studied, namely, for
directed weighted graphs on surfaces.

Overview of the Algorithm. Our main algorithm, to ob-
tain Theorem 1, consists of two steps: (1) We first compute
a set of vertices K such that any non-trivial cycle has to
use some vertex of K. (2) For every vertex s in K, we
compute the shortest non-trivial cycle passing through s in
the graph induced by the vertices at distance at most k/2
from s. The key idea in our approach is to find an efficient
way to carry Step (2) simultaneously for several basepoints
that are far apart on the surface. This idea, in turn, requires
to choose K in Step (1) adequately. This strategy also re-
quires to be able to test in constant time whether a cycle
with a special structure is trivial; we introduce a technique
for this purpose, which implies Theorem 2, of independent
interest.

After some preliminaries (Section 2), we prove Theorem 2
in Section 3. Then, reusing a large part of that section, we
prove our main result, Theorem 1, in Section 4. Finally,
Corollary 1 is deduced.

2. BACKGROUND AND TERMINOLOGY
2.1 Graph Theory

All the considered graphs may have loop edges and multi-
ple edges. We sometimes denote by xy an edge with end-
points x and y: even if this notation is ambiguous in presence
of multiple edges, it will always be clear from the context
which edge is considered. A walk in a graph is a sequence
of edges ey, ..., en with the property that the target of e; is
the source of e;41, for i = 1,...,m —1; such a walk is closed
if the target of e is the source of e1. A path is a walk
without repeated vertices; a cycle is a closed walk without

repeated vertices. A loop with basepoint s is a closed walk
with a distinguished occurrence of vertex s. We denote by
V(G) and E(G) the set of vertices and edges of a graph G,
respectively. For a subset X C V(G), we use G[X] to denote
the subgraph of G induced by X. For an edge e of G, we
denote by G — e the graph G without that edge.

Suppose G is connected; consider a spanning tree 1" of
G. For any vertex s and any edge uv of G, we denote by
7(T, s,uv) the loop consisting of the path in T from s to u,
the edge uv, and the path in T" from v to s. We also denote
by 7(T', uv) the closed walk consisting of the edge uv and the
path in T between v and v. Note that 7(T,uv) is a cycle, if
wv is not in 7.

2.2 Surfaces

We review some basic topology of surfaces. See any of the
books by Hatcher [14], Massey [20], or Stillwell [25] for a
comprehensive treatment.

A surface (or 2-manifold) ¥ possibly with boundary is a
compact, connected, topological space where each point has
a neighborhood homeomorphic either to the plane or to the
closed half-plane; the points without neighborhood homeo-
morphic to the plane comprise the boundary of 3. A surface
is non-orientable if it contains a subset homeomorphic to
the Mobius band, and orientable otherwise. Here and in
the sequel, surfaces are considered up to homeomorphism;
in particular, a disk is just a surface homeomorphic to the
standard unit disk in R?.

An orientable surface is homeomorphic to a sphere where
g disjoint disks are removed, a handle (a torus with one
boundary component) is attached to each of the remaining
g circles, and then b disjoint disks are removed, for unique
integers g,b > 0. A non-orientable surface is homeomorphic
to a sphere where g disjoint disks are removed, a Mobius
band is attached to each of the remaining ¢ circles, and
then b disjoint disks are removed, for unique integers g > 1
and b > 0. In both cases, g is called the genus of the surface.
For simplicity, we define the reduced genus g to be 2g, if ¥ is
orientable, and ¢, otherwise. ¥ denotes the surface without
boundary obtained by attaching a disk to each boundary
component of 3.

2.3 Graph Embeddings

An embedding of a graph G in a surface ¥ is a drawing
of G on ¥ without crossings. More precisely, the vertices
of G are mapped to distinct points of the interior X; each
edge is mapped to a path in the interior of ¥, such that
the endpoints of the path agree with the points assigned to
the vertices of that edge. Moreover, all the paths must be
without intersection or self-intersection except, of course,
at common endpoints. We sometimes identify a graph G
with its embedding on 3. The faces of G are the connected
components of the complement of the image of G in 3.

