Computing a Canonical Polygonal Schema, of an Orientable

Triangulated Surface

Francis Lazarus®

Abstract

A closed orientable surface of genus g can be
obtained by appropriate identification of pairs
of edges of a 4g-gon (the polygonal schema).
The identified edges form 2¢g loops on the sur-
face, that are disjoint except for their com-
mon end-point. These loops are generators of
both the fundamental group and the homol-
ogy group of the surface. The inverse prob-
lem is concerned with finding a set of 2¢g loops
on a triangulated surface, such that cutting
the surface along these loops yields a (canon-
ical) polygonal schema. We present two opti-
mal algorithms for this inverse problem. Both
algorithms have been implemented using the
CGAL polyhedron data structure.

1 Introduction

Let M, be a regular 4g-gon, whose successive
edges are labeled a1, by, @1, b1, - - - yGg, bg,ag,l_)g.
Edge z is directed counterclockwise, edge T
clockwise. The space obtained by identifying
edges = and 7, as indicated by their direction,
is a closed oriented surface; See e.g. [6, Chapter
1.4]. This surface, called orientable surface of
genus g, is homeomorphic to a 2-sphere with
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g handles. E.g., M, is the torus; See Figure 1.
The labeled polygon M, is called the canonical
polygonal schema of M.

Figure 1: From polygonal schema to orientable
surface: the torus.

It is easy to see that all vertices are identi-
fied to a single point py of the surface. After
identification in pairs, the edges of the polyg-
onal schema form 2g curves on M, which are
disjoint, except for their common endpoint pyg.
These 2¢g loops are generators of the fundamen-
tal group of M, (and of the first homology
group). In the sequel we drop the dependence
on the genus from our notation, i.e., M denotes
a closed orientable surface of genus g.

In this paper we consider the inverse prob-
lem: Given a combinatorial (triangulated) sur-
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face, find a canonical set of PL-curves (genera-
tors) such that, after cutting the surface along
these generators, we obtain a canonical polygo-
nal schema, for the surface. A PL-curve is an al-
ternating sequence of edges and vertices, where
edges connect two successive vertices that lie in
the same face, either in its interior or on the
interior of one of its boundary edges.

In [8] an algorithm is sketched that con-
structs a canonical set of generators in optimal
time and space. In this paper, we present in
detail a simple optimal algorithm; we call this
the incremental method, since we construct the
generators while traversing all triangles of the
surface. Our main result is

Theorem 1 A canonical set of PL-generators
for an orientable closed surface of genus g, with
a total of n wvertices, edges and faces, can be
computed in O(gn) time and space, which is
worst-case optimal. FEach PL-generator con-
sists of O(n) edges and vertices.

Figure 2: A surface with two groups of [g/2]
and |g/2] handles, separated by a thin tunnel
of size Q(n). Regardless of the position of the
base-point pg, at least half of this tunnel must
be crossed by at least |g/2| generators.

Optimality is easy to establish; See Figure 2.
Furthermore, we show how to turn Bra-
hana’s method [1] into a second algorithm com-
puting a canonical set of generators in optimal
time and space. We have implemented both
methods using the C++ library CGAL, and have
compared the quality of the output of both al-
gorithms. Although both algorithms are opti-
mal, our implementation of Brahana’s method
seems to produce better (less complex) genera-
tors than the incremental method; cf Figure 7.
There are several reasons for presenting
these algorithms here: (i) our algorithms

greatly simplify the method of [8], (ii) full de-
tails are presented for the first time, (iii) the al-
gorithms have been implemented, and (iv) the
algorithms can be used to solve several other
problems in computational topology. Among
the applications are the construction of PL-
homeomorphisms between surfaces, the con-
struction of (a part of) the universal covering
space of the surface, solving the contractibility
problem of PL-curves on surfaces, cf [5], de-
ciding whether two PL-curves on a surface are
homotopic, and, if so, constructing a homo-
topy, cf [4]. Other applications are conceivable
in connection with morphing, where a suitable
parametrization of 2-manifolds is provided by
the disk obtained by cutting along the canoni-
cal generators.

For general background material on compu-
tational topology, also in connection with ap-
plications, we refer to the surveys [3] and [7].

