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Abstract. In this work, we deal with the global well-posedness and stability of the linear and7

nonlinear Korteweg-de Vries equations on a finite star-shaped network by acting with saturated8

controls. We obtain the global well-posedness by using the Kato smoothing property for the linear9

case and then using some estimates and a fixed point argument we deal with the nonlinear system.10

Finally, we obtain the exponential stability using two di↵erent kinds of saturation by proving an11

observability inequality via a contradiction argument.12
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1. Introduction and presentation of our results. The Korteweg-de Vries16

(KdV) equation ut + ux + uxxx + uux = 0 was introduced in [13] to model the prop-17

agation of long water waves in a channel. The KdV equation has been very well18

studied in recent years, in particular, the controllability and stabilization properties;19

see [9, 22] for a complete introduction to these problems. With respect to the KdV20

equation on networks, we can mention the work [8] where well-posedness of the KdV21

equation on a star metric graph was studied. In the works [1, 10], stabilization and22

controllability problems were studied, for the KdV equation on a star-shaped network,23

and recently the problem of stabilization using internal delay was addressed in [16].24

In this work, we are interested in the global well-posedness and stability properties25

of a KdV equation posed on a star-shaped network using internal saturated feedback26

terms. Let K = {kn : 1  n  N} be the set of the N edges of a network T described27

as the intervals [0, `n] with `n > 0 for n = 1, . . . , N , the network T is defined by28

T =
S

N

n=1 kn. Specifically, we are going to consider the next evolution problem for29

the KdV equation,30

(KdV-N)8
>>>>>>><

>>>>>>>:

(@tun + @xun + un@xun + @
3
x
un)(t, x) = 0 8x 2 (0, `n), t > 0, n = 1, . . . , N,

un(t, 0) = un0(t, 0) 8n, n0 = 1, . . . , N,

NX

n=1

@
2
x
un(t, 0) = �↵u1(t, 0)�

N

3
u
2
1(t, 0), t > 0,

un(t, `n) = @xun(t, `n) = 0, t > 0, n = 1, . . . , N,

un(0, x) = u
0
n
(x), x 2 (0, `n),

31
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2 WELL-POSED SATURATED STABILIZATION KDV NETWORK

where ↵ � N

2 . The central node conditions are obtained taking account of the fol-32

lowing: If we denote by un and vn the dimensionless and scaled variables standing,33

respectively, for the deflection from rest position and the velocity on the branch n of34

long water waves, then we get from [25, eq. (13.102)]35

(
@tun + @xun + @

3
x
un + un@xun = 0 8x 2 (0, `n), t > 0, n = 1, . . . , N,

vn = un � 1

6
u
2
n
+ 2@2

x
un 8x 2 (0, `n), t > 0, n = 1, . . . , N.

36

Moreover, at the central node, we can suppose that the elevation of water is the same37

in all branches and that the sum of the flux is null, which implies38

8
><

>:

un(t, 0) = un0(t, 0) 8n, n0 = 1, . . . , N,

NX

n=1

un(t, 0)vn(t, 0) = 0, t > 0.
39

Then we obtain the following problem:40

8
><

>:

un(t, 0) = un0(t, 0) 8n, n0 = 1, . . . , N,

NX

n=1

@
2
x
un(t, 0) = �N

2
u1(t, 0) +

N

6
u
2
1(t, 0), t > 0.

41

We adapt the boundary condition at the central node to have a decreasing energy.42

The hypothesis ↵ >
N

2 was introduced in [1] and then in [10] the case ↵ = N

2 was43

included. (KdV-N) was studied in [1] by using the following functional setting: Let44

H
1
r
(0, `n) =

�
v 2 H

1(0, `n), v(`n) = 0
 
, where the index r is related to the null right45

boundary conditions, the space H1
e
(T ) be the Cartesian product of H1

r
(0, `n) including46

the continuity condition on the central node (un(0) = un0(0) 8n, n0 = 1, . . . , N)47

H
1
e
(T ) =

(
u = (u1, · · · , uN )T 2

NY

n=1

H
1
r
(0, `n), un(0) = un0(0) 8n, n0 = 1, . . . , N

)
,48

and49

kuk2
H1

e(T ) =
NX

n=1

kunk2H1(0,`n)
,50

where the index e is related so that each edge belongs to H
1
r
(0, `n). Introduce also51

the state space52

L
2(T ) =

NY

n=1

L
2(0, `n) with (u, v)L2(T ) =

NX

n=1

Z
`n

0
unvndx 8u, v 2 L

2(T ).53

We also define the space BT = C([0, T ],L2(T )) \ L
2(0, T ;H1

e
(T )) with kukBT =54

kukC([0,T ],L2(T )) + kukL2(0,T ;H1
e(T )), and YT be the space of all functions v 2 BT55

such that @
x
vn 2 L

1
x
(0, `n;H

1�
3 (0, T )) for  = 0, 1, 2, with the induced norm56

kvkYT = kvkBT +
2X

=0

k@
x
vkQN

n=1
L1

x (0,`n;H
1�
3 (0,T ))

.57

In [1, 10] the next well-posedness result was proved for small initial condition and for58

any time horizon.59
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Theorem 1.1 (Theorem 2.7 of [1]). Let (`n)n=1,...,N 2 (0,1)N , ↵ � N

2 and60

T > 0. Then there exist ✏ > 0 and C > 0 such that for all u
0 2 L

2(T ) with61

ku0kL2(T )  ✏, there exists a unique solution of (KdV-N). Moreover, it satisfies62

kukBT  Cku0kL2(T ).63

The main problem to get a global well-posedness result is the action of the non-64

linear boundary condition on the central node. Similar boundary conditions appear65

for the first time to our knowledge in the work [21] where a wave maker control for66

a single KdV equation was studied and then in the work [5] where a well-posedness67

result was given. The system studied in these papers was the next one68

(1.1)8
>>><

>>>:

@tu(t, x) + @xu(t, x) + u(t, x)@xu(t, x) + @
3
x
u(t, x) = 0 8x 2 (0, L), t > 0,

@
2
x
u(t, 0) = �u(t, 0) +

1

6
u
2(t, 0) + h(t), t > 0,

u(t, L) = @xu(t, L) = 0, t > 0,
u(0, x) = �(x), x 2 (0, L),

69

and the following well-posedness result local-in-time for bounded initial data was70

proven in [5].71

Theorem 1.2 (Theorem 1.1 of [5]). Let T > 0 and � > 0 be given. There72

exists T
⇤ 2 (0, T ] such that for any � 2 L

2(0, L) and h 2 H
� 1

3 (0, T ) satisfying,73

k�kL2(0,L) + khk
H

� 1

3 (0,T )
 �. Then the problem (1.1) admits a unique solution u 274

C([0, T ⇤];L2(0, L)) \ L
2(0, T ⇤;H1(0, L)). Moreover, the corresponding solution map75

is Lipschitz continuous and the solution possesses the hidden regularities (the sharp76

