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Abstra
t

A 
losed orientable surfa
e of genus g 
an be

obtained by appropriate identi�
ation of pairs

of edges of a 4g-gon (the polygonal s
hema).

The identi�ed edges form 2g loops on the sur-

fa
e, that are disjoint ex
ept for their 
om-

mon end-point. These loops are generators of

both the fundamental group and the homol-

ogy group of the surfa
e. The inverse prob-

lem is 
on
erned with �nding a set of 2g loops

on a triangulated surfa
e, su
h that 
utting

the surfa
e along these loops yields a (
anon-

i
al) polygonal s
hema. We present two opti-

mal algorithms for this inverse problem. Both

algorithms have been implemented using the

CGAL polyhedron data stru
ture.

1 Introdu
tion

Let M

g

be a regular 4g{gon, whose su

essive

edges are labeled a

1

; b

1

; a

1

; b

1

; � � � ; a

g

; b

g

; a

g

; b

g

.

Edge x is dire
ted 
ounter
lo
kwise, edge x


lo
kwise. The spa
e obtained by identifying

edges x and x, as indi
ated by their dire
tion,

is a 
losed oriented surfa
e; See e.g. [6, Chapter

1.4℄. This surfa
e, 
alled orientable surfa
e of

genus g, is homeomorphi
 to a 2{sphere with
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g handles. E.g., M

1

is the torus; See Figure 1.

The labeled polygonM

g

is 
alled the 
anoni
al

polygonal s
hema of M

g

.

a

1

a

1

b

1

b

1

Figure 1: From polygonal s
hema to orientable

surfa
e: the torus.

It is easy to see that all verti
es are identi-

�ed to a single point p

0

of the surfa
e. After

identi�
ation in pairs, the edges of the polyg-

onal s
hema form 2g 
urves on M

g

, whi
h are

disjoint, ex
ept for their 
ommon endpoint p

0

.

These 2g loops are generators of the fundamen-

tal group of M

g

(and of the �rst homology

group). In the sequel we drop the dependen
e

on the genus from our notation, i.e.,M denotes

a 
losed orientable surfa
e of genus g.

In this paper we 
onsider the inverse prob-

lem: Given a 
ombinatorial (triangulated) sur-
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fa
e, �nd a 
anoni
al set of PL-
urves (genera-

tors) su
h that, after 
utting the surfa
e along

these generators, we obtain a 
anoni
al polygo-

nal s
hema for the surfa
e. A PL-
urve is an al-

ternating sequen
e of edges and verti
es, where

edges 
onne
t two su

essive verti
es that lie in

the same fa
e, either in its interior or on the

interior of one of its boundary edges.

In [8℄ an algorithm is sket
hed that 
on-

stru
ts a 
anoni
al set of generators in optimal

time and spa
e. In this paper, we present in

detail a simple optimal algorithm; we 
all this

the in
remental method, sin
e we 
onstru
t the

generators while traversing all triangles of the

surfa
e. Our main result is

Theorem 1 A 
anoni
al set of PL-generators

for an orientable 
losed surfa
e of genus g, with

a total of n verti
es, edges and fa
es, 
an be


omputed in O(gn) time and spa
e, whi
h is

worst-
ase optimal. Ea
h PL-generator 
on-

sists of O(n) edges and verti
es.

. . .
...

...
.
.
.

Figure 2: A surfa
e with two groups of dg=2e

and bg=2
 handles, separated by a thin tunnel

of size 
(n). Regardless of the position of the

base-point p

0

, at least half of this tunnel must

be 
rossed by at least bg=2
 generators.

Optimality is easy to establish; See Figure 2.

Furthermore, we show how to turn Bra-

hana's method [1℄ into a se
ond algorithm 
om-

puting a 
anoni
al set of generators in optimal

time and spa
e. We have implemented both

methods using the C++ library CGAL, and have


ompared the quality of the output of both al-

gorithms. Although both algorithms are opti-

mal, our implementation of Brahana's method

seems to produ
e better (less 
omplex) genera-

tors than the in
remental method; 
f Figure 7.

There are several reasons for presenting

these algorithms here: (i) our algorithms

greatly simplify the method of [8℄, (ii) full de-

tails are presented for the �rst time, (iii) the al-

gorithms have been implemented, and (iv) the

algorithms 
an be used to solve several other

problems in 
omputational topology. Among

the appli
ations are the 
onstru
tion of PL-

homeomorphisms between surfa
es, the 
on-

stru
tion of (a part of) the universal 
overing

spa
e of the surfa
e, solving the 
ontra
tibility

problem of PL-
urves on surfa
es, 
f [5℄, de-


iding whether two PL-
urves on a surfa
e are

homotopi
, and, if so, 
onstru
ting a homo-

topy, 
f [4℄. Other appli
ations are 
on
eivable

in 
onne
tion with morphing, where a suitable

parametrization of 2-manifolds is provided by

the disk obtained by 
utting along the 
anoni-


al generators.

For general ba
kground material on 
ompu-

tational topology, also in 
onne
tion with ap-

pli
ations, we refer to the surveys [3℄ and [7℄.