In this paper, G is cellularly embedded on X if the faces
of Gon Y are (homeomorphic to) open disks. In particular,
each face of a cellular embedding on ¥ is homeomorphic to
an open disk with zero, one, or more disjoint open disks
removed; the boundaries of these open disks belong to the
boundary of X. For a cellularly embedded graph G with V'
vertices, E edges, and F' faces, Fuler’s formula states that
V-E+F=2-3g.

We assume that the embedding is represented in a suit-
able way, like for example the gem representation, using the
incidence graph of flags (vertex-edge-face incidences) dis-
cussed by Eppstein [10], or rotation systems [22]. For ori-
entable surfaces, one can also use the DCEL that is cus-
tomary in Computational Geometry (see, e.g., de Berg et
al. [8]). More precisely, we store the embedding of G on %,
and mark within each face of the embedding the number of
boundary components of X it contains.

If G is a graph embedded on ¥ without isolated vertices,
we will denote by X\ G the surface with boundary obtained
after cutting ¥ along G. Note that ¥\G is a surface with
boundary. In contrast, X \ G is a set operation where we
remove from ¥ the points in (the image of the embedding
of) G. In particular, if G is cellularly embedded, \G is a
union of closed disks, whereas ¥\ G is a union of open disks.

We say that G separates ¥ if ¥\ G (equivalently ¥\ G)
has at least two connected components.

2.4 Homotopy and Homology

Let G be a graph embedded on Y. Homotopy and homology
are two equivalence relations on the set of loops in G with
a given basepoint. Here, we stick to a concise description of
these notions and refer to one of the aforementioned books
for a more formal and detailed treatment.

Let us fix a common basepoint for all loops considered in
this section. Two loops in G are homotopic if one can be
deformed continuously to the other on the surface, keeping
the basepoint fixed during the deformation. It turns out
that the equivalence classes, called homotopy classes, form a
group, where the multiplication in the group corresponds to
the concatenation of the loops. The zero element is the set of
loops that are homotopic to the constant loop; such loops are
called contractible, or homotopically trivial. An important
characterization is that a simple loop is contractible if and
only if it bounds a disk on the surface.

Homology is a coarser equivalence relation than homo-
topy. The homology group is the abelianization of the ho-
motopy group. A loop in G is null-homologous, or homolog-
ically trivial, if it belongs to the zero homology class. We
also have a nice characterization for simple loops: a simple
loop is null-homologous on ¥ if and only if it separates &
(or, equivalently, ¥). As in previous papers, when we write
“separating on X7, we really mean “null-homologous on ¥:
these two notions coincide for simple loops, and the latter
is also defined for non-simple loops, which turns out to be
useful. Therefore, contractible implies separating, even for
non-simple loops.

If G is cellularly embedded on ¥, then GG contains non-
contractible cycles except when 3 is the sphere or the disk.
Also, G contains non-separating cycles except when 3 is the
sphere.

When considering the problem of finding a shortest non-
contractible loops or cycles, we assume every face of G con-
tains at most one boundary of ¥. This is possible since
several boundary components of X in one face of G can be re-
placed with one single boundary component without chang-
ing the contractibility character of the loops in G. When
considering the computation of shortest non-separating loops
or cycles, we assume our input surface ¥ has no boundary.
This is valid since a cycle is separating in ¥ if and only if it
is separating in 3.

Henceforth, we use the term non-trivial as a shorthand
for non-contractible or non-separating.

2.5 Duality

Let G be a graph cellularly embedded in 3. Its dual graph,
denoted by G, has for vertices the set of faces of 3 and for
edges the set of edges (dual to) E(G): two faces are adjacent
if they share an edge of G. The edge dual to e is denoted
by e*, and it connects the two faces adjacent to e in the
embedding. The dual graph G* has a natural embedding in
¥: each vertex f* of G*, corresponding to face f of G, is
assigned to a point py of the interior of the face f; for each
edge uv of G, incident to faces f and f’, the dual edge (uv)*
is assigned a curve that connects the points p;y and py and
crosses (G precisely at the edge uv. For our discussion, it is
convenient to make the following assumptions: for every face
f of G containing a boundary component (which is unique
in that face by our assumption of Section 2.4) the point py
belongs to that boundary component, and we add to G* a
loop edge, whose image is the boundary component. (Such
loop edges correspond to no edge of the primal graph G.)
For a set of edges A C E(G), we use the notation A* = {e* |
e€ A}

2.6 Deformation retract

A subspace A of a topological space X is a deformation
retract of X if there is a continuous map F : X x [0,1] — X
such that for every z in X and a in A, we have F(z,0) = z,
F(z,1) € A, and F(a,1) = a.