2 Swurfaces with collars

Triangulated surfaces will be represented by
Doubly-Connected Edge List, a data structure
for representing subdivisions of surfaces. We
refer to [2, Chapter 2| for details on this data
structure. Note that every undirected edge of
the triangulation corresponds to exactly two
half-edges. The incremental algorithm starts
with the open surface § = M \ {#p}, where
to is an arbitrary (closed) triangle, eventually
containing the common base point of the con-
structed generators. Initially, the topological
boundary B of § is the boundary of ¢3. The
algorithm proceeds by visiting triangles inci-
dent to B along at least one edge, and cutting
these (closed) triangles from S. Note that the
non-visited part of M is an open subset of M.
The topological boundary B is adjusted accord-
ingly. It is represented as a circular sequence
of half-edges, oriented in such a way that the
triangle to the left of a half-edge belongs to S.
We say that a vertex occurs in B if it is the
origin of a half-edge in B.

As we will explain in more detail, the bound-
ary B may become non-regular during this pro-
cess, in the sense that a vertex occurs multiply
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in B, or it contains both a half-edge and its
opposite partner (called its Twin in [2]). See
Figure 3 (Bottom). Yet, the irregularity of B,
and hence of the surface S, is restricted. This
is made more precise by introducing the notion
of a collar of an open surface.

Definition 2 A surface with collar in M is a
pair (S,c), where S is an open submanifold of
M, and ¢ : St x [0,1] — M is a continuous
map, such that

1. ¢(S' x (0,1]) C S, and the restriction
¢ lsix(o,1): St x (0,1] = S is an embedding;

2. ¢(STx {0}) c M\ S;

3. The topological boundary of S (viz S\ S) is
the image of the closed curve ¢ : S'x {0} — M.

Observe that the curve ¢ : S' x {0} — M is
in general not an embedding. The curve c :
S'x {1} — M, which is an embedding, may be
considered as a ‘regularization’ of the — perhaps
non-regular — boundary of S. We refer to the
half-open strip ¢(S! x (0,1]) as the collar of S.
This collar has attachment curve c¢(S* x {0}),
and free boundary c¢(S' x {1}). Note that every
continuous curve connecting a point in § with
a point in M \ S intersects the collar of S.

Figure 3: Collars. Top: a PL-collar is obtained
by inserting vertices near the tail of half-edges
incident to B, or in a corner of a triangle. Bot-
tom: a collar on a singular curve B.

A collar S has a straightforward representa-
tion in the PL-setting. To this end, we insert a
vertex near the tail of each half-edge in & em-
anating from a vertex of B. Note that in this
way an edge with both endpoints on B obtains
two vertices. Furthermore, if two successive
half-edges of B, sharing a common vertex v,
are incident to the same triangle ¢ of S, there
is no half-edge of S emanating from v. In this
case, we insert a vertex in the interior of ¢ (e.g.,
on the bisector of the angle of ¢ at v). Connect-
ing the sequence of inserted vertices by edges
we obtain a PL-collar of §; See Figure 3. This
type of collar will be used in Section 4.

As usual, the Euler characteristic x(S) of S
is the alternating sum of the numbers of ver-
tices, edges and faces of §. Cutting the surface
along B we obtain a boundary of S consisting
of a cyclic sequence of half-edges (where some
pairs of half-edges may correspond to the same
undirected edge of M). Gluing a disk along
this cyclic sequence of half-edges yields a closed
orientable surface. By definition, the genus g
of § is the genus of the latter surface. It is
straightforward to check that x(S) =1 — 2g.

3 Swurface traversal

We now describe the algorithm that visits all
triangles of M, starting from a single triangle.
This algorithm is the backbone for the con-
struction of a canonical system of generators,
to be described in Section 4. Globally speaking
the algorithm proceeds as follows. The main
procedure MP, which is called on the comple-
ment S of the initial triangle, visits a triangle ¢
incident upon the topological boundary B of S,
updates § and B, and calls itself recursively on
the updated version of S. During this recursive
process, S may become disconnected, in which
case MP is called recursively on each connected
component. It may also happen that S is not
disconnected, but is not a surface with collar
either (it will turn out that in the latter case
the collar is split). Furthermore, in view of our
ultimate goal of constructing generators, it is
inefficient to visit connected components that
are homeomorphic to a disk. Therefore we also
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require S has positive genus g.
To fill in the details, we first specify the input
of the main procedure.
Precondition of MP. The main procedure
MP takes as input a pair (S,g), where S is a
surface with collar, which has positive genus g.
In particular, the condition g > 0 guarantees
that MP will not be called on disks, which is
crucial in the analysis of the time complexity.
The process of visiting triangle ¢, incident upon
the topological boundary B, is called an exten-
sion. We distinguish two types of extensions.