2 Surfa
es with 
ollars

Triangulated surfa
es will be represented by

Doubly-Conne
ted Edge List, a data stru
ture

for representing subdivisions of surfa
es. We

refer to [2, Chapter 2℄ for details on this data

stru
ture. Note that every undire
ted edge of

the triangulation 
orresponds to exa
tly two

half-edges. The in
remental algorithm starts

with the open surfa
e S = M n ft

0

g, where

t

0

is an arbitrary (
losed) triangle, eventually


ontaining the 
ommon base point of the 
on-

stru
ted generators. Initially, the topologi
al

boundary B of S is the boundary of t

0

. The

algorithm pro
eeds by visiting triangles in
i-

dent to B along at least one edge, and 
utting

these (
losed) triangles from S. Note that the

non-visited part of M is an open subset of M.

The topologi
al boundary B is adjusted a

ord-

ingly. It is represented as a 
ir
ular sequen
e

of half-edges, oriented in su
h a way that the

triangle to the left of a half-edge belongs to S.

We say that a vertex o

urs in B if it is the

origin of a half-edge in B.

As we will explain in more detail, the bound-

ary B may be
ome non-regular during this pro-


ess, in the sense that a vertex o

urs multiply
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in B, or it 
ontains both a half-edge and its

opposite partner (
alled its Twin in [2℄). See

Figure 3 (Bottom). Yet, the irregularity of B,

and hen
e of the surfa
e S, is restri
ted. This

is made more pre
ise by introdu
ing the notion

of a 
ollar of an open surfa
e.

De�nition 2 A surfa
e with 
ollar in M is a

pair (S; 
), where S is an open submanifold of

M, and 
 : S

1

� [0; 1℄ ! M is a 
ontinuous

map, su
h that

1. 
(S

1

� (0; 1℄) � S, and the restri
tion


 j

S

1

�(0;1℄

: S

1

� (0; 1℄! S is an embedding;

2. 
(S

1

� f0g) �Mn S;

3. The topologi
al boundary of S (viz S n S) is

the image of the 
losed 
urve 
 : S

1

�f0g !M.

Observe that the 
urve 
 : S

1

� f0g ! M is

in general not an embedding. The 
urve 
 :

S

1

�f1g !M, whi
h is an embedding, may be


onsidered as a `regularization' of the { perhaps

non-regular { boundary of S. We refer to the

half-open strip 
(S

1

� (0; 1℄) as the 
ollar of S.

This 
ollar has atta
hment 
urve 
(S

1

� f0g),

and free boundary 
(S

1

�f1g). Note that every


ontinuous 
urve 
onne
ting a point in S with

a point in Mn S interse
ts the 
ollar of S.

B

p

1

p

2

p

3

p

4

Figure 3: Collars. Top: a PL-
ollar is obtained

by inserting verti
es near the tail of half-edges

in
ident to B, or in a 
orner of a triangle. Bot-

tom: a 
ollar on a singular 
urve B.

A 
ollar S has a straightforward representa-

tion in the PL-setting. To this end, we insert a

vertex near the tail of ea
h half-edge in S em-

anating from a vertex of B. Note that in this

way an edge with both endpoints on B obtains

two verti
es. Furthermore, if two su

essive

half-edges of B, sharing a 
ommon vertex v,

are in
ident to the same triangle t of S, there

is no half-edge of S emanating from v. In this


ase, we insert a vertex in the interior of t (e.g.,

on the bise
tor of the angle of t at v). Conne
t-

ing the sequen
e of inserted verti
es by edges

we obtain a PL-
ollar of S; See Figure 3. This

type of 
ollar will be used in Se
tion 4.

As usual, the Euler 
hara
teristi
 �(S) of S

is the alternating sum of the numbers of ver-

ti
es, edges and fa
es of S. Cutting the surfa
e

along B we obtain a boundary of S 
onsisting

of a 
y
li
 sequen
e of half-edges (where some

pairs of half-edges may 
orrespond to the same

undire
ted edge of M). Gluing a disk along

this 
y
li
 sequen
e of half-edges yields a 
losed

orientable surfa
e. By de�nition, the genus g

of S is the genus of the latter surfa
e. It is

straightforward to 
he
k that �(S) = 1� 2g.

3 Surfa
e traversal

We now des
ribe the algorithm that visits all

triangles of M, starting from a single triangle.

This algorithm is the ba
kbone for the 
on-

stru
tion of a 
anoni
al system of generators,

to be des
ribed in Se
tion 4. Globally speaking

the algorithm pro
eeds as follows. The main

pro
edure MP, whi
h is 
alled on the 
omple-

ment S of the initial triangle, visits a triangle t

in
ident upon the topologi
al boundary B of S,

updates S and B, and 
alls itself re
ursively on

the updated version of S. During this re
ursive

pro
ess, S may be
ome dis
onne
ted, in whi
h


ase MP is 
alled re
ursively on ea
h 
onne
ted


omponent. It may also happen that S is not

dis
onne
ted, but is not a surfa
e with 
ollar

either (it will turn out that in the latter 
ase

the 
ollar is split). Furthermore, in view of our

ultimate goal of 
onstru
ting generators, it is

ineÆ
ient to visit 
onne
ted 
omponents that

are homeomorphi
 to a disk. Therefore we also
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require S has positive genus g.

To �ll in the details, we �rst spe
ify the input

of the main pro
edure.