It is known that if A is a deformation retract of X, then X
and A have the same homotopy type. The (quite intuitive)
consequence that will be useful to us is that, under this
condition, A and X have the same number of connected
components, and A has a non-contractible loop if and only
if X has a non-contractible loop.

3. SHORTEST NON-TRIVIAL LOOPS

In this section, we prove Theorem 2; the tools developed
here will be useful for the proof of Theorem 1 as well.

As already noted, for the non-contractible case, Theo-
rem 2 follows directly from Erickson and Har-Peled [11,
Lemma 5.2] by replacing Dijkstra’s algorithm with a breadth-
first search. For the non-separating case, this result is new
and improves upon previous papers [11, 6, 3] in the case of
unweighted graphs. The ideas are closely related to Erickson
and Whittlesey’s algorithm to compute a shortest system of
loops [12] (specifically, a shortest non-separating loop is the
first loop computed by their greedy algorithm, although they
do not compute it in linear time). The idea of computing
shortest non-trivial loops using this method appears in one
of the authors’ course notes [7].

Let T be an arbitrary spanning tree of G; let C* be the
subgraph of G* with the same vertex set as G* and edge set
E(G*)\ E(T)". (In particular, C* contains every loop edge
of G* in a boundary component of X.)

LEMMA 1. C* is a cut graph of ¥; that is, X\ C* is
(homeomorphic to) an open disk.

PROOF. X\ C* can be obtained by taking all faces of G*
(which are open disks) and gluing them in a tree-like fashion

Figure 1. The retraction in the proof of Lemma 2. The boundary of
the disk is the boundary of X\ C*.

according to the tree T, i.e., along the edges of E(T')*. Since
attaching disks in this way gives a disk, we obtain that X\ C*
is a disk. O

The following lemma was also noted and used by Erickson
and Whittlesey [12, Section 3.4].

LEMMA 2. Let e € E(G)\ E(T). Then C* — e is a de-
formation retract of X\ 7(T),e).

PROOF. The cycle 7(T,e) cuts C* at exactly one point.
Therefore this cycle corresponds to a path intersecting the
boundary of the closed disk ¥\ C* exactly at its endpoints.
(See Figure 1.) Both halves of the disk retract to the cor-
responding portion of the boundary of the disk. Therefore,
Y\7(T, e) retracts to C*\ (e*N7 (T, e)). This in turn retracts
to C* —e”*. O

COROLLARY 2. Let e € E(G) \ E(T). The cycle 7(T\e)
is separating on X if and only if C* — e is not connected.
The cycle T(T,e) is contractible if and only if C* — e* has
a connected component that is a tree (possibly reduced to a
single vertex).

PROOF. The cycle 7(T, e) is separating if and only if X\
7(T, e) is not connected; by Lemma 2, this holds if and only
if C* — e* is not connected.

7(T,e) is contractible if and only if one component of
X\ 7(T,e) is a disk, i.e., has no non-contractible loop. By
Lemma 2, this holds if and only if one component of C* —e*
has no non-contractible loop, i.e., is a tree. O

A cycle 7(T,e) is of one of the following three topologi-
cal types: contractible, non-contractible but separating, and
non-separating. We can partition the edges ¢* of C* into
three sets, depending on the corresponding type of 7(T,e).
Figure 2 illustrates this classification.

For later use, it will be convenient to use Enon—con(T)
(resp. Enon—sep(T")) for the set of edges e in E(G) \ E(T)
such that 7(T, e) is non-contractible (resp. non-separating).
As before, we use Enon—triv(T) as an ambiguous term to
refer to Enon—con(T") Or Enon—sep(I') as needed.

LEMMA 3. The sets Enon—con(T) and Enon—sep(T) can be
computed in O(n) time.