Figure 4: A regular extension.

Regular Extension: Triangle ¢ shares either
two vertices and one half-edge h; (Figure 4,
top), or three vertices and two half-edges hq,
he (Figure 4, bottom), with 5.

We update B in the former case by replac-
ing the half-edge hy with the two-chain hs, h3,
in the latter case by replacing the two-chain
h1,ho with the half-edge h3. Note that the
topological types of B and the collar do not
change upon a regular extension. In particular,
S§' = 8\ {t} is a surface with collar. Therefore,
the main procedure MP is called recursively on
S’. Tt is obvious that the Euler characteristic,
and hence the genus, does not change under
regular extension.

Splitting Extension: Triangle ¢ shares three
vertices and one half-edge with B (Figure 5,
upper part).

The vertex of ¢, not adjacent to the common
half-edge of B and t, is called the split vertez,
and is denoted by vs. Let the vertices of ¢ be
v1, v9 and vs, such that vyvy is a half-edge of B,
and hence v3 = v,;. Let L be the part of B be-
tween v3 and vq, and let R be the part between

v9 and vg. Then B is split into B; = vyvsL and
B, = vgva R. We distinguish two sub-cases:
S\ {t} is not connected. In this case S\ {t}
consists of two connected components, S; and
S, say, with topological boundary B; and B5;,
respectively. Both S; and S, are surfaces with
collars, with attachment curves B; and B,, re-
spectively.

S\ {t} is connected. In this case the topolog-
ical boundary of S\ {t} is B;U B,, so S\ {t}
is not a surface with collar. In particular, MP
does not accept S\ {t} as input. To remedy
this situation, let v be a shortest edge-path in
S\ {t} connecting B; and B,, called the join-
path (of B; and B,). Let v; € B; and v, € B,
be the extremal vertices of . See Figure 5

Lemma 3 1. If S\ {t} is connected, and vy is
a join-path, then S\ ({t} U~) is a surface with
collar, having genus g — 1.

2. If S\ {t} is not connected, its connected
components S; and S, are surfaces with col-
lar. Moreover, if their genuses are g; and gy,
respectively, then g = g; + g, .

PROOF. We only prove the first part, the
proof of the second part being similar. First
observe that S’ = 8\ ({¢} U~v) has one triangle
(viz t) less than S. Furthermore, edge vjv2
does not occur in §’, but the edges of v occur
once in S and twice in §’. Similarly, if the split
vertex vy is not a vertex of v, it occurs twice in
S, as do the vertices of . Therefore, the Euler
characteristics x of S and x’ of &' are related
by X' = x +1+#V(y) —#E(y) = x + 2. Here
V(y) and E(7y) denote the numbers of vertices
and edges of y. The same identity holds if v,
occurs (once or twice) in . The last identity
yields ¢’ = g—1. Moreover, S’ is a surface with
collar, where the collar has attachment curve
B: v = vs 5 v 5 v, = g — v = vy
v; = v1. Here v — v’ denotes a half-edge from
v to v/, and v = v’ denotes a path from v to v’
consisting of zero or more half-edges. O

In the notation of Lemma 3, if S\ {¢t} is

not connected, the main procedure MP is re-
cursively called on the connected components
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vy Uy
U1 V2
V3 = Vg
Uy Uy
U1 V2
V3 = Vg
Uy Ur
U1 V2

Figure 5: A splitting extension.

Sy, if g > 0, and S, if g, > 0. Furthermore,
if §\ {t} is connected, the main procedure is
recursively called on S’ if ¢’ > 0.

Lemma 4 1. If S\ {t} is connected, the join-
path v can be determined in time proportional
to the size of S.