Kato smoothing properties) @
x
u 2 L

1
x
(0, L;H

1�
3 (0, T ⇤)),  = 0, 1, 2.77

The first main result of our work is the following global-in-time well-posedness78

theorem.79

Theorem 1.3. Let (`n)n=1,...,N 2 (0,1)N , ↵ � N

2 , and T > 0. Then, for all80

u
0 2 L

2(T ), there exists a unique solution u 2 BT of (KdV-N). Moreover, there exist81

0 < T
⇤  T , C > 0 such that u 2 YT⇤ and kukYT⇤  Cku0kL2(T ).82

Note that our result generalized Theorem 1.1 in the sense that the smallness83

assumption on the initial data is not needed. Our idea is to follow [5] to obtain84

a similar sharp Kato smoothing regularity presented in Theorem 1.2 for a linear85

problem of the KdV equation on a star-shaped network. In order to deal with the86

nonlinear part, we use a fixed point argument to obtain global well-posedness for87

small time. Finally, we use an energy estimation to obtain a global well-posedness88

in time. Similar ideas were applied in the case of a single KdV equation in [18].89

From the point of view of stabilization, we can refer to the work [26] in which the90

boundary exponential stabilization problem in the bounded spatial domain x 2 (0, 1)91

was studied. It is well known that the length L of the spatial domain plays an92

important role in the stabilization and controllability properties of the KdV equation.93

For example, when L = 2⇡ it is possible to find a solution of the linearization around94

0 of KdV (u(t, x) = 1 � cos(x)) that has constant energy. More generally, if L 2 N ,95

where N is the set of critical lengths defined by96

N =

(
2⇡

r
k
2 + kl + l

2

3
, k, l 2 N

⇤

)
,97

we can find suitable initial data such that the solution of the linear KdV equation98

has constant energy. For the case of internal stabilization, it is proved in [18, 17] that99
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for any critical length we achieve local exponential stability for the nonlinear KdV100

equation by adding a localized damping. In most real-life settings we have to take101

into account the saturation in the input control due to some (physical, economical,102

etc.) constraints. With respect to saturated control in infinite-dimensional systems,103

we can refer to [19] where a wave equation with distributed and boundary saturated104

feedback law was studied, [14] where the saturated internal stabilization of a single105

KdV equation was studied and recently [15] where a saturated feedback control law106

was derived for a linear reaction-di↵usion equation. Our idea closely follows works107

[14] and [16] to prove the stability of the KdV equation in a star-shaped network with108

saturated internal control. In this work, we consider a saturation map sat that could109

be any of the following cases:110

• sat = satloc: First consider the following scalar saturation,111

sat(f) =

8
<

:

�M if f  �M,

f if �M  f  M,

M if f � M,

112

where M > 0 is given and denotes the saturation level. Then we take the113

next extension to an infinite-dimensional setting114

(1.2) satloc(f)(x) = sat(f(x)).115

• sat = sat2: For f 2 L
2(0, L) we define116

(1.3) sat2(f)(x) =

8
<

:

f(x) if kfkL2(0,L)  M,

f(x)M

kfkL2(0,L)
if kfkL2(0,L) � M.

117

In what follows, sat corresponds to either satloc or sat2. In order to consider the118

saturated stabilization problem, we study the next system119

(KdV-S)8
>>>>>><

>>>>>>:

(@tun + @xun + un@xun + @
3
x
un)(t, x)

+ sat(an(x)un(t, x)) = 0, x 2 (0, `n), t > 0, n = 1, . . . , N,

un(t, 0) = un0(t, 0) 8n, n0 = 1, . . . , N,P
N

n=1 @
2
x
un(t, 0) = �↵u1(t, 0)� N

3 u
2
1(t, 0), t > 0,

un(t, `n) = @xun(t, `n) = 0, t > 0, n = 1, . . . , N,

un(0, x) = u
0
n
(x), x 2 (0, `n),

120

where the damping terms (an)n=1,...,N 2
Q

N

n=1 L
1(0, `n) act locally on all branches,121

formally written as122

(1.4) an � cn > 0 in an open nonempty set !n of (0, `n), for all n = 1, . . . , N.123

In this work, we are going to consider the following energy E(t) of u = (u1, . . . , uN )T 2124

L
2(T ) by125

(1.5) E(t) =
1

2
kuk2

L2(T ).126

The second main result of this paper states the semiglobal exponential stability of127

(KdV-S).128
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Theorem 1.4. Assume that the damping terms (an)n=1,...,N satisfy (1.4). Let129

(`n)Nn=1 ⇢ (0,1) and R > 0, then there exist C(R) > 0 and µ(R) > 0 such that for130

all u0 2 L
2(T ) with ku0kL2(T )  R, the energy of any solution of (KdV-S) defined by131

(1.5) satisfies E(t)  C(R)E(0)e�µ(R)t for all t > 0.132

Then, in order to add damped terms only on the critical lengths as in [1], we ne-133

glect the term un@xun in the KdV equation (KdV-N). Let Ic = {n 2 {1, · · · , N}; `n 2134

N} be the set of critical lengths and I
⇤
c
be the subset of Ic where we remove one index.135

We consider now the following problem,136

(LKdV-S)

8
>>>>>><

>>>>>>:

(@tun + @xun + @
3
x
un)(t, x)

+ sat(an(x)un(t, x)) = 0, x 2 (0, `n), t > 0, n = 1, . . . , N,

un(t, 0) = un0(t, 0) 8n, n0 = 1, . . . , N,P
N

n=1 @
2
x
un(t, 0) = �↵u1(t, 0), t > 0,

un(t, `n) = @xun(t, `n) = 0, t > 0, n = 1, . . . , N,

un(0, x) = u
0
n
(x), x 2 (0, `n),

137

where the damping (an)n=1,...,N 2
Q

N

n=1 L
1(0, `n) satisfy138

(1.6)

8
<

:

an = 0 for n 2 {1, . . . , N}\I⇤
c
,

an � cn in an open nonempty set !n of (0, `n), for all n 2 I
⇤
c
,

and cn > 0 is a constant.
139

Then we are able to prove the following global stabilization result, which is the last140

main result.141

Theorem 1.5. Assume that the damping terms (an)n=1,...,N satisfy (1.6) and let142

(`n)Nn=1 ⇢ (0,1). Then, there exist C > 0 and µ > 0 such that for all u0 2 L
2(T ),143

the energy of any solution of (LKdV-S) defined by (1.5) satisfies E(t)  CE(0)e�µt
144

for all t > 0.145

Remark 1. Note that for the system (LKdV-S) the stabilization result is global,146

instead of the one for (KdV-S) which is semiglobal. This di↵erence comes from the147

action of the term un@xun: The condition ku0kL2(T )  R is necessary to handle this148

term. �149

Remark 2. A global stabilization result for (KdV-S) is, to our knowledge, an open150

problem. �151

2. Well-posedness. This section is devoted to prove well-posedness results for152

(KdV-N)-(KdV-S) and (LKdV-S); in particular, we focus on Theorem 1.3. Our153

scheme will be to consider appropriate linear systems to derive regularity proper-154

ties. Then, using a fixed point result, we obtain the well-posedness for the nonlinear155

systems.156

2.1. Linear problems. We start by considering the following linear system for157

the KdV equation on a star-shaped network T :158

(LKdV-N)8
>>>>>>><

>>>>>>>:

@tun + @
3
x
un = fn 8x 2 (0, `n), t > 0, n = 1, . . . , N,

un(t, 0) = un0(t, 0) 8n, n0 = 1, . . . , N,

NX

n=1

@
2
x
un(t, 0) = h(t), t > 0,

un(t, `n) = 0, @xun(t, `n) = 0, t > 0, n = 1, . . . , N,

un(0, x) = u
0
n
(x) 8x 2 (0, `n), j = 1, . . . , N.