Pre
ondition of MP. The main pro
edure

MP takes as input a pair (S; g), where S is a

surfa
e with 
ollar, whi
h has positive genus g.

In parti
ular, the 
ondition g > 0 guarantees

that MP will not be 
alled on disks, whi
h is


ru
ial in the analysis of the time 
omplexity.

The pro
ess of visiting triangle t, in
ident upon

the topologi
al boundary B, is 
alled an exten-

sion. We distinguish two types of extensions.

=)

=)

h

1

h

1

h

2

h

2

h

3

h

3

Figure 4: A regular extension.

Regular Extension: Triangle t shares either

two verti
es and one half-edge h

1

(Figure 4,

top), or three verti
es and two half-edges h

1

,

h

2

(Figure 4, bottom), with B.

We update B in the former 
ase by repla
-

ing the half-edge h

1

with the two-
hain h

2

; h

3

,

in the latter 
ase by repla
ing the two-
hain

h

1

; h

2

with the half-edge h

3

. Note that the

topologi
al types of B and the 
ollar do not


hange upon a regular extension. In parti
ular,

S

0

= S nftg is a surfa
e with 
ollar. Therefore,

the main pro
edure MP is 
alled re
ursively on

S

0

. It is obvious that the Euler 
hara
teristi
,

and hen
e the genus, does not 
hange under

regular extension.

Splitting Extension: Triangle t shares three

verti
es and one half-edge with B (Figure 5,

upper part).

The vertex of t, not adja
ent to the 
ommon

half-edge of B and t, is 
alled the split vertex,

and is denoted by v

s

. Let the verti
es of t be

v

1

, v

2

and v

3

, su
h that v

1

v

2

is a half-edge of B,

and hen
e v

3

= v

s

. Let L be the part of B be-

tween v

3

and v

1

, and let R be the part between

v

2

and v

3

. Then B is split into B

l

= v

1

v

3

L and

B

r

= v

3

v

2

R. We distinguish two sub-
ases:

S n ftg is not 
onne
ted. In this 
ase S n ftg


onsists of two 
onne
ted 
omponents, S

l

and

S

r

say, with topologi
al boundary B

l

and B

r

,

respe
tively. Both S

l

and S

r

are surfa
es with


ollars, with atta
hment 
urves B

l

and B

r

, re-

spe
tively.

S n ftg is 
onne
ted. In this 
ase the topolog-

i
al boundary of S n ftg is B

l

[ B

r

, so S n ftg

is not a surfa
e with 
ollar. In parti
ular, MP

does not a

ept S n ftg as input. To remedy

this situation, let 
 be a shortest edge-path in

S n ftg 
onne
ting B

l

and B

r

, 
alled the join-

path (of B

l

and B

r

). Let v

l

2 B

l

and v

r

2 B

r

be the extremal verti
es of 
. See Figure 5

Lemma 3 1. If S n ftg is 
onne
ted, and 
 is

a join-path, then S n (ftg [ 
) is a surfa
e with


ollar, having genus g � 1.

2. If S n ftg is not 
onne
ted, its 
onne
ted


omponents S

l

and S

r

are surfa
es with 
ol-

lar. Moreover, if their genuses are g

l

and g

r

,

respe
tively, then g = g

l

+ g

r

.

Proof. We only prove the �rst part, the

proof of the se
ond part being similar. First

observe that S

0

= S n (ftg[
) has one triangle

(viz t) less than S. Furthermore, edge v

1

v

2

does not o

ur in S

0

, but the edges of 
 o

ur

on
e in S and twi
e in S

0

. Similarly, if the split

vertex v

s

is not a vertex of 
, it o

urs twi
e in

S, as do the verti
es of 
. Therefore, the Euler


hara
teristi
s � of S and �

0

of S

0

are related

by �

0

= �+1+#V (
)�#E(
) = �+2. Here

V (
) and E(
) denote the numbers of verti
es

and edges of 
. The same identity holds if v

s

o

urs (on
e or twi
e) in 
. The last identity

yields g

0

= g�1. Moreover, S

0

is a surfa
e with


ollar, where the 
ollar has atta
hment 
urve

B

0

: v

1

! v

s

�

! v

l

�

! v

r

�

! v

2

! v

s

�

! v

r

�

!

v

l

�

! v

1

. Here v ! v

0

denotes a half-edge from

v to v

0

, and v

�

! v

0

denotes a path from v to v

0


onsisting of zero or more half-edges. �

In the notation of Lemma 3, if S n ftg is

not 
onne
ted, the main pro
edure MP is re-


ursively 
alled on the 
onne
ted 
omponents
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v

l

v

l

v

l

v

r

v

r

v

r

v

1

v

1

v

1

v

2

v

2

v

2

v

3

v

3

= v

s

v

3

= v

s

Figure 5: A splitting extension.

S

l

, if g

l

> 0, and S

r

, if g

r

> 0. Furthermore,

if S n ftg is 
onne
ted, the main pro
edure is

re
ursively 
alled on S

0

if g

0

> 0.

Lemma 4 1. If S n ftg is 
onne
ted, the join-

path 
 
an be determined in time proportional

to the size of S.

2. If S n ftg has two 
onne
ted 
omponents,

establishing non-
onne
tedness and 
omputing

the genuses of the 
onne
ted 
omponents 
an

be performed in time proportional to the size

of the smaller 
onne
ted 
omponent.