2. If S\ {t} has two connected components,
establishing non-connectedness and computing
the genuses of the connmected components can
be performed in time proportional to the size
of the smaller connected component.

PrOOF. When a split occurs, we try to con-
struct the join-path v by means of a tandem
search traversing the edges of the surface in

parallel from the sources B; and B,. More pre-
cisely, assuming the edges in B are already col-
ored, we start coloring the half-edges of I3; and
B, with different colors, until the search ex-
hausts the smaller of 5; and B,.. After that, we
reset the color of the larger part of the bound-
ary. Then we visit the open surface S\ {¢t} by
two parallel traversals, one starting from the
curve B; and the other one from B,. We visit
and color new edges and their vertices with
the same color as the extended boundary from
which the traversal started. Then either the
tandem search succeeds in connecting B; and
B, by the join-path 7, or it detects that S\ {¢}
has two connected components S; and S, by ex-
hausting the smaller of these two components.
In the latter case we compute the genus of the
smaller component by determining the number
of vertices, edges and faces. Lemma 4, part 2,
gives the genus of the other connected compo-
nent. O

Lemma’s 3 and 4 allow us to analyze the time
complexity of the traversal of the initial surface
M. To this end, let £y be an arbitrary triangle
of M.

Corollary 5 The call of the main procedure
on the surface with collar Sy = M \ {to} is
executed in time O(gn), where g is the genus
of M and n s the total number of vertices,
edges and triangles in M.

ProoOF.  The proof goes by induction with
respect to the lexicographic order on the set of
pairs (g,n). Our inductive hypothesis is:
IH(g,n): A call of MP on a surface with collar
of genus g and complexity n, takes O(gn) time.
Suppose the claim has been proven for col-
lared surfaces of genus ¢’ and complexity n'
such that (¢',n') lexicographically precedes
(g,m). Consider a surface S of genus g and
complexity n. Let ¢ be the first triangle visited
in the call of MP on S, and let S’ = S\ {¢}.
Detecting whether an extension is regular or
splitting can be easily implemented by color-
ing the vertices of the attachment curve B. If
visiting ¢ corresponds to a regular extension,
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the call subsequent call of MP on S’ takes
O(g(n — 1)) time. Since a regular extension
is performed in constant time, IH(g,n) holds
in this case.

So suppose visiting ¢ corresponds to a split-
ting extension. If 8’ is connected, we construct
a join-path 7; according to Lemma 4, this takes
O(n) time. If the genus g — 1 of S\ ({¢t} U~)
is zero, the recursion terminates, so the hy-
pothesis holds in this case. If ¢ > 1, the main
procedure recurs on S’, which, according to the
inductive hypothesis, takes O((g — 1)n) time.
The call on S takes O(n) additional time dedi-
cated to the construction of -y, so the inductive
hypothesis holds in this case.

If S’ is not connected, it has two connected
components §; and S, with genus ¢g; and g,
and complexitiy n; and n,., respectively. Note
that n;+n, = n—1, and recall that g;+ ¢, = g.
Splitting the boundary (viz locating the split
vertex vg) and recoloring its smaller connected
component again goes in O(min(n;,n,)) time,
using a tandem search like we did in the proof
of Lemma, 4.

If g; > 0 and g, > 0, the main procedure is
recursively called on both §; and S,, where it
spends O(g;n;) and O(g,n,) time, respectively.
Since detecting disconnectedness, and comput-
ing g; and g,, takes O(min(n;, n,)) time, we see
that the overall time complexity is O(gn).

If g = 0, the recursive call on S, takes
O(gn,) time (the topological disk &; is dis-
carded). Therefore, the overall time complex-
ity in this case is O(gn, + min(n;,n,)), hence
again O(gn). If g, = 0, we argue similarly. O

4 Constructing generators

The backbone algorithm from Section 2 will
now be extended by constructing a canonical
set of generators from a base-point in the ini-
tial triangle. These generators will be routed
along an approach path yap, which connects
the base point with the boundary of the non-
visited part of the surface. As the algorithm
proceeds, we should take care that generators
we are about to complete do not intersect al-
ready constructed generators. Yet, we allow

already constructed generators to intersect the
non-visited part of the surface, although possi-
ble intersections should be confined to the col-
lar of the non-visited part.