159
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The terms fn and h are internal and boundary functions that are useful for the fixed160

point approach. First, we deal with the linear system (LKdV-N) with homogeneous161

initial condition and homogeneous internal source terms (fn = 0):162

(2.1)

8
>>>>>>><

>>>>>>>:

@tun + @
3
x
un = 0 8x 2 (0, `n), t > 0, n = 1, . . . , N,

un(t, 0) = un0(t, 0), t > 0, 8n, n0 = 1, . . . , N,

NX

n=1

@
2
x
un(t, 0) = h(t), t > 0,

un(t, `n) = 0, @xun(t, `n) = 0, t > 0, n = 1, . . . , N,

un(0, x) = 0, 8x 2 (0, `n), n = 1, . . . , N,

163

The fact that we work with the linear system @tun + @
3
x
un = 0 instead of @tun +164

@xun + @
3
x
un = 0 is motivated by [3, 5]. It is well known, that the term @xun yields165

problematic behaviors with respect to regularity and controllability properties, as well166

noted Rosier in [20] and then in several works [7, 27, 4]. Now, formally we apply the167

usual Laplace transform with respect to time to the system (2.1) and obtain168

(2.2)

8
>>>>>>><

>>>>>>>:

sûn + @
3
x
ûn = 0 8x 2 (0, `n), n = 1, . . . , N,

ûn(s, 0) = ûn0(s, 0) 8n, n0 = 1, . . . , N,

NX

n=1

@
2
x
ûn(s, 0) = ĥ(s),

ûn(s, `n) = 0, @xûn(s, `n) = 0, n = 1, . . . , N,

ûn(0, x) = 0 8x 2 (0, `n), n = 1, . . . , N,

169

where170

ûn(s, x) =

Z 1

0
e
�st

un(t, x)dt, ĥ(s) =

Z 1

0
e
�st

h(t)dt 8x 2 (0, `n).171

Following [3], we can see that the N component solutions to (2.2) can be written as172

(2.3) ûn(s, x) =
3X

j=1

c
N

3(n�1)+j
(s)e�j(s)x,173

where �j(s), j = 1, 2, 3 are the solutions of the characteristic equation s+�
3 = 0 and174

c
N = (ck)Nk=1,...,3N solves the following linear system175

(2.4)

8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

NX

n=1

3X

j=1

c
N

3(n�1)+j
�
2
j
= ĥ,

3X

j=1

c
N

j
e
�j`1 = 0,

3X

j=1

c
N

j
�je

�j`1 = 0,

3X

j=1

c
N

j
=

3X

j=1

c
N

3(n�1)+j
,

3X

j=1

c
N

3(n�1)+j
e
�j`n = 0,

3X

j=1

c
N

3(n�1)+j
�je

�j`n = 0

9
>>>>>>>>>>=

>>>>>>>>>>;

8n = 2, . . . , N.

176
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We write this previous system in its matrix form ANc
N = ĥe1, where e1 is the first177

vector of the canonical basis in R
3N . We can see easily that AN 2 M3N can be178

decomposed by induction in blocks as179

(2.5) A1 =

2

4
(�1)2 (�2)2 (�3)2

e
�1`1 e

�2`1 e
�3`1

�1e
�1`1 �2e

�2`1 �3e
�3`1

3

5 ,180

181

(2.6)

AN =

2

666666664

AN�1

(�1)2 (�2)2 (�3)2

03(N�1)�1⇥3

1 1 1
0 0 0 03⇥3(N�2)

0 0 0
DN

3

777777775

=


AN�1 BN

CN DN

�
182

for an appropriate choice of BN , CN , and183

(2.7) DN =

2

4
�1 �1 �1

e
�1`N e

�2`N e
�3`N

�1e
�1`N �2e

�2`N �3e
�3`N

3

5 .184

Formally, taking the inverse of the Laplace transform of ûn in (2.3), we get for t � 0185

and x 2 (0, `n)186

un(t, x) =
1

2⇡i

Z
i1

�i1
e
st
ûn(s, x)ds =

3X

j=1

1

2⇡i

Z
i1

�i1
e
st
c
N

3(n�1)+j
ĥ(s)e�j(s)xds.187

If we denote, for t � 0 and x 2 (0, `n),188

In(t, x) =
3X

j=1

1

2⇡i

Z
i1

0
e
st
c
N

3(n�1)+j
ĥ(s)e�j(s)xds,189

Jn(t, x) =
3X

j=1

1

2⇡i

Z 0

�i1
e
st
c
N

3(n�1)+j
ĥ(s)e�j(s)xds,190

191

we have192

(2.8) un(t, x) = In(t, x) + Jn(t, x).193

Now we introduce the notation, super index, +\� which corresponds to taking s =194

±i⇢
3, ⇢ > 0, in the characteristic equation. Then the roots of the characteristic195

equation are given by196

8
<

:
�
+
1 (⇢) = i⇢, �

+
2 (⇢) =

1

2
⇢(
p
3� i), �

+
3 (⇢) =

1

2
⇢(�

p
3� i),

�
�
j
(⇢) = �

+
j
(⇢), j = 1, 2, 3.

197

Let �N,+(⇢) be the determinant of AN (i⇢3) and �N,+
3(n�1)+j

(s) be the determinant of198

the matrix that is obtained by replacing the column 3(n�1)+j of the matrix AN (i⇢3)199

by [1 0 . . . 0]T and ĥ
+(⇢) = ĥ(i⇢3). Assuming that �N,+(⇢) 6= 0 (this property will be200
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justified in Proposition 2.1), Cramer’s rule implies that cN,+
3(n�1)+j

(⇢) = c
N

3(n�1)+j
(i⇢3)201

is given by202

(2.9) c
N,+
3(n�1)+j

(⇢) =
�N,+

3(n�1)+j
(⇢)

�N,+(⇢)
ĥ
+(⇢).203

Thus, In and Jn can be seen as204

(2.10) In(t, x) =
3X

j=1

1

2⇡

Z 1

0
e
i⇢

3
t
e
�
+

j (⇢)x
�N,+

3(n�1)+j
(⇢)

�N,+(⇢)
ĥ
+(⇢)3⇢2d⇢,205

206

(2.11) Jn(t, x) =
3X

j=1

1

2⇡

Z 1

0
e
�i⇢

3
t
e
�
�
j (⇢)x

�N,�
3(n�1)+j

(⇢)

�N,�(⇢)
ĥ
�(⇢)3⇢2d⇢,207

where we use the notation �N,�
k

(⇢) = �N,+
k

(⇢), �N,�(⇢) = �N,+(⇢), and ĥ
�(⇢) =208

ĥ+(⇢). Our idea now is to obtain estimates for un; for that we are going to prove209

some asymptotic properties for
�N,+

3(n�1)+j
(⇢)

�N,+(⇢) , the following proposition collects these210

properties.211

Proposition 2.1. For all ⇢ > 0, �N,+(⇢) 6= 0. Moreover, the following asymp-212

totic properties hold, for ⇢! 1,213

(2.12)