Proof. When a split o

urs, we try to 
on-

stru
t the join-path 
 by means of a tandem

sear
h traversing the edges of the surfa
e in

parallel from the sour
es B

l

and B

r

. More pre-


isely, assuming the edges in B are already 
ol-

ored, we start 
oloring the half-edges of B

l

and

B

r

with di�erent 
olors, until the sear
h ex-

hausts the smaller of B

l

and B

r

. After that, we

reset the 
olor of the larger part of the bound-

ary. Then we visit the open surfa
e S n ftg by

two parallel traversals, one starting from the


urve B

l

and the other one from B

r

. We visit

and 
olor new edges and their verti
es with

the same 
olor as the extended boundary from

whi
h the traversal started. Then either the

tandem sear
h su

eeds in 
onne
ting B

l

and

B

r

by the join-path 
, or it dete
ts that S nftg

has two 
onne
ted 
omponents S

l

and S

r

by ex-

hausting the smaller of these two 
omponents.

In the latter 
ase we 
ompute the genus of the

smaller 
omponent by determining the number

of verti
es, edges and fa
es. Lemma 4, part 2,

gives the genus of the other 
onne
ted 
ompo-

nent. �

Lemma's 3 and 4 allow us to analyze the time


omplexity of the traversal of the initial surfa
e

M. To this end, let t

0

be an arbitrary triangle

of M.

Corollary 5 The 
all of the main pro
edure

on the surfa
e with 
ollar S

0

= M n ft

0

g is

exe
uted in time O(gn), where g is the genus

of M and n is the total number of verti
es,

edges and triangles in M.

Proof. The proof goes by indu
tion with

respe
t to the lexi
ographi
 order on the set of

pairs (g; n). Our indu
tive hypothesis is:

IH(g,n): A 
all of MP on a surfa
e with 
ollar

of genus g and 
omplexity n, takes O(gn) time.

Suppose the 
laim has been proven for 
ol-

lared surfa
es of genus g

0

and 
omplexity n

0

su
h that (g

0

; n

0

) lexi
ographi
ally pre
edes

(g; n). Consider a surfa
e S of genus g and


omplexity n. Let t be the �rst triangle visited

in the 
all of MP on S, and let S

0

= S n ftg.

Dete
ting whether an extension is regular or

splitting 
an be easily implemented by 
olor-

ing the verti
es of the atta
hment 
urve B. If

visiting t 
orresponds to a regular extension,
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the 
all subsequent 
all of MP on S

0

takes

O(g(n � 1)) time. Sin
e a regular extension

is performed in 
onstant time, IH(g,n) holds

in this 
ase.

So suppose visiting t 
orresponds to a split-

ting extension. If S

0

is 
onne
ted, we 
onstru
t

a join-path 
; a

ording to Lemma 4, this takes

O(n) time. If the genus g � 1 of S n (ftg [ 
)

is zero, the re
ursion terminates, so the hy-

pothesis holds in this 
ase. If g > 1, the main

pro
edure re
urs on S

0

, whi
h, a

ording to the

indu
tive hypothesis, takes O((g � 1)n) time.

The 
all on S takes O(n) additional time dedi-


ated to the 
onstru
tion of 
, so the indu
tive

hypothesis holds in this 
ase.

If S

0

is not 
onne
ted, it has two 
onne
ted


omponents S

l

and S

r

, with genus g

l

and g

r

,

and 
omplexitiy n

l

and n

r

, respe
tively. Note

that n

l

+n

r

= n�1, and re
all that g

l

+g

r

= g.

Splitting the boundary (viz lo
ating the split

vertex v

s

) and re
oloring its smaller 
onne
ted


omponent again goes in O(min(n

l

; n

r

)) time,

using a tandem sear
h like we did in the proof

of Lemma 4.

If g

l

> 0 and g

r

> 0, the main pro
edure is

re
ursively 
alled on both S

l

and S

r

, where it

spends O(g

l

n

l

) and O(g

r

n

r

) time, respe
tively.

Sin
e dete
ting dis
onne
tedness, and 
omput-

ing g

l

and g

r

, takes O(min(n

l

; n

r

)) time, we see

that the overall time 
omplexity is O(gn).

If g

l

= 0, the re
ursive 
all on S

r

takes

O(gn

r

) time (the topologi
al disk S

l

is dis-


arded). Therefore, the overall time 
omplex-

ity in this 
ase is O(gn

r

+min(n

l

; n

r

)), hen
e

again O(gn). If g

r

= 0, we argue similarly. �

4 Constru
ting generators

The ba
kbone algorithm from Se
tion 2 will

now be extended by 
onstru
ting a 
anoni
al

set of generators from a base-point in the ini-

tial triangle. These generators will be routed

along an approa
h path 


AP

, whi
h 
onne
ts

the base point with the boundary of the non-

visited part of the surfa
e. As the algorithm

pro
eeds, we should take 
are that generators

we are about to 
omplete do not interse
t al-

ready 
onstru
ted generators. Yet, we allow

already 
onstru
ted generators to interse
t the

non-visited part of the surfa
e, although possi-

ble interse
tions should be 
on�ned to the 
ol-

lar of the non-visited part.