More precisely, let g be the first triangle
visited, and let the base-point py be an inte-
rior point of t;. We first extend the precon-
dition, introduced in Section 2 for calling the
main procedure MP on a non-visited surface
S with collar. To this end, we assume from
now on that a collar is piecewise linear, as de-
scribed in Section 2 (See also Figure 3). In
particular, a collar of S only intersects edges
and faces of § incident upon the attachment
curve B, and such edges are intersected in inte-
rior points. Furthermore, we require that the
attachment curve B of S has a distinguished
half-edge hapa, satisfying the following condi-
tions:

(AP1) The base-point p is connected by a
PL-curve yap to hapa; apart from pg, this ap-
proach path is disjoint from S, and it does not
share any point with already constructed gen-
erators and approach paths;

(AP2) The terminal point of yap on hapa can
be connected to the free boundary of the col-
lar of S by a line segment inside the face of S
incident upon hapa, which does not intersect
any of the generators constructed so far;
(AP3) No already constructed generator in-
tersects the free boundary of the collar of S.
No already constructed approach path inter-
sects S.

The distinguished edge hapa is called the ap-
proach path aperture of §. The existence of
the line segment, refered to in condition AP2,
will allow us to extend the approach path when
visiting new triangles.

Lemma 6 The main procedure MP can be en-
hanced in such a way that:

1. It maintains the invariants (AP1), (AP2)
and (AP3)

2. When called on the initial surface with
boundary M \ {to}, it constructs a canonical
set of g generator pairs, in time O(gn).

PROOF. Before describing the actual en-
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hancement of MP, we impose some restrictions
on the traversal and the approach paths, and
introduce some primitive operations that facil-
itate the description of the algorithm.

We require that, during the traversal of the
surface, the next triangle visited in a call of
MP on S is incident upon the approach path
aperture hapa, contained in the boundary B
of §. Furthermore, we require that approach
paths do not intersect vertices of M.

A basic operation is that of cloning an ap-
proach path. Cloning an approach path yap,
directed from pg to its terminal vertex on the
approach path aperture hapa, amounts to con-
structing a PL-path from pg to hapa, with the
same combinatorial structure as yap (i.e., in-
tersecting the same sequence of edges and faces
of M). This clone should not share any point
with already constructed approach paths or
generators, apart from pg. To avoid ambigu-
ities, we assume that a clone runs to the left
of its original. In view of condition (AP1), any
approach path can be cloned, and cloning can
even be repeated on clones.

Furthermore, we employ the notion of rout-
ing a PL-curve along (part of) the free bound-
ary of a PL-collar. This operation is similar
to cloning, in that we construct a PL-curve in-
side the PL-collar, which has the same combi-
natorial structure as (a sub-path of) the free
boundary of the collar. We require this curve
to be disjoint from already constructed gener-
ators and approach paths, which is possible in
view of conditions (AP1) and (AP3).

Now consider a regular extension. Set the
approach path aperture by p, of 8’ = S\ {t} to
one of the half-edges in the boundary of £, not
incident upon B (e.g. hg in Figure 4). Accord-
ing to (AP2), there is a line segment s = pp’
connecting the terminal vertex p of yap with
a point p’ inside ¢ and on the free boundary of
the collar of S. Let ¢ be a point on h/yp, not
belonging to the collar of §. Such a point ex-
ists, since h/yp, does not belong to B, and since
the PL-collar of S only intersects faces incident
upon B. Extending yap with pp’ and p'q, we
obtain an approach path v)p for S’ satisfying

U Uy

YAP YAP

Figure 6: Splitting extensions upon visit of tri-
angle t = vyvovs. Top: S\{t} is not connected.
Bottom: S\ {t} is connected, so a pair of gen-
erators is constructed.