�N,+
3(n�1)+1

�N,+
⇠ ��N⇢�2

e
� 1

2
⇢
p
3`n�i

3

2
⇢`n ,

�N,+
3(n�1)+2

�N,+
⇠ �N⇢

�2
e
�⇢

p
3`n+i

⇡
3 ,

�N,+
3(n�1)+3

�N,+
⇠ �N⇢

�2
e
�i

⇡
3 ,

3X

j=1

�N,+
3(n�1)+j

�N,+
⇠ �N⇢

�2
e
�i

⇡
3 , n = 1, . . . , N,

214

where �N > 0 only depends on N and satisfies �N =
�N�1

�N�1 + 1
.215

Proof. The main problem in this proof is to deal with the determinant of the216

matrix without making explicit computations. Recall that, in the case of N branches,217

the matrix AN has size 3N ⇥ 3N . Our proof is based on an induction argument over218

the number N of branches of the network.219

• N = 1: in this case, system (2.4) is exactly the system studied in [5] for220

`1 = 1. By Appendix B, it holds that �1,+(⇢) 6= 0 for all ⇢ > 0. Moreover,221

following the explicit calculations given in [5] we can deduce222

�1,+
1

�1,+
⇠ �⇢�2

e
� 1

2
⇢
p
3`1�i

3

2
⇢`1 ,

�1,+
2

�1,+
⇠ ⇢

�2
e
�⇢

p
3`1+i

⇡
3 ,

�1,+
3

�1,+
⇠ ⇢

�2
e
�i

⇡
3 ,

3X

j=1

�1,+
j

�1,+
⇠ ⇢

�2
e
�i

⇡
3 .

223

That gives (2.12) in the case N = 1.224

• Suppose now that �N�1,+(⇢) 6= 0 for all ⇢ > 0 and that the asymptotic225

property (2.12) is true for any network of N � 1 branches. Let us prove that226
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�N,+(⇢) 6= 0 for all ⇢ > 0 and that the asymptotic property (2.12) holds for227

a network of N branches. As228

AN =


AN�1 BN

CN DN

�
,229

and we have det(AN�1) = �N�1,+ 6= 0 by hypothesis, we can write230

AN =


I3(N�1) 03(N�1)

CNA
�1
N�1 I3(N�1)

� 
AN�1 03(N�1)

03(N�1) DN � CNA
�1
N�1BN

�
231

⇥


I3(N�1) A
�1
N�1BN

03(N�1) I3(N�1)

�
,232

233

which implies directly that234

(2.13) �N,+ = det(AN ) = det(AN�1) det(DN � CNA
�1
N�1BN ).235

The di�culty of the last expression is the role of the matrix A
�1
N�1. In fact,236

to calculate this inverse explicitly is quite complicated. Note now that if237

A
�1
N�1 =

2

6666664

x1

... . . .
...

x2

... . . .
...

x3

... . . .
...

...
... . . .

...

3

7777775
,238

then, we have239

(2.14)

CNA�1

N�1
BN =

2

4
(�+

1
)2(x1 + x2 + x3) (�+

2
)2(x1 + x2 + x3) (�+

3
)2(x1 + x2 + x3)

0 0 0
0 0 0

3

5;240

from here we can see that it is not necessary to calculate all the entries of241

the matrix A
�1
N�1. Indeed, we only need the 3 first entries of the first column.242

Straightforward calculations show that243

(2.15) x1 =
�N�1,+

1

�N�1,+
, x2 =

�N�1,+
2

�N�1,+
, x3 =

�N�1,+
3

�N�1,+
.244

Using (2.14) and (2.15) we get245

CNA
�1
N�1BN =

2

666664

(�+1 )
2

3X

j=1

�N�1,+
j

�N�1,+
(�+2 )

2
3X

j=1

�N�1,+
j

�N�1,+
(�+3 )

2
3X

j=1

�N�1,+
j

�N�1,+

0 0 0

0 0 0

3

777775
.

(2.16)

246

247

248
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Then with (2.7)249

250

DN � CNA
�1
N�1BN

(2.17)
251

=

2

66664

�1� (�+

1
)2

3X

j=1

�N�1,+
j

�N�1,+
�1� (�+

2
)2

3X

j=1

�N�1,+
j

�N�1,+
�1� (�+

3
)2

3X

j=1

�N�1,+
j

�N�1,+

e�
+

1
`N e�

+

2
`N e�

+

3
`N

�+

1
e�

+

1
`N �+

2
e�

+

2
`N �+

3
e�

+

3
`N

3

77775
252

253

and using the multilinearity of the determinant254

det(DN � CNA
�1
N�1BN ) = �

3X

j=1

�N�1,+
j

�N�1,+
det(FN ) + det(DN ),255

where256

(2.18) FN =

2

6664

(�+1 )
2 (�+2 )

2 (�+3 )
2

e
�
+

1
`N e

�
+

2
`N e

�
+

3
`N

�
+
1 e

�
+

1
`N �

+
2 e

�
+

2
`N �

+
3 e

�
+

3
`N

3

7775
.257

Then, it holds that258

(2.19) �N,+ = �N�1,+

2

4�
3X

j=1

�N�1,+
j

�N�1,+
det(FN ) + det(DN )

3

5 .259

Using (2.7) and (2.18) we can derive260

det(DN ) = ⇢

p
3e�i⇢`N +

 
�⇢

p
3

2
� 3

2
i⇢

!
e

⇣
� ⇢

p
3

2
+i

⇢
2

⌘
`N(2.20)261

+

 
�⇢

p
3

2
+

3

2
i⇢

!
e

⇣
⇢
p

3

2
+i

⇢
2

⌘
`N

,262

263
264

(2.21) det(FN ) =
p
3⇢3e�i⇢`N +

p
3⇢3e�

1

2
⇢(

p
3�i)`N +

p
3⇢3e�

1

2
⇢(�

p
3�i)`N .265

Now, to compute �N,+
3(n�1)+j

, letAn

N,j
thematrix obtained by replacing the col-266

umn 3(n�1)+j of AN by [1 0· · ·0]T , for j=1, 2, 3 and n=1, . . ., N�1, that is267

A
n

N,j
=

2

6666666664

(j+3(n�1)�th)

z}|{
1

0

.

.

.

BN

.

.

.

.

.

.

0

DN

3

7777777775

=

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

2

66666664

An
N�1,j BN

0 1 1

0 0 0 0
0 0 0

DN

3

77777775

if j = 1, n = 1

2

66666664

An
N�1,j BN

1 0 1

0 0 0 0
0 0 0

DN

3

77777775

if j = 2, n = 1

2

66666664

An
N�1,j BN

1 1 0

0 0 0 0
0 0 0

DN

3

77777775

if j = 3, n = 1

2

4
An

N�1,j BN

CN DN

3

5 if j = 1, 2, 3, n = 2, · · · , N � 1.

(2.22)

268

269

We claim the following property of �N,+
3(n�1)+j

.270
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Lemma 2.2.

(2.23) �N,+
3(n�1)+j

= �N�1,+
3(n�1)+j

det(DN ), n = 1, . . . , N � 1, j = 1, 2, 3.271

Proof. Using the decomposition given by (2.22), we get272

A
n

N,j
=

2

4 A
n

N�1,j BN

C
n

N,j
DN

3

5273

for an appropriate choice of Cn

N,j
. Thus, with the same idea as (2.13) it holds274

that275

(2.24)
�N,+

3(n�1)+j
= det(An

N,j
) = det(An

N�1,j) det(DN � C
n

N,j
(An

N�1,j)
�1

BN ).276

Similarly, as before, we need to study the product C
n

N,j
(An

N�1,j)
�1

BN , in277

particular, the first column of the matrix (An

N�1,k)
�1. To do that, note that278

A
n

N�1,jv =

2

6666666664

(j+3(n�1)�th)

z}|{
1

0

.