More pre
isely, let t

0

be the �rst triangle

visited, and let the base-point p

0

be an inte-

rior point of t

0

. We �rst extend the pre
on-

dition, introdu
ed in Se
tion 2 for 
alling the

main pro
edure MP on a non-visited surfa
e

S with 
ollar. To this end, we assume from

now on that a 
ollar is pie
ewise linear, as de-

s
ribed in Se
tion 2 (See also Figure 3). In

parti
ular, a 
ollar of S only interse
ts edges

and fa
es of S in
ident upon the atta
hment


urve B, and su
h edges are interse
ted in inte-

rior points. Furthermore, we require that the

atta
hment 
urve B of S has a distinguished

half-edge h

APA

, satisfying the following 
ondi-

tions:

(AP1) The base-point p

0

is 
onne
ted by a

PL-
urve 


AP

to h

APA

; apart from p

0

, this ap-

proa
h path is disjoint from S, and it does not

share any point with already 
onstru
ted gen-

erators and approa
h paths;

(AP2) The terminal point of 


AP

on h

APA


an

be 
onne
ted to the free boundary of the 
ol-

lar of S by a line segment inside the fa
e of S

in
ident upon h

APA

, whi
h does not interse
t

any of the generators 
onstru
ted so far;

(AP3) No already 
onstru
ted generator in-

terse
ts the free boundary of the 
ollar of S.

No already 
onstru
ted approa
h path inter-

se
ts S.

The distinguished edge h

APA

is 
alled the ap-

proa
h path aperture of S. The existen
e of

the line segment, refered to in 
ondition AP2,

will allow us to extend the approa
h path when

visiting new triangles.

Lemma 6 The main pro
edure MP 
an be en-

han
ed in su
h a way that:

1. It maintains the invariants (AP1), (AP2)

and (AP3)

2. When 
alled on the initial surfa
e with

boundary M n ft

0

g, it 
onstru
ts a 
anoni
al

set of g generator pairs, in time O(gn).

Proof. Before des
ribing the a
tual en-
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han
ement of MP, we impose some restri
tions

on the traversal and the approa
h paths, and

introdu
e some primitive operations that fa
il-

itate the des
ription of the algorithm.

We require that, during the traversal of the

surfa
e, the next triangle visited in a 
all of

MP on S is in
ident upon the approa
h path

aperture h

APA

, 
ontained in the boundary B

of S. Furthermore, we require that approa
h

paths do not interse
t verti
es of M.

A basi
 operation is that of 
loning an ap-

proa
h path. Cloning an approa
h path 


AP

,

dire
ted from p

0

to its terminal vertex on the

approa
h path aperture h

APA

, amounts to 
on-

stru
ting a PL-path from p

0

to h

APA

, with the

same 
ombinatorial stru
ture as 


AP

(i.e., in-

terse
ting the same sequen
e of edges and fa
es

of M). This 
lone should not share any point

with already 
onstru
ted approa
h paths or

generators, apart from p

0

. To avoid ambigu-

ities, we assume that a 
lone runs to the left

of its original. In view of 
ondition (AP1), any

approa
h path 
an be 
loned, and 
loning 
an

even be repeated on 
lones.

Furthermore, we employ the notion of rout-

ing a PL-
urve along (part of) the free bound-

ary of a PL-
ollar. This operation is similar

to 
loning, in that we 
onstru
t a PL-
urve in-

side the PL-
ollar, whi
h has the same 
ombi-

natorial stru
ture as (a sub-path of) the free

boundary of the 
ollar. We require this 
urve

to be disjoint from already 
onstru
ted gener-

ators and approa
h paths, whi
h is possible in

view of 
onditions (AP1) and (AP3).

Now 
onsider a regular extension. Set the

approa
h path aperture h

0

APA

of S

0

= Snftg to

one of the half-edges in the boundary of t, not

in
ident upon B (e.g. h

3

in Figure 4). A

ord-

ing to (AP2), there is a line segment s = pp

0


onne
ting the terminal vertex p of 


AP

with

a point p

0

inside t and on the free boundary of

the 
ollar of S. Let q be a point on h

0

APA

not

belonging to the 
ollar of S. Su
h a point ex-

ists, sin
e h

0

APA

does not belong to B, and sin
e

the PL-
ollar of S only interse
ts fa
es in
ident

upon B. Extending 


AP

with pp

0

and p

0

q, we

obtain an approa
h path 


0

AP

for S

0

satisfying

v

1

v

2

v

s

v

l

v

r

v

1

v

2

v

s

v

l

v

r




AP




0

AP




AP

Figure 6: Splitting extensions upon visit of tri-

angle t = v

1

v

2

v

3

. Top: Snftg is not 
onne
ted.

Bottom: S n ftg is 
onne
ted, so a pair of gen-

erators is 
onstru
ted.