PrOOF. We construct the cut graph C* in linear time.
By Corollary 2, Enon—con(7') can be obtained by the fol-
lowing procedure: starting with C*, we repeatedly remove
edges with an incident vertex of degree one; the edge set of
the resulting graph is then exactly Fnon—con(T)*. To obtain
Eron—sep(T'), note that, by Corollary 2, Enon—sep(7")™ is pre-
cisely the set of non-bridge edges in C*. The computation of
the bridge edges of a graph in linear time using depth-first
search is part of the folklore (see Aho et al. [1, Section 5.3]
for the similar problem of determining biconnected compo-
nents). o

Let s be an arbitrary vertex of G. We have the following
structural result on shortest non-trivial loops based at s.

LEMMA 4. Assume T is a BFS tree from root s. FEvery
shortest loop among the loops T(T, s, €), where e € Enon—triv,
is a shortest non-trivial loop through s.

PROOF. A proof appears in Thomassen [26] in a more
general setting. We provide an ad hoc short proof. Let
¢ be a non-trivial loop with basepoint s. We show that
some non-trivial loop 7(7),s,e) is no longer than ¢. Let
e1,e2,...,e, be the edges of ¢, in the same order as they
appear along ¢. Since ¢ is homotopic in ¥ (and there-
fore also homologous in ¥) to the concatenation of loops
7(T,s,e1) - 7(T,s,e2)---7(T,s,er), at least one of the loops
7(T, s,e;) is non-trivial. However, 7(T,s,e;) is a shortest
loop through s that contains e; because T is a BFS tree,
whence 7(T), s, e;) is no longer than ¢. Furthermore, e; can-
not belong to T, for otherwise the loop 7(T, s, e;) would be
contractible (and separating).

We conclude the proof of Theorem 2.

PrOOF OF THEOREM 2. We construct a BFS tree T of G
from s in linear time. We attach to each vertex u of G a
label d(u) equal to its distance from s. We then compute
Eron—triv(T), again in linear time, using Lemma 3. Among
the edges e of Fnon—triv(T), we select an edge ep minimizing
the length of 7(T, s, €), or equivalently, minimizing the sum
d(u) + d(v) where u and v are the endpoints of e. Finally,
we report the loop 7(7),s,e0). The procedure takes linear
time; its correctness follows from Lemma 4 and from the
fact that 7(7), e) is non-trivial if and only if 7(7), s, €) is non-
trivial. O

Our algorithm trivially extends to the weighted case, at
the expense of a logarithmic factor, by replacing the BFS
with a shortest path tree computation.

Also, the same ideas yield algorithms to compute shortest
loops with an odd number of edges and shortest one-sided
loops (which reverse the orientation of the surface, when it is
non-orientable). Lemma 4 extends immediately to these two
problems. To compute a shortest loop with an odd number
of edges, it suffices to store, on each vertex of G, the parity of
the number of edges to the root; then 7(7), s, e) has an odd
number of edges if and only if the parities of the vertices
of GG incident with e are the same. To compute a shortest
one-sided loop, it suffices to choose local orientations of the
surface at each vertex that are consistent across each edge
of T; then 7 (T, s, e) is one-sided if and only if the orientations
of the two vertices of G incident with e do not match across
edge e. The results of the next section extend to the problem
of finding shortest one-sided cycles, but do not extend to the
problem of finding a shortest cycle with an odd number of
edges.

Figure 2. Top left: A graph G embedded in a double torus with a spanning tree T' marked with bolder edges. Top right: The cut graph C*
is marked with bold edges; thinner edges are from the primal graph. Bottom left: classification of the edges of C*. The bold solid edges are
Enon—sep(T)*; the bold dashed edges are (Enon—con(T) \ Enon—sep(T))*; the thin edges are E(C*) \ Enon—con(T)*. The dotted parts of
edges do not provide any information about their type. Bottom right: examples of the loop (T, ¢e) in bold for different types of e* € C*.

4. SHORTEST NON-TRIVIAL CYCLES

We now prove Theorem 1. The following result will be our
tool to work with several sources simultaneously.

LEMMA 5. Let Vi,...,V; be subsets of V(G) that are pair-
wise disjoint, let s1, ..., st be vertices with s; € V; for each i,
and let IL; be the set of non-trivial loops through s; contained
in G[V4]. In O(n) time we can find a shortest loop in |J, Ls,
or correctly report that | J, LLi is empty.

PrOOF. We first describe the algorithm interlaced with
an analysis of its running time, and then discuss its correct-
ness.