.

.

BN�1

.

.

.

.

.

.

0

DN

3

7777777775

v =

2

64

1

0

.

.

.

0

3

75 ,279

by simple inspection; the solution of this problem is v = [0 · · ·
j+3(n�1)
z}|{
1 · · · 0]T280

which we know coincides with the first column of (An

N�1,j)
�1 and, therefore,281

C
n

N,j
(An

N�1,j)
�1

BN = 03⇥3; therefore, with (2.24)282

�N,+
3(n�1)+j

= �N�1,+
3(n�1)+j

det(DN ), n = 1, . . . , N � 1, j = 1, 2, 3,283

which finishes the proof of Lemma 2.2.284

In order to show that �N,+ 6= 0, note that by (2.19) we get285

�N,+ = �
3X

j=1

�N�1,+
j

det(FN ) +�N�1,+ det(DN ), j = 1, 2, 3.286

Using (2.23) recursively, we get287

�N�1,+
j

= �1,+
j

N�1Y

`=2

det(D`).288

Noticing that �1,+ = det(F1), �
P3

j=1 �
1,+
j

= det(D1) and invoking induc-289

tively (2.19), we deduce290

�N,+ =
NX

j=1

det(Fj)
NY

`=1, ` 6=j

det(D`).291
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Then, from Appendix C, it holds, for all j = 1, . . . , N , det(Dj) 6= 0, thus292

�N,+ =

 
NY

`=1

det(D`)

!
NX

j=1

det(Fj)

det(Dj)
,293

and from Appendix D,
P

N

j=1
det(Fj)
det(Dj)

6= 0, thus �N,+ 6= 0. Now as �N,+ 6= 0,294

we can obtain using (2.19) and (2.23) that295

(2.25)
�N,+

3(n�1)+j

�N,+
=

�N�1,+
3(n�1)+j

�N�1,+

det(DN )

�
3X

l=1

�N�1,+
l

�N�1,+
det(FN ) + det(DN )

296

for j = 1, 2, 3, n = 1, . . . , N � 1. Then, using (2.21) we get det(FN ) ⇠297

p
3⇢3e

⇢
2

p
3`N+i

⇢
2
`N and by the induction assumption

P3
l=1

�N�1,+
l

�N�1,+ ⇠298

�N�1⇢
�2

e
�i

⇡
3 . Thus

P3
l=1

�N�1,+
l

�N�1,+ det(FN ) ⇠ �N�1

p
3⇢e

⇢
2

p
3`N+i

⇢
2
`N�i

⇡
3 and299

then for ⇢! 1300

(2.26)
det(DN )

�
P3

l=1
�N�1,+

l
�N�1,+ det(FN ) + det(DN )

⇠ 1

�N�1 + 1
.301

Now by the induction assumption302

�N�1,+
3(n�1)+1

�N�1,+
⇠ ��N�1⇢

�2
e
� 1

2
⇢
p
3`n�i

3

2
⇢`n ,

�N�1,+
3(n�1)+2

�N�1,+
⇠ �N�1⇢

�2
e
�⇢

p
3`n+i

⇡
3 ,303

�N�1,+
3(n�1)+3

�N�1,+
⇠ �N�1⇢

�2
e
�i

⇡
3 ,304

305

and (2.25)–(2.26) we have306

(2.27)
�N,+

3(n�1)+1

�N,+
⇠ ��N⇢�2

e
� 1

2
⇢
p
3`n�i

3

2
⇢`n ,

�N,+
3(n�1)+2

�N,+
⇠ �N⇢

�2
e
�⇢

p
3`n+i

⇡
3 ,

�N,+
3(n�1)+3

�N,+
⇠ �N⇢

�2
e
�i

⇡
3 ,

3X

j=1

�N,+
3(n�1)+j

�N,+
⇠ �N⇢

�2
e
�i

⇡
3 , n = 1, . . . , N � 1,

307

where �N = �N�1

�N�1+1 . It just remains to study the case n = N . Note that308

using the block decomposition of AN we get309

CN

2

6666666666666664

�N,+
1

�N,+

�N,+
2

�N,+

�N,+
3

�N,+

...
�N,+

3N�5

�N,+

�N,+
3N�4

�N,+

�N,+
3N�3

�N,+

3

7777777777777775

+DN

2

6664

�N,+
3N�2

�N,+

�N,+
3N�1

�N,+

�N,+
3N

�N,+

3

7775
=

2

6664

0

0

0

3

7775
,310
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and recalling (2.6) and (2.7) explicit calculations show that311

(2.28)

2

6664

�N,+
3N�2

�N,+

�N,+
3N�1

�N,+

�N,+
3N

�N,+

3

7775
=

✓
�
P3

j=1

�N,+
j

�N,+

◆

det(DN )

2

6664

�⇢
p
3e�i⇢`N

⇣
⇢
p
3

2 + 3
2 i⇢

⌘
e

⇣
� ⇢

p
3

2
+ i⇢

2

⌘
`N

⇣
⇢
p
3

2 � 3
2 i⇢

⌘
e

⇣
⇢
p

3

2
+ i⇢

2

⌘
`N

3

7775
,312

and using (2.27) we can conclude from (2.28)313

�N,+
3N�2

�N,+
⇠ ��N⇢�2

e
� 1

2
⇢
p
3`N�i

3

2
⇢`N ,

�N,+
3N�1

�N,+
⇠ �N⇢

�2
e
�⇢

p
3`N+i

⇡
3 ,

�N,+
3N

�N,+
⇠ �N⇢

�2
e
�i

⇡
3 ,

3X

j=1

�N,+
3(N�1)+j

�N,+
⇠ �N⇢

�2
e
�i

⇡
3 ,

314

which gives the induction and concludes the proof of Proposition 2.1.315

Remark 3. Recently, in [11], the problem of small-time local controllability of the316

nonlinear single KdV equation was addressed. To reach the obstruction to small-317

time controllability in [11] new regularity results in the spirit of [2] were established.318

Those results have some connections with the analysis developed in this work. Here,319

the analysis of the linear problem (2.4) is based on the estimate of the terms In320

and Jn ((2.10) and (2.11)). These involve two integrals of ⇢ from 0 to infinity, and321

Proposition 2.1 shows the integrands are well-defined (�N,+ 6= 0) and deal with their322

behavior at infinity. However, in [11] the behavior of the integrands might be infinite323

for finite ⇢. This is the case where L 2 N , with 2k + l /2 3N⇤ [11, Lemma B1].324

The main di↵erence between these two di↵erent behaviors is because in [11] they325

worked with the linear system including the term, ux which is necessary to study326

controllability issues. �327

Now we are going to state the next regularity result for the solution (2.1) using the328

Laplace representation obtained in (2.8) and Proposition 2.1.329

Proposition 2.3. Let T > 0 and h 2 H
� 1

3 (0, T ), then we have a unique solution330

u 2 YT of (2.1). Moreover, there exists C > 0 such that for all h 2 H
� 1

3 (0, T ),331

kukYT  Ckhk
H

� 1

3 (0,T )
.332

Proof. This proof uses Proposition 2.1 and follows closely [5, Proposition 2.2] and333