(AP1). Furthermore, sin
e q does not belong

to the 
ollar of S there is a line segment qq

0

,

with q

0

on the free boundary of the 
ollar of S

0

,

that is disjoint from the 
ollar of S. In other

words, (AP2) holds for S

0

. Sin
e we do not


omplete any generators, (AP3) also holds for

S

0

. The enhan
ed version of a regular exten-

sion obviously takes O(1) time. It remains to


onsider a splitting extension. If S

0

= S nftg is

dis
onne
ted, and both g

l

and g

r

are positive,

we 
onstru
t a 
lone 


0

AP

of the approa
h path




AP

. Now we extend 


0

AP

to the half-edge v

1

v

s

of B

l

, and we extend 


AP

to the half-edge v

s

v

2

of B

r

(the notation is as in Se
tion 2); See Fig-

ure 6, Top. Arguing as in the 
ase of a regular

extension, we 
on
lude that 
onditions (AP1),

(AP2) and (AP3) hold for the 
onne
ted 
om-

ponents S

l

and S

r

of S

0

, with approa
h path

apertures v

1

v

s

and v

s

v

2

, respe
tively. If g

l

or

g

r

is zero, we just extend the approa
h path to
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the non-visited part of positive genus in O(1)

time. Cloning only needs to be done in 
ase

the genus of both non-visited parts is less than

the genus of S, whi
h happens at most g � 1

times. Therefore, the overall 
omplexity of all

splitting extensions of this type is O(gn).

Finally, 
onsider a splitting extension in

whi
h S

0

= S n ftg is 
onne
ted. Now we 
on-

stru
t four disjoint 
lones 


1

, 


2

, 


1

and 


2

of 


AP

, whose respe
tive end-points p

1

, p

2

, p

1

and p

2

, o

ur in this order on the approa
h

path aperture h

APA

between v

1

and the end-

point of 


AP

. The approa
h path 


AP

is now

extended to the half-edge v

s

v

2

, see Figure 6,

Bottom. As before, we 
an do this in su
h a

way that (AP1), (AP2) and (AP3) holds for

S

0

. Finally, we 
omplete a pair of generators

by 
onne
ting the end-points of 


1

and 


2

with

the end-points of 


1

and 


2

, respe
tively, by

two 
urves �

1

and �

2

; See Figure 6, Bottom.

More pre
isely, let F and F

0

be the free parts of

the 
ollars of S and S

0

. Then �

1

is a PL-
urve

obtained by 
onne
ting p

1

to a point near v

1

on

v

1

v

s

by a 
urve inside t, and subsequently rout-

ing it along the part of F near v

1

�

! v

l

�

! v

s

and along the part of F

0

near v

s

�

! v

1

, and,

�nally, 
onne
ting it to p

1

. Furthermore, �

2

is a PL-
urve obtained by 
onne
ting p

2

to a

point near v

1

on v

1

v

s

, and subsequently rout-

ing it along the part of F

0

near pv

1

�

! v

l

�

! v

r

,

then along the part of F near v

l

�

! v

s

, letting

it traverse t near v

s

, then routing it along the

part of F

0

near v

s

�

! v

1

, and, �nally, 
onne
t-

ing it to p

2

by a 
urve inside t. Obviously, �

1

and �

2

do not interse
t the free boundary of

the 
ollar of S

0

. Furthermore, it is easy to see

that these 
urves 
an be 
onstru
ted in su
h a

way that they are disjoint from any generators

or approa
h paths already 
onstru
ted.

The time 
omplexity of this splitting oper-

ation is O(n), sin
e the generators share only

a 
onstant number of edges and verti
es with

ea
h edge and fa
e of M. Sin
e there are ex-

a
tly g splitting extensions of this type, the

overall time 
omplexity is O(gn). �

The main theorem is a straightforward 
onse-

quen
e of Lemma 6.

5 Brahana's algorithm

The inverse of a path p is denoted by {(p) or

p

�1

, and for a set of paths S we denote the set

S [ {(S) by

^

S.

Let G be a maximal subgraph of the

vertex-edge graph of M su
h that M n G is


onne
ted, and let T

G

be a tubular neighbour-

hood of G in M. By 
onstru
tion, M n T

G

is a topologi
al disk and G is a deformation

retra
t of T

G

. Therefore a set of generators

of the fundamental group �(G;x) of G at x

is also a set of generators of the fundamental

group �(M; x) of M at x. We 
an de
ompose

our method into three steps:

1. First we 
onstru
t a set G of (2g) gener-

ators of �(G;x), asso
iated with a set E of

(2g) dire
ted edges of M under a bije
tion

` : E ! G, and a 
y
le � of

^

E su
h that for

e 2

^

E:

`(�(e))`(�

2

(e)) : : : `(�

4g

(e)) � �

x

(�)

in �(M; x). Here �

x

is the trivial path at x.

2. Se
ondly, we transform in O(gn) time

the set G into a set H of generators x

i

; y

i

of �(G;x), ea
h of linear 
omplexity, su
h

that a loop in H is homotopi
 (in G) to the


on
atenation of O(g) loops in

^

G, and the

relation satis�ed by the x

i

; y

i

in �(M; x) is in

'
anoni
al form', i.e.

[x

1

; y

1

℄ � � � [x

g

; y

g

℄ � �

x

: (��)

As usual, [x

i

; y

i

℄ is the 
ommutator

x

i

y

i

x

�1

i

y

�1

i

, and � denotes path-homotopy.

3. Finally, we show how to 
onstru
t in O(gn)

time a 
anoni
al set of generators x

�

i

; y

�

i

of

�(M; x) su
h that x

i

� x

�

i

and y

i

� y

�

i

in T

G

.