For each i, we construct a BFS tree T; with root s; of
the component of G[V;] that contains s;. To each vertex u
of G, we attach two labels, c(u) and d(u). The label ¢(u) has
value 7 if u is in the same connected component of G[V;] as s;,
and has value 0 otherwise. The label d(u) is the distance
between u and s, if c¢(u) > 1, and undefined if c(u) = 0.
Since the sets Vi, ..., V; are disjoint, the labels ¢(u) and d(u)
are uniquely defined. These labels can be computed in O(n)
time using the BFS trees Th,...,T:.

We then extend the forest T4, ...,T: to a spanning tree T’
of G. This can also be done in linear time. Next, we compute
Eron—triv(T) using Lemma 3. Let E be the subset of the
edges uv € FEnon—triv(T) such that c(u) = c¢(v) and this
number is non-zero. If F is empty, we report that J, L; is
empty. Otherwise, we compute

xy = arg min{d(u) + d(v) | uwv € E}

and return the loop 7(T,5.(s),xy). The construction of
Enon—triv(T) and E takes linear time, and we spend addi-
tional constant time per edge in E to find the edge xy. This
concludes the description of the algorithm.

We now show the correctness of the algorithm. Let E; be
the set of edges wv in E(G) with endpoints in T3, i.e., such
that c(u) = c¢(v) = 4. Also, let Fnon—triv(Ti) be the subset
of the edges e in E; such that 7(T3, s;, €) is non-trivial.

By the same arguments as in the proof of Lemma 4, if L;
is not empty, then it contains a shortest loop of the form
7(T3, 83, ¢) for some edge e in E;. As a consequence, a short-
est non-trivial loop in L; is given by 7(T3, si, €) where

e = arg min{d(u) + d(v) | uv € Enon—triv(Ti)}

For any edge e in Ej, it holds that 7(T3, si,e) = 7(T, 84, €)
and 7(T;,e) = 7(T,e). It follows that

FErnon—triv (T’L) = Fnon—triv (T) N Eiy

whence E = \U; Euon—triv(Ti). The correctness of the algo-
rithm directly follows. [l

Henceforth, let s be an arbitrary but fixed vertex of G.

LEMMA 6. In O(n) time, we can compute a set K of ver-
tices of G such that every non-trivial cycle in G intersects K,
satisfying the following property: For every integer i, the
number of vertices of K at distance exactly i from s is at
most 2g + b for the non-contractible case, and 2g for the
non-separating case.

PROOF. Assume first that ¥ has no boundary (this is the
only relevant situation in the non-separating case). We use

Figure 3. Detail of the graph G cellularly embedded in 3, as con-
structed in the proof of Lemma 6. We attach a handle to each
boundary component and add two loop edges to obtain a cellular
embedding.

the tree-cotree decomposition of Eppstein [10]. Consider a
BFS tree T from the vertex s. Let (T')* be an arbitrary
spanning tree of G* — E(T)*. Thus T and T’ are edge-
disjoint in G; we let X be the remaining edges of G. It
follows from Euler’s formula that X has g edges.

Consider the set of loops L = {7(T,s,e) | e € X}: their
union [JLL is a cut graph. Indeed, X\ (T'U X) is a set of
faces connected according to the dual tree 7", hence a disk.
But [JL is obtained from T'U X by iteratively removing a
degree one vertex with its incident edge, and this operation
preserves the fact that the complement is a disk. Let K
be the set of vertices in L. Since |JL is a cut graph, each
non-trivial closed walk must intersect K. Moreover, since T’
is a BFS, each loop in 7(7T), s, e) has at most two vertices at
distance i from s, for any integer i. It follows that, for every
integer 7, the set K contains at most 2| X| = 2g vertices at
distance i from s.

K can be computed in linear time, as we describe next.
Computing a BFS tree T from s, the spanning tree in the
dual graph, and computing the set of edges X takes linear
time. We mark in T the vertex s and the endpoints of the
edges in X. By definition of the loops in L, the set K is the
set of vertices of the minimal subtree of T" that includes the
marked vertices. This subtree is obtained in linear time by
recursively removing unmarked degree one vertices.