[3], thus it is omitted here.334

Note that Proposition 2.3 justifies the formal computations given in (2.8). Let W335

the operator that corresponds to the integral representation obtained in Proposition336

2.3, i.e., given T > 0 and h 2 H
� 1

3 (0, T ), the unique solution u of (2.1) is given by337

u =

0

B@
u1
...

uN

1

CA = Wh 2 BT .338

Our next step is to consider the linear problem including nonhomogeneous initial data339

and source terms, as follows:340

(2.29)

8
>>>><

>>>>:

@tvn(t, x) + @
3
x
vn(t, x) = fn(t, x) 8x 2 (0, `n), t > 0, n = 1, . . . , N,

vn(t, 0) = vn0(t, 0) 8n, n0 = 1, . . . , N,P
N

n=1 @
2
x
vn(t, 0) = h(t), t > 0,

vn(t, `n) = 0, @xvn(t, `n) = 0, t > 0, n = 1, . . . , N,

vn(0, x) = v
0
n
, x 2 (0, `n).

341
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We know from [1] that in the case, h = 0 the solution of (2.29) can be written as342

v(t, x) = W 0(t)v
0 +

Z
t

0
W 0(t� ⌧)f(⌧)d⌧,343

for any v
0 2 L

2(T ) and f 2 L
1(0, T ;L2(T )), where {W 0(t)}t�0 is the C0-semigroup344

in the space L
2(T ) generated by the operator Av = �@3

x
v, with domain345

D(A) =

(
v 2

 
NY

n=1

H
3(0, `n)

!
\H

2
e
(T ),

NX

n=1

d2vn
dx2

(0) = 0,

)
346

where H
2
r
(0, `n) = {v 2 H

2(0, `n),
�

d

dx

�i�1
v(`n) = 0, 1  i  2} and the space347

H
2
e
(T ) is the Cartesian product of H2

r
(0, `n) including the continuity condition on the348

central node (un(0) = un0(0) 8n, n0 = 1, . . . , N). Using semigroup theory it is possible349

to show that v 2 C([0, T ];L2(T )) and also using multipliers we can obtain the classical350

Kato smoothing result v 2 L
2(0, T ;H1

e
(T )), but it is di�cult (if not impossible) to351

derive the sharp Kato smoothing property established in Proposition 2.3 using energy352

methods. Now we use the following result obtained in [3] for a single KdV equation353

posed on a bounded domain.354

(2.30)

8
<

:

@t + @
3
x
 = f, x 2 (0, L), t � 0,

 (t, 0) =  (t, L) = @x (t, L) = 0, t � 0,
 (0, x) =  

0(x), x 2 (0, L),
355

356

Proposition 2.4 (Lemma 3.3 of [3]). Let T > 0 and L > 0 be given. For any357

 
0 2 L

2(0, L) and f 2 L
1(0, T ;L2(0, L)), the problem (2.30) admits a unique solution358

 2 C([0, T ];L2(0, L)) \ L
2(0, T ;H1(0, L)), with @

x
 2 L

1
x
(0, L;H

1�
3 (0, T )),  =359

0, 1, 2. Moreover, there exists C > 0 depending only on T and L such that360

k kC([0,T ];L2(0,L))\L2(0,T ;H1(0,L)) +
2X

=0

k@
x
 k

L1
x (0,L;H

1�
3 (0,T ))

361

 C
�
k 0kL2(0,L) + kfkL1(0,T ;H1(0,L))

�
.362

363

Now for any v
0
n
2 L

2(0, `n) and fn 2 L
1(0, T ;L2(0, `n)), consider364

 n =  n(t, ·) = W
n

1 (t)v
0
n
(·) +

Z
t

0
W

n

1 (t� ⌧)fn(⌧, ·)d⌧,365

where W
n

1 (t) is the C0-semigroup associated with the boundary-value problem (2.30)366

on (0, `n). Let h(t) =
P

N

n=1 @
2
x
 n(t, 0) 2 H

� 1

3 (0, T ) by Proposition 2.4. Now take367

h 2 H
� 1

3 (0, T ), then by Proposition 2.3 the function w = W (t)(h� h) is well-defined368

and is the solution of (2.1) with boundary data h�h. Finally, the solution v of (2.29)369

can be expressed as370

v(t, ·) = W1(t)v
0(·) +

Z
t

0
W1(t� ⌧)f(⌧, ·)d⌧ +W (t)(h� h)(t).371

The next result encapsulates these ideas.372

Proposition 2.5. Let T > 0 be given, then, for any v
0 2 L

2(T ), h 2 H
� 1

3 (0, T ),373

and f 2 L
1(0, T ;L2(T )), the problem (2.29) admits a unique solution v 2 YT . More-374

over, there exists C > 0 depending only on T and `1, . . . , `n such that375

kvkYT  C

⇣
khk

H
� 1

3 (0,T )
+ kfkL1(0,T ;L2(T )) + kv0kL2(T )

⌘
.376
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2.2. Nonlinear problem. With all the tools developed in the last sections we377

are ready to prove the global well-posedness result established on Theorem 1.3; the378

main ingredients of this proof are the regularity obtained in the linear cases, energy379

and multiplier estimates, and a fixed point argument. Let T > 0 and define XT =380

L
2(T )⇥H

� 1

3 (0, T ).381

Proof of Theorem 1.3. Let (u0
, 0) 2 XT and R, ✓ > 0 that will be chosen after.382

Consider the closed ball BY✓ (0, R) := {v 2 Y✓, kvkY✓  R}. Then BY✓ (0, R) is a383

complete metric space. Consider the map � : Y✓ ! Y✓ defined by �(v) = u, where u384

is the solution of385

(2.31)8
>>>>><

>>>>>:

(@tun + @
3
x
un)(t, x) = �(@xvn + vn@xvn)(t, x) 8x 2 (0, `n), t > 0, n = 1, . . . , N,

un(t, 0) = un0(t, 0) 8n, n0 = 1, . . . , N,

P
N

n=1 @
2
x
un(t, 0) = �↵v1(t, 0)�

N

3
(v1(t, 0))2, t > 0,

un(t, `n) = @xun(t, `n) = 0, t > 0, n = 1, . . . , N,

un(0, x) = u
0
n
, x 2 (0, `n).

386

Clearly, u 2 Y✓ is solution of (KdV-N) if u is a fixed point of �. Now we write two387

lemmas to deal with the source term and boundary conditions.388

Lemma 2.6 (Lemma 3.1 of [3]). There exists a constant C > 0 such that for any389

T > 0 and u, v 2 YT390

Z
T

0
ku(t, ·)@xv(t, ·)kL2(0,L)dt  C(T 1/2 + T

1/3)kukYT kvkYT ,391

where YT is YT for N = 1.392

Lemma 2.7 (Lemma 3.2 of [12]). There exist of constants C, � > 0 such that393

for any T > 0 and g1, g2 2 H
1

3 (0, T ), it holds that, g1g2 2 H
� 1

3 (0, T ) and394

kg1g2k
H

� 1

3 (0,T )
 CT

�kg1k
H

1

3 (0,T )
kg2k

H
1

3 (0,T )
.395

From Proposition 2.5 and Lemmas 2.6 and 2.7 we get for all v 2 Y✓396

k�(v)kY✓ = C

 
ku0kL2(T ) +

�����↵v1(t, 0)�
N

3
(v1(t, 0))

2

����
H

� 1

3 (0,✓)

+

Z
✓

0
k@xv(t, ·)kL2(T )dt+

Z
✓

0
kv(t, ·)@xv(t, ·)kL2(T )dt

!