Step 1. We 
onstru
t a spanning tree T of

G rooted at x. Let E denote the set of non-

tree edges in G; Ea
h edge in E is oriented

arbitrarily and ea
h edge in T is oriented to-

wards the root. Without loss of generality

we assume for 
onvenien
e that there is only

one edge e

sink

of the tree in
ident upon x: For

ea
h (dire
ted) edge e 2

^

E we 
onsider the

shortest edge-path 


e

= ee

1

e

2

� � � e

sink

from e

to x in T . By 
onstru
tion, for e 6= e

0

the

paths 


e

and 


e

0


oin
ide only on a proper suf-

�x sub-path, i.e., both paths 
an be de
om-

posed as 


e

= �

e;e

0




e;e

0

and 


e

0

= �

e

0

;e




e

0

;e

,
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where 


e;e

0

= 


e

0

;e

and �

e;e

0

and �

e

0

;e

are disjoint

ex
ept at their sink v(e; e

0

). One 
an 
he
k

that the relation on the edges in

^

E de�ned by

e � e

0

if the sink edges of �

e;e

0

, �

e

0

;e

and the

sour
e edge of 


e;e

0

are in 
ounter
lo
kwise or-

der around their 
ommon endpoint v(e; e

0

) |

with respe
t to the 
hoi
e of an orientation of

the surfa
e M | is a transitive relation.

Let now `(e) be the loop with basepoint x

obtained by 
on
atenation of the loops {(


e

)

and 


{(e)

, removing one of the two o

ur-

ren
es of e

�1

, i.e., `(e) = {(


e

)


{(e)

: Note that

`({(e)) = {(`(e)): The set G := `(E) is a

set of (2g) generators of �(G;x), and 
onse-

quently of �(M; x). Furthermore, the unique

relation in �(M; x) satis�ed by these genera-

tors is (�), where the operator � is de�ned by

�(e) =  Æ {(e). Here  (e) is the su

essor of

e with respe
t to the 
ir
ular order on

^

E, in-

du
ed by the linear order � :

Step 2. We use a sequen
e of Brahana

transformations, 
f [8℄. Let `

i

= `(�

i

(e))

for some e 2

^

E, and let M be the loop

`

1

� � � `

4g

: The loop M 
an be de
omposed into

aX

1

bX

2

a

�1

X

3

b

�1

X

4

; where a and b are loops

in

^

G, and X

4

is nonempty (unless X

1

;X

2

and

X

3

are empty, in whi
h 
ase we are done). If

X

1

;X

2

;X

3

are not all empty we repla
e the

loops a and b by the loops x = aX

1

bX

2

a

�1

(
onsequently b

�1

= X

2

a

�1

x

�1

aX

1

) and

y = X

3

X

2

a

�1

(a = y

�1

X

3

X

2

) to obtain

su

essively M �

x

z }| {

aX

1

bX

2

a

�1

X

3

b

�1

X

4

�

x

y

z }| {

X

3

X

2

a

�1

x

�1

aX

1

X

4

� [x; y℄X

3

X

2

X

1

X

4

�

X

3

X

2

X

1

X

4

[x; y℄.

If X

1

;X

2

;X

3

are all empty, then we simply set

x = a, y = b. In both 
ases M � M

0

[x; y℄

where M

0

is the 
on
atenation in some order

of the loops in

^

G nfa; a

�1

; b; b

�1

g, and where x

and y are loops 
omposed of O(g) generators

in

^

G: The loops a and b and their 
orrespond-

ing edges in

^

E are said to be 
onverted. Af-

ter j su
h transformations we have 
onverted

a set G

j

of 2j generators in G into a set H

j

of 2j generators x

1

; y

1

; x

2

; y

2

; : : : ; x

j

; y

j

, su
h

that M �M

j

[x

1

; y

1

℄ � � � [x

j

; y

j

℄: Here M

j

is the


on
atenation in some order of the loops in

^

G n

^

G

j

. For j = g we obtain generators whi
h

satisfy (��), but whose total 
omplexity is only

in O(g

2

n:)

We now explain how to redu
e the 
omplex-

ity of these loops by homotopy to O(gn): First

we examine how the relation � =  Æ { is tran-

formed. For j � 0 and for e 2

^

E n

^

E

j

we de�ne

 

j

(e) to be the �-su

essor of e in

^

E n

^

E

j

, and

�

j

(e) to be the edge e

0

su
h that the su

essor

of `(e) in M

j

is `(e

0

):

Lemma 7 �

j

(e) =  

j

Æ {(e).

Proof. We prove the result by indu
tion.

The 
ase j = 0 follows from the de�nition of

�. Let a and b be the loops 
onverted at step

j+1: One has M

j

= aX

1

bX

2

a

�1

X

3

b

�1

X

4

and

M

j+1

= X

3

X

2

X

1

X

4

. Let e

0

= �

j+1

(e). If e

0

=

�

j

(e), then e

0

=  

j

({(e)) =  

j+1

({(e)), sin
e e

and e

0

are not 
onverted at step j +1: Assume

now that e

0

6= �

j

(e), and let e

k

i

for k = 1; 2 and

i = 1; 2; 3; 4 be de�ned by X

i

= `(e

1

i

)X

0

i

`(e

2

i

)

if X

i

is non empty. The pair (e; e

0

) 
oin
ides

with one of the pairs (e

2

k

; e

1

k

0

) where k pre
edes

k

0

in the order 3,2,1,4. For example if e = e

2

3

and e

0

= e

1

2

then  

j

({(e

2

3

)) = �

j

(e

2

3

) = {(b)

and  

j

({(b)) = �

j

(b) = e

1

2

= e

0

. Therefore,

 

j+1

({(e)) = e

0

. The other 
ases are similar. �

We are now ready to de
rease in op-

timal time the 
omplexity of the loops

x

i

; y

i

: Assume that x

j

= `(a)`(b) � � � `(z)

and let s
(x

j

) be the loop de�ned by

{(


a

)`({(a); b)`({(b); 
) � � � `({(y); z)