It remains to consider the case where we want to com-
pute a shortest non-contractible cycle on a surface ¥ with
boundary. In this case we attach a handle to every boundary
component of ¥, obtaining a surface 3 without boundary.
To make G cellular on X, we just have to add two loop edges
per boundary component of 3; see Figure 3. Let G be the
new graph. Then we apply the previous construction to this
new graph. We obtain a set K that intersects every cycle
of & that is non-trivial on f); furthermore, K has at most
2g + b vertices at distance ¢ from the source s. (The two
loop edges e1 and ez defining a handle contribute to a single
shortest path to K, namely, the shortest path from s to the
common endpoint of e; and ez.) Hence K intersects also
every cycle in G that is non-trivial in 3. Furthermore, the
distances from s in G and G are the same, because we only
added loop edges, so K still has at most 2g + b vertices at
distance 4 from s. To conclude, note that a cycle is con-
tractible in ¥ if and only if it is contractible in 3. So we can
take K = K. O

We are now ready to give the proof of Theorem 1.

PrROOF OF THEOREM 1. We start by computing the set
K of vertices as in Lemma 6. It then suffices to compute a

shortest non-trivial loop based at some vertex in K, or to
determine that every such loop has length larger than k.

Let S; be the set of vertices in K at distance exactly
from s (0 < ¢ < n). Each S; has cardinality at most 2§ + b
(non-contractible case) or 2g (non-separating case). For sim-
plicity, in the remaining part of the proof, we only con-
sider the non-contractible case; the non-separating case is
the same, except that we can replace 2g + b by 2g.

For each j, 0 < j < k, we put the elements of

Sis Stkt1) 45 S2(k41) 451 - - -

into at most 2g + b batches, each containing at most one
element from each of these S;. In total, we have a partition
of K into O((g + b)k) batches such that any two vertices
in the same batch are at distance at least k + 1 from each
other (because an element in S; and an element in S; are
at distance at least |¢ — j| from each other by the triangle
inequality).

Now, consider a single batch {s1,...,s:}. For each i, let
Vi be the set of vertices at distance at most k/2 from s;;
the V;’s are pairwise disjoint. We can thus apply Lemma 5:
if there exists a non-trivial loop based at some s; that has
length at most k, we obtain the shortest such loop.

We apply this operation for every batch; thus we com-
puted, for each vertex of K, the shortest loop based at that
vertex, unless that loop has length larger than k. If the
shortest of the resulting loops has length at most k, this is
the output of the algorithm. Otherwise (or if no loop has
been found), we report that no non-trivial loop with length
at most k exists.

The set K and the O((g + b)k) batches can be computed
in O(n) time. Then the O(n) time algorithm of Lemma 5
is applied once for each of the O((g + b)k) batches; thus the
total running time is O((g + b)nk). O

5. END OF PROOF

There only remains to prove Corollary 1. This combines the
results of Theorems 1 and 2.

PROOF OF COROLLARY 1. The edge-width can be com-
puted applying Theorem 1 with k = 2°,2%,22 ... 2! ...
until a non-contractible cycle is found. The total cost is

O((g +b)n(2" = 1H1)) = O((g + b)nk),

where k is the edge-width. On the other hand, we can com-
pute the edge-width in O(n?) time using Theorem 2, by
choosing each vertex in turn to be the basepoint. Running
both algorithms in parallel gives us the claimed complexity
of O(nmin{(g + b)k,n}) for the edge-width. The same ar-
guments, with g 4+ b replaced by g, yield the result for the
non-separating edge-width.

For the face-width computations, let I' be the vertez-face
incidence graph of G (also called radial graph): this is a
bipartite multigraph embedded on ¥ whose vertices are the
vertices and faces of (G; there is an edge in I' between a
vertex v of G and a face f of G per incidence between v and f
in G. Then, the face-width of G equals half of the edge-
width of I" [22, Proposition 5.5.4], which we can compute in
the same asymptotic time by the first paragraph, since the
complexity of I is linear in the complexity of G. O

Acknowl edgment. We thank Jeff Erickson for pointing out
reference [15] and its implications.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The
design and analysis of computer programs.
Addison-Wesley, 1974.

[2] M. O. Albertson and J. P. Hutchinson. The
independence ratio and genus of a graph. Transactions
of the American Mathematical Society, 226:161-173,
1977.

[3] S. Cabello and E. W. Chambers. Multiple source
shortest paths in a genus g graph. In Proceedings of
the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 89-97, 2007.