(AP1). Furthermore, since g does not belong
to the collar of S there is a line segment q¢/,
with ¢’ on the free boundary of the collar of S,
that is disjoint from the collar of S. In other
words, (AP2) holds for §’. Since we do not
complete any generators, (AP3) also holds for
S'. The enhanced version of a regular exten-
sion obviously takes O(1) time. It remains to
consider a splitting extension. If ' = S\ {t} is
disconnected, and both g; and g, are positive,
we construct a clone vy p of the approach path
vap. Now we extend v/ p to the half-edge vy v,
of B;, and we extend yap to the half-edge v v
of B, (the notation is as in Section 2); See Fig-
ure 6, Top. Arguing as in the case of a regular
extension, we conclude that conditions (AP1),
(AP2) and (AP3) hold for the connected com-
ponents S; and S, of §’, with approach path
apertures v1vs and vzv9, respectively. If g; or
gr is zero, we just extend the approach path to
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the non-visited part of positive genus in O(1)
time. Cloning only needs to be done in case
the genus of both non-visited parts is less than
the genus of S, which happens at most g — 1
times. Therefore, the overall complexity of all
splitting extensions of this type is O(gn).

Finally, consider a splitting extension in
which &' = &'\ {t} is connected. Now we con-
struct four disjoint clones i, 2, 7; and 7,
of yap, whose respective end-points p1, p2, p;
and p,, occur in this order on the approach
path aperture hapa between v; and the end-
point of yap. The approach path yap is now
extended to the half-edge vsvy, see Figure 6,
Bottom. As before, we can do this in such a
way that (AP1), (AP2) and (AP3) holds for
S'. Finally, we complete a pair of generators
by connecting the end-points of y; and vy with
the end-points of 77 and 73, respectively, by
two curves o1 and os; See Figure 6, Bottom.
More precisely, let F and F’ be the free parts of
the collars of S and S&’. Then oy is a PL-curve
obtained by connecting p; to a point near v; on
105 by a curve inside ¢, and subsequently rout-
ing it along the part of F near v; — v; = v,
and along the part of F' near v 5 vy, and,
finally, connecting it to py. Furthermore, o9
is a PL-curve obtained by connecting ps to a
point near vy on v1vs, and subsequently rout-
ing it along the part of F' near pv; — v; — vy,
then along the part of F near v 5 v, letting
it traverse t near vy, then routing it along the
part of F' near vs — vy, and, finally, connect-
ing it to py by a curve inside ¢. Obviously, oy
and oy do not intersect the free boundary of
the collar of §’. Furthermore, it is easy to see
that these curves can be constructed in such a
way that they are disjoint from any generators
or approach paths already constructed.

The time complexity of this splitting oper-
ation is O(n), since the generators share only
a constant number of edges and vertices with
each edge and face of M. Since there are ex-
actly g splitting extensions of this type, the
overall time complexity is O(gn). O

The main theorem is a straightforward conse-
quence of Lemma. 6.

5 Brahana’s algorithm

The inverse of a path p is denoted by i(p) or
p~ L, and for a set of paths S we denote the set
SUu(S) by S.

Let G be a maximal subgraph of the
vertex-edge graph of M such that M \ G is
connected, and let Tz be a tubular neighbour-
hood of G in M. By construction, M \ T
is a topological disk and G is a deformation
retract of T;. Therefore a set of generators
of the fundamental group n(G,z) of G at =
is also a set of generators of the fundamental
group m(M,x) of M at z. We can decompose
our method into three steps:

1. First we construct a set G of (2g) gener-
ators of m(G,z), associated with a set E of
(2g) directed edges of M under a bijection
/: FE — G, and a cycle ¢ of E such that for
ec E:

UHENUF(E)) . L) ~ e (¥)
in 7(M, z). Here €, is the trivial path at .
2. Secondly, we transform in O(gn) time
the set G into a set H of generators z;,y;
of n(G,z), each of linear complexity, such
that a loop in # is homotopic (in G) to the
concatenation of O(g) loops in G, and the
relation satisfied by the z;,y; in 7(M,z) is in
"canonical form’, i.e.