 C

⇣
ku0kL2(T ) + ✓

�(kvkY✓ + kvk2
Y✓
) + (✓1/2 + ✓

1/3)kvk2
Y✓

+ ✓
1/2kvkY✓

⌘
.

397

We consider � restricted to the closed ball BY✓ (0, R) and choose ✓, R > 0 such that398

8
>>>><

>>>>:

R = 3Cku0kL2(T ),

C(✓� + ✓
1/2)  1

3 ,

C(✓� + ✓
1/2 + ✓

1/3)R  1
6 .

(2.32)
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Thus, for u 2 BY✓ (0, R), � maps BY✓ (0, R) into itself. Take now v and ev 2 BY✓ (0, R),399

then w = �(v)� �(ev) solves the equation400

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@twn + @
3
x
wn = �(@xvn � @xfvn)

� 1
2@x((vn �fvn)(vn +fvn)) 8x 2 (0, `n), t > 0, n = 1, . . . , N,

wn(t, 0) = wn0(t, 0) 8n, n0 = 1, . . . , N,

NX

n=1

@
2
x
wn(t, 0) = �↵(v1(t, 0)� ev1(t, 0)),

�N

3
((v1(t, 0)� ev1(t, 0))(v1(t, 0) + ev1(t, 0))), t > 0,

wn(t, `n) = @xwn(t, `n) = 0, t > 0, n = 1, . . . , N,

wn(0, x) = 0, x 2 (0, `n).

401

Now from Proposition 2.5 we obtain402

k�(v)� �(ev)kY✓  C

✓
✓
1/2kv � evkY✓ +

1

2
(✓1/2 + ✓

1/3)kv � evkY✓kv + evkY✓

+✓�kv � evkY✓ + ✓
�kv � evkY✓kv + evkY✓

�

 C

✓
(✓1/2 + ✓

�)kv � evkY✓ +
1

2
(✓1/2 + ✓

1/3 + 2✓�)kv � evkY✓2R

◆
;

403

then with (2.32)404

k�(v)� �(ev)kY✓ 
✓
1

3
+

1

3

◆
kv � evkY✓ =

2

3
kv � evkY✓ .405

That means that the map � is a contraction on BY✓ and by the Banach fixed point406

theorem has a unique fixed point u 2 Y✓. It gives the local-in-time well-posedness for407

bounded initial data. Now taking T > 0, we can check using integration by parts and408

the boundary conditions that every solution of (KdV-N) satisfies409

(2.33)
d

dt
E(t) = �

✓
↵� N

2

◆
|u1(t, 0)|2 �

1

2

NX

n=1

|@xun(t, 0)|2  0410

since N  2↵. This dissipation law tells us that the energy is a nonincreasing function411

of the time variable, that means412

(2.34) E(t)  E(✓)  E(0) =
1

2
ku0kL2(T ) 8t > ✓ > 0.413

From here, taking the maximum for t 2 [0, T ] we can see that414

(2.35) kukC([0,T ];L2(T ))  ku0kL2(T ).415

Finally, following [16, 10] we multiply (KdV-N) by qnun, integrate over (0, T )⇥(0, `n),416

and sum over n = 1, . . . , N to obtain the following equality:417

NX

n=1

Z
`n

0
qn(t, x)|un(t, x)|2dx

��T
0 �

NX

n=1

Z
T

0

Z
`n

0
(@tqn + @xqn + @

3
x
qn)|un|2dxdt(2.36)418

+ 3
NX

n=1

Z
T

0

Z
`n

0
|@xun|2@xqndxdt�

2

3

NX

n=1

Z
T

0

Z
`n

0
|un|3@xqndxdt
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=
NX

n=1

Z
T

0

⇥
(qn + @

2
x
qn)|un|2 + 2qnun@

2
x
un419

�2@xqnun@xun � qn|@xun|2 +
2

3
qn|un|3

�
(t, 0)dt.420

421

• Taking qn = 1 in (2.36) we can derive422

(2.37)
NX

n=1

Z
T

0
|@xun(t, 0)|2dt  ku0k2

L2(T ).423

• If we take qn = x(2`n�x)
`2n

in (2.36), defining L = max
n=1,··· ,N

`n and ` = min
n=1,··· ,N

`n,424

we can obtain425

2N

L2
ku1(·, 0)k2L2(0,T ) 

2T

`2
kuk2

C([0,T ];L2(T )) � 2

Z
T

0
u1(t, 0)

NX

n=1

@xun(t, 0)
2

`n
dt

+ ku0k2
L2(T ) +

4

3`

NX

n=1

Z
T

0

Z
`n

0
u
3
n
(t, x)dxdt.

426

Using (2.35)–(2.37) and Young’s inequality we derive427

(2.38) ku1(t, 0)k2L2(0,T )  C(T + 1)ku0k2
L2(T ) + C

NX

n=1

Z
T

0

Z
`n

0
u
3
n
(t, x)dxdt.428

As H1(0, `n) embeds compactly into C([0, `n]) we get429

NX

n=1

Z
T

0

Z
`n

0
|un|3dxdt  CT

1/2ku0k2
L2(T )kukL2(0,T ;H1

e(T ))430

and then with (2.38)431

(2.39)
ku1(t, 0)k2L2(0,T )  C(T + 1)ku0k2

L2(T ) + CT
1/2ku0k2

L2(T )kukL2(0,T ;H1
e(T )).432

• Finally, considering qj = x and using (2.35)–(2.37)–(2.39)433

k@xuk2L2(0,T ;L2(T ))  C(T + 1)ku0k2
L2(T ) + CT

1/2ku0k2
L2(T )kukL2(0,T ;H1

e(T )).434

Using Young’s inequality, we can find C > 0 which does not depend on T > 0435

such that436

(2.40) k@xuk2L2(0,T ;L2(T ))  C(T + 1)
⇣
ku0k2

L2(T ) + ku0k4
L2(T )

⌘
,437

which concludes the proof of Theorem 1.3. 2438

To obtain a well-posedness result for the systems (KdV-S) and (LKdV-S) we439

can use the same idea presented in Theorem 1.3 and Lemma A.3 to take into ac-440

count the saturation. It is very important that in Lemma A.3, time appears on the441

right-hand side; this estimate gives us the possibility of using small time in the fixed442

point approach. Then to derive the global-in-time well-posedness similar estimates to443

(2.35)–(2.40) can be obtained.444

Theorem 2.8. Let (`n)n=1,...,N 2 (0,1)N , ↵ � N

2
, and T > 0. Then, for445

all u0 2 L
2(T ), there exists a unique solution u 2 BT of (KdV-S) or (LKdV-S).446

Moreover, there exist 0 < T
⇤  T and C > 0 such that u 2 YT⇤ and kukYT⇤ 447

Cku0kL2(T ).448
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3. Stabilization. In this section, we are going to prove our stabilization results449

inspired by [14]. The proofs are based on observability inequalities for (KdV-S) and450

(LKdV-S), respectively. These inequalities imply the exponential stability. First, note451

that, given T > 0, we can check that every solution of (KdV-S) and (LKdV-S) has a452

nonincreasing energy,453

(3.1)

d

dt
E(t) = �

✓
↵� N

2

◆
|u1(t, 0)|2 �

1

2

NX

n=1

|@xun(t, 0)|2 �
NX

n=1

Z
`n

0
unsat(anun)dx  0.454

3.1. Stability of (KdV-S). We start by studying (KdV-S). First, note that455

multiplying (KdV-S) by un and integrating on (0, s)⇥ (0, `n) we get456

NX

n=1

Z
`n

0
|un(s, x)|2dx+

NX

n=1

Z
s

0

Z
`n

0
sat(anun)undxdt+ (2↵�N)

Z
s

0
|u1(t, 0)

2
dt

+
NX

n=1

Z
s

0
|@xun(t, 0)|2dt = ku0k2

L2(T ).