[4] S. Cabello, E. Colin de Verdi¢re, and F. Lazarus.
Finding shortest non-trivial cycles in directed graphs
on surfaces. In These Proceedings, 2010.

[5] S. Cabello, M. DeVos, J. Erickson, and B. Mohar.
Finding one tight cycle. ACM Transactions on
Algorithms, 2010. To appear. Preliminary version in
SODA’08.

[6] S. Cabello and B. Mohar. Finding shortest
non-separating and non-contractible cycles for
topologically embedded graphs. Discrete €
Computational Geometry, 37(2):213-235, 2007.

[7] E. Colin de Verditre. Algorithms for graphs on
surfaces. Course notes, available at http://www.di.
ens.fr/"colin/cours/algo-graphs-surfaces.pdf,
2008.

[8] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms
and Applications. Springer-Verlag, Berlin, 1997.

[9] M. DeVos, K.-i. Kawarabayashi, and B. Mohar.
Locally planar graphs are 5-choosable. J. Comb.
Theory Ser. B, 98(6):1215-1232, 2008.

[10] D. Eppstein. Dynamic generators of topologically
embedded graphs. In Proceedings of the 1/th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 599-608, 2003.

[11] J. Erickson and S. Har-Peled. Optimally cutting a
surface into a disk. Discrete & Computational
Geometry, 31(1):37-59, 2004.

[12] J. Erickson and K. Whittlesey. Greedy optimal
homotopy and homology generators. In Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1038-1046, 2005.

[13] J. R. Fiedler, J. P. Huneke, R. B. Richter, and
N. Robertson. Computing the orientable genus of
projective graphs. J. Graph Theory, 20(3):297-308,
1995.

[14] A. Hatcher. Algebraic topology. Cambridge University
Press, 2002. Available at
http://www.math.cornell.edu/ hatcher/.

[15] J. P. Hutchinson. On short noncontractible cycles in
embedded graphs. SIAM Journal on Discrete
Mathematics, 1(2):185-192, 1988.

[16] K.-i. Kawarabayashi and B. Mohar. Graph and map
isomorphism and all polyhedral embeddings in linear
time. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing (STOC), pages
471-480, 2008.

[17] K.-i. Kawarabayashi and B. Reed. Computing crossing

(18]

(19]

number in linear time. In Proceedings of the 39th
Annual ACM Symposium on Theory of Computing
(STOC), pages 382-390, 2007.

Y. Kobayashi and K.-i. Kawarabayashi. Algorithms
for finding an induced cycle in planar graphs and
bounded genus graphs. In Proceedings of the 20th
Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1146-1155, 2009.

M. Kutz. Computing shortest non-trivial cycles on
orientable surfaces of bounded genus in almost linear
time. In Proceedings of the 22nd Annual ACM
Symposium on Computational Geometry (SOCG),
pages 430-438, 2006.

W. S. Massey. Algebraic Topology: An Introduction,
volume 56 of Graduate Texts in Mathematics.
Springer-Verlag, 1977.

B. Mohar and N. Robertson. Flexibility of polyhedral
embeddings of graphs in surfaces. J. Comb. Theory
Ser. B, 83(1):38-57, 2001.

(22]

23]

(24]

B. Mohar and C. Thomassen. Graphs on surfaces.
Johns Hopkins Studies in the Mathematical Sciences.
Johns Hopkins University Press, 2001.

N. Robertson and P. D. Seymour. Graph minors. VII.
Disjoint paths on a surface. Journal of Combinatorial
Theory, Series B, 45:212—-254, 1988.

N. Robertson and R. P. Vitray. Representativity of
surface embeddings. In B. Korte, L. Lovasz, and
Promel, editors, Paths, flows, and VLSI-layout, pages
293-328. Springer-Verlag, Berlin, 1990.

J. Stillwell. Classical topology and combinatorial group
theory. Springer-Verlag, New York, 1980.

C. Thomassen. Embeddings of graphs with no short
noncontractible cycles. Journal of Combinatorial
Theory, Series B, 48(2):155-177, 1990.

C. Thomassen. Five-coloring maps on surfaces. J.
Comb. Theory Ser. B, 59(1):89-105, 1993.

X. Yu. Disjoint paths, planarizing cycles, and
spanning walks. Transactions of the American
Mathematical Society, 349:1333-1358, 1997.