{(z)

; where

`(e; e

0

) is the 
on
atenation of the two paths

�

e;e

0

and {(�

e

0

;e

): Clearly x � s
(x), and the

size of s
(x), i.e., its number of edges in M,

is in O(n). Starting from its sour
e e, we 
an

visit the edges of `(e; e

0

) in time proportional to

its size if we 
an determine eÆ
iently the ver-

tex v(e; e

0

). In view of Lemma 7 this 
an easily

be done in O(1) time, provided we maintain

for ea
h node v of the tree T the �-ordered

list L

j

(v) of edges e 2

^

E whose 
orresponding

loops have non yet been 
onverted, and whose

asso
iated paths 


e

lie along v. The lists L

0

(v)

are easily 
reated in O(gn) time, and updated
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in O(n) time, ea
h time an edge is 
onverted

by a traversal of the 
orresponding loop.

Step 3. Omitted from this version.

6 Implementation

We have implemented both the in
remen-

tal and Brahana's algorithm in C++, using

the CGAL polyhedron data stru
ture. Being

purely 
ombinatorial, the implementation does

not present parti
ular diÆ
ulties. It 
an be

seen that the 
anoni
al set of PL-loops 
an be

drawn without verti
es interior to fa
es. In

pra
ti
e, a PL-loop is spe
i�ed by the list of

edges it 
rosses. Also, ea
h edge of the 
ombi-

natorial surfa
e points to the list of loops it is


rossed by. In order to visualize the PL-loops,

we uniformly insert in ea
h edge a number of

points equals to the size of its list. We then

link these points a

ording to ea
h loop list.

In Se
tion 4 we always visit a triangle in
i-

dent to the approa
h path aperture. In pra
-

ti
e, we 
an 
hoose any triangle in
ident to

the boundary and keep the same 
omplex-

ity. In our implementation we use a `potato

peeling' traversal. This heuristi
 produ
es

ni
er loops. Experimentation shows that Bra-

hana's algorithm generally produ
es 
urves

with lower 
omplexity (total number of seg-

ments). However the in
remental method may

be 
ompetitive when the initial set of gen-

erators in Brahana's method satis�es a re-

lation `
lose' to the other 
anoni
al form:

a

1

b

1

a

2

b

2

: : : a

g

b

g

a

1

b

1

: : : a

g

b

g

. In this 
ase, the

�nal generators are indeed expressed as 
(g

2

)

initial generators.
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Addendum

1

Here we 
omment on both our algorithms, applied to the pelvis bone data set. When 
omput-

ing a 
anoni
al polygonal s
hema with Brahana's algorithm (See Se
tion 5), only one Brahana-

transformation is needed. The total size of the 
omputed loops is 513 edges.

The initial loop M (beginning of step 2 in Brahana's algorithm) turns out to be:

(+0)(�5)(�0)(+1)(�2)(�1)(+2)(+3)(+5)(�4)(�3)(+4)

In the notation of Se
tion 5, the algorithm takes a = (+3) and b = (+5). The �rst part of the

Brahana transformation is:

x = aX

1

bX

2

a

�1

= (+3)(+5)(�4)(�3);

so X

1

= �, X

2

= (�4), X

3

= (+4)(+0), and X

4

= (�0)(+1)(�2)(�1)(+2). Thus M be
omes:

(+0)(+1)(+2)(�1)(�2)(+x)(+3)(�x)(+4)(�3)(�0)(�4):

The se
ond part of this Brahana transformation 
orresponds to the 
hoi
e y = X

3

X

2

a

�1

=

(+4)(+0)(�4)(�3), and M be
omes (See Figure 8):

(+0)(�4)(�0)(+1)(�2)(�1)(+2)(+x)(+y)(�x)(�y)(+4)

Figure 8: Brahana's algorithm. Left: G and its spanning tree T . Middle and right: the 
orrespond-

ing loops and the 
anoni
al set of PL-generators during and after one Brahana transformation. The


olor 
oding is: 0 $ red; 1 $ green; 2 $ purple; 3 $ blue; 4 $ yellow; 5 $ orange.

The iterative method, on the other hand, 
omputes a 
anoni
al polygonal s
hema 
onsisting of a

total of 1126 edges. Figure 9 shows the �rst splitting extension, and the �rst 
ouple of asso
iated

loops.

Finally, we show the output of both algorithms on the pelvis data set; See Figure 10.

1

Not part of the submission for the pro
eedings
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Figure 9: Iterative method. Left: the �rst splitting extension and the join-path. Right: the


orresponding loops.
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Figure 10: Output of our algorithms on the pelvis data set. Top: The in
remental method. Bottom:

Brahana's method
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