[Z1,01] - [2g, yg] ~ €. (%)

As usual, [z;,y;] is the commutator
YTy 1%’_ ! and ~ denotes path-homotopy.
3. Finally, we show how to construct in O(gn)
time a canonical set of generators z;,y; of
©(M, z) such that z; ~ 27 and y; ~ yf in Tg.
Step 1. We construct a spanning tree T of
G rooted at . Let E denote the set of non-
tree edges in G; Each edge in F is oriented
arbitrarily and each edge in 7' is oriented to-
wards the root. Without loss of generality
we assume for convenience that there is only
one edge eginx of the tree incident upon z. For
each (directed) edge e € E we consider the
shortest edge-path v, = eejes - egui from e
to £ in T. By construction, for e # ¢’ the
paths v, and 7, coincide only on a proper suf-
fix sub-path, i.e., both paths can be decom-
posed as v = Te,e! Ve,e' and v = Te! eYe e
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where 7y, o+ = Yer . and 7, o and 7. . are disjoint
except at their sink v(e,e’). One can check
that the relation on the edges in E defined by
e < €' if the sink edges of 7/, Ter e and the
source edge of v, . are in counterclockwise or-
der around their common endpoint v(e,e’) —
with respect to the choice of an orientation of
the surface M — is a transitive relation.

Let now /(e) be the loop with basepoint z
obtained by concatenation of the loops 2(7.)
and (), removing one of the two occur-
rences of e™!, i.e., £(e) = 1(7e)Vy(). Note that
L(1(e)) = 1(f(e)). The set G = L(F) is a
set of (2g) generators of (G, z), and conse-
quently of w(M,z). Furthermore, the unique
relation in (M, z) satisfied by these genera-
tors is (*), where the operator ¢ is defined by
¢(e) = 1 o(e). Here 9p(e) is the successor of
e with respect to the circular order on E, in-
duced by the linear order < .

Step 2. We use a sequence of Brahana
transformations, cf [8]. Let ¢ = £(¢'(e))
for some e € E, and let M be the loop
{1 ---L4y. The loop M can be decomposed into
aX1bX2a X367 Xy, where a and b are loops
in G, and X4 is nonempty (unless X7, X5 and
X3 are empty, in which case we are done). If
X1, X5, X3 are not all empty we replace the
loops a and b by the loops z = aX{bXoa !
(consequently b ! = Xsa 'z 'aX;) and
y = X3Xoa7!' (@ = y7'X3X3) to obtain
xT

—f
successively M ~ aX1bXoa " X3b7 Xy ~
Yy
—

rX3Xoa 'z aX Xy ~ [z, y] X3 X0 X 1 Xy ~
X3X2X1X4[$,y].

If X1, X9, X3 are all empty, then we simply set
x = a, y = b. In both cases M ~ M'[z,y]
where M’ is the concatenation in some order
of the loops in G \{a,a "1, b,b7'}, and where z
and y are loops composed of O(g) generators
in G. The loops a and b and their correspond-
ing edges in E are said to be converted. Af-
ter j such transformations we have converted
a set G; of 25 generators in G into a set H;
of 25 generators z1,y1,2,¥y2,... ,Tj,y;, such
that M ~ M;[z1,y1]- - [z;,y;]. Here M; is the

concatenation in some order of the loops in
G \ C;j. For j = g we obtain generators which
satisfy (#x*), but whose total complexity is only
in O(g*n.)

We now explain how to reduce the complex-
ity of these loops by homotopy to O(gn). First
we examine how the relation ¢ = 1) o4 is tran-
formed. For j > 0 and for e € '\ E; we define
;(e) to be the <-successor of e in E‘\Ej, and
$;(e) to be the edge ¢’ such that the successor
of £(e) in M; is ¢(¢').

Lemma 7 ¢;(e) =1, 0u(e).

ProoF.  We prove the result by induction.
The case j = 0 follows from the definition of
¢. Let a and b be the loops converted at step
4+ 1. One has M; = aX1bXoa™ ' X3b™' X4 and
Mj+1 = X3X5X;X4. Let € = ¢j+1(6). Ife =
$;(e), then e = 1p;(1(e)) = 1j1+1(2(e)), since e
and €’ are not converted at step j + 1. Assume
now that e’ # ¢;(e), and let ef for k = 1,2 and
i = 1,2,3,4 be defined by X; = £(e})X!¢(e?)
if X; is non empty. The pair (e,e’) coincides
with one of the pairs (e?, ef,) where k precedes
k' in the order 3,2,1,4. For example if e = e%
and ¢ = e} then 1;(u(e2)) = ;(e2) = 1(b)
and 9;(2(b)) = ¢j(b) = el = €. Therefore,
¥j+1(e(e)) = €. The other cases are similar. O

We are now ready to decrease in op-
timal time the complexity of the loops
zi,yi. Assume that z; L(a)l(b)---£(2)
and let sc(z;) be the loop defined by
(7)), D(1D). ) - £6(y), 2)z), where
/(e e’) is the concatenation of the two paths
Te,er and o(7er o). Clearly  ~ se(z), and the
size of sc(z), i.e., its number of edges in M,
is in O(n). Starting from its source e, we can
visit the edges of £(e, €’) in time proportional to
its size if we can determine efficiently the ver-
tex v(e,€’). In view of Lemma 7 this can easily
be done in O(1) time, provided we maintain
for each node v of the tree T the <-ordered
list L;(v) of edges e € E whose corresponding
loops have non yet been converted, and whose
associated paths 7, lie along v. The lists Lo (v)
are easily created in O(gn) time, and updated
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in O(n) time, each time an edge is converted
by a traversal of the corresponding loop.
Step 3. Omitted from this version.

6 Implementation

We have implemented both the incremen-
tal and Brahana’s algorithm in C++, using
the CGAL polyhedron data structure. Being
purely combinatorial, the implementation does
not present particular difficulties. It can be
seen that the canonical set of PL-loops can be
drawn without vertices interior to faces. In
practice, a PL-loop is specified by the list of
edges it crosses. Also, each edge of the combi-
natorial surface points to the list of loops it is
crossed by. In order to visualize the PL-loops,
we uniformly insert in each edge a number of
points equals to the size of its list. We then
link these points according to each loop list.

In Section 4 we always visit a triangle inci-
dent to the approach path aperture. In prac-
tice, we can choose any triangle incident to
the boundary and keep the same complex-
ity. In our implementation we use a ‘potato
peeling’ traversal. This heuristic produces
nicer loops. Experimentation shows that Bra-
hana’s algorithm generally produces curves
with lower complexity (total number of seg-
ments). However the incremental method may
be competitive when the initial set of gen-
erators in Brahana’s method satisfies a re-
lation ‘close’ to the other canonical form:
aibiasby ... agbga_lb_l. . .a_gg. In this case, the
final generators are indeed expressed as €(g?)
initial generators.
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Addendum!

Here we comment on both our algorithms, applied to the pelvis bone data set. When comput-
ing a canonical polygonal schema with Brahana’s algorithm (See Section 5), only one Brahana-
transformation is needed. The total size of the computed loops is 513 edges.

The initial loop M (beginning of step 2 in Brahana’s algorithm) turns out to be:

(+0)(=5)(=0)(+1)(=2)(=1)(+2) (+3) (+5) (=4)(=3)(+4)

In the notation of Section 5, the algorithm takes a = (+3) and b = (45). The first part of the
Brahana transformation is:

z = aXbXoa™" = (+3)(+5)(—4)(-3),
so X1 =€, Xo = (—4), X3 = (+4)(+0), and X4 = (=0)(+1)(—2)(—1)(+2). Thus M becomes:
(+0)(+1) (+2)(=1)(=2) (+2) (+3) (—=2) (+4) (=3) (=0) (= 4).

The second part of this Brahana transformation corresponds to the choice y = X3Xoa ' =
(+4)(+0)(—4)(-3), and M becomes (See Figure 8):

(+0)(=4) (=0)(+ 1) (=2) (=1)(+2) (+z) (+y) (=) (=y) (+4)

Figure 8: Brahana’s algorithm. Left: G and its spanning tree T'. Middle and right: the correspond-
ing loops and the canonical set of PL-generators during and after one Brahana transformation. The
color coding is: 0 <> red; 1 <> green; 2 <> purple; 3 <> blue; 4 < yellow; 5 <+ orange.

The iterative method, on the other hand, computes a canonical polygonal schema consisting of a
total of 1126 edges. Figure 9 shows the first splitting extension, and the first couple of associated
loops.

Finally, we show the output of both algorithms on the pelvis data set; See Figure 10.

!Not part of the submission for the proceedings
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Figure 9: Tterative method. Left: the first splitting extension and the join-path. Right: the
corresponding loops.
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Figure 10: Output of our algorithms on the pelvis data set. Top: The incremental method. Bottom:
Brahana’s method
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