457

Integrating again this expression with respect to time on (0, T ) we obtain458

(3.2)

Tku0k2
L2(T ) 

Z
T

0
ku(t, ·)k2

L2(T )dt+ (2↵�N)T

Z
T

0
|u1(t, 0)|2dt

+ T

NX

n=1

Z
T

0
|@xun(t, 0)|2dt+ T

NX

n=1

Z
T

0

Z
`n

0
sat(anun)undxdt.

459

Our goal here is to prove the following observability inequality:460

(Obs)

ku0k2
L2(T )  C

 
(2↵�N)

Z
T

0
|u1(t, 0)|2dt+

NX

n=1

Z
T

0
|@xun(t, 0)|2dt

+
NX

n=1

Z
T

0

Z
`n

0
sat(anun)undxdt

!
.

461

Note that (Obs) is quite similar to (3.2). From (3.2) we can observe that to get (Obs)462

it is enough to prove the following inequality:463

Z
T

0
ku(t, ·)k2

L2(T )dt  C

 
(2↵�N)

Z
T

0
|u1(t, 0)|2dt+

NX

n=1

Z
T

0
|@xun(t, 0)|2dt

+
NX

n=1

Z
T

0

Z
`n

0
sat(anun)undxdt

!
.

464

Suppose that it is false and take ku0kL2(T )  R, then we can find (u0,j)j2N ⇢ L
2(T )465

such that ku0,jkL2(T )  R and466

lim
j!1

kujk2L2(0,T ;L2(T ))

(2↵�N)kuj
1
(·, 0)k2

L2(0,T )
+ k@xuj(·, 0)k2

L2(0,T )
+

NX

n=1

Z T

0

Z `n

0

sat(anu
j
n)u

j
ndxdt

= 1,467
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where u
j is the corresponding solution of (KdV-S) with initial data u

0,j . Note now468

that using (2.33), we deduce469

(3.3) kuj(t, ·)kL2(T )  ku0,jkL2(T )  R.470

Take �j = kujkL2(0,T ;L2(T )), then �
j  T

1/2ku0,jkL2(T )  T
1/2

R. Thus (�j)j2N ⇢ R471

is bounded. Taking v
j

n
= u

j
n

�j , then v
j fulfills472

(3.4)8
>>>>>>>>>>><

>>>>>>>>>>>:

✓
@tv

j

n
+ @xv

j

n
+ @

3
x
v
j

n
+ �

j
v
j

n
@xv

j

n
+

sat(an�jvjn)

�j

◆
(t, x) = 0 8x 2 (0, `n), t > 0,

n = 1, . . . , N,

v
j

n
(t, 0) = v

j

n0(t, 0) 8n, n0 = 1, . . . , N,

NX

n=1

@
2
x
v
j

n
(t, 0) = �↵vj1(t, 0)� �

j
N

3
(vj1(t, 0))

2
, t > 0,

v
j

n
(t, `n) = @xv

j

n
(t, `n) = 0, t > 0, n = 1, . . . , N,

kvjkL2(0,T ;L2(T )) = 1,

473

and satisfies474

(3.5)

(2↵�N)kvj1(t, 0)k2L2(0,T )+k@xvj(t, 0)k2L2(0,T )+
NX

n=1

Z
T

0

Z
`n

0

1

�j
sat(an�

j
v
j

n
)vj

n
dxdt ! 0.475

First, note that multiplying (3.4) by v
j

n
and integrating on (0, s)⇥ (0, `n) we get476

(3.6)
NX

n=1

Z
`n

0
|vj

n
(s, x)|2dx+

NX

n=1

Z
s

0

Z
`n

0

1

�j
sat(an�

j
v
j

n
)vj

n
dxdt+ (2↵�N)

Z
s

0
|vj1(t, 0)2dt

+
NX

n=1

Z
s

0
|@xvjn(t, 0)|2dt = kvj(0, ·)k2

L2(T ),

477

which gives us, using that sat is odd,478

(3.7) kvjk2
C([0,T ];L2(T ))  kvj(0, ·)k2

L2(T ), k@xvj(t, 0)k2L2(0,T )  kvj(0, ·)k2
L2(T ).479

Now integrating (3.6) again with respect to time on (0, T ) we obtain480

(3.8)

Tkvj(0, ·)k2
L2(T ) 

Z
T

0
kvj(t, ·)k2

L2(T )dt+ (2↵�N)T

Z
T

0
|vj1(t, 0)|2dt

+ T

NX

n=1

Z
T

0
|@xvjn(t, 0)|2dt+2T

NX

n=1

Z
T

0

Z
`n

0

1

�j
sat(an�

j
v
j

n
)vj

n
dxdt.

481

This last inequality implies that (vj(0, ·))j2N is bounded in L
2(T ). Again using that482

sat is odd and similar estimates in (2.37)–(2.39)–(2.40) we conclude483

(3.9) kvjk2
L2(0,T ;H1

e(T ))  C

⇣
kvj(0, ·)k2

L2(T ) + kvj(0, ·)k4
L2(T )

⌘
.484

Thus (vj)j2N ⇢ L
2(0, T ;H1

e
(T )) is bounded and it holds that485

kvj
n
@xv

j

n
kL2(0,T ;L1(0,`n))  kvjkC([0,T ],L2(T ))kvjkL2(0,T ;H1

e(T )),486
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which implies that (vj
n
@xv

j

n
)j2N is a subset of L2(0, T ;L1(0, `n)). Using Lemma A.1487

we have488

����
sat(an�jvjn)

�j

����
L2(0,T ;L2(0,`n))

 3kankL1(0,`n)`
1/2
n

kvjkL2(0,T ;H1
e(T )),489

and then ( sat(an�
j
v
j
n)

�j )j2N is a subset of L2(0, T ;L2(0, `n)). From this, we can see that490

@tv
j

n
= �(@3

x
v
j

n
+ @xv

j

n
+ �

j
v
j

n
@xv

j

n
+ sat(an�

j
v
j
n)

�j ) is bounded in L
2(0, T ;H�2(0, `n)).491

Hence, by the Aubin–Lions lemma ([24, Chapter III, Proposition 1.3]) we can deduce492

that (vj)j2N is relatively compact in L
2(0, T ;L2(T )) and we can assume that v

j
493

converges strongly at v in L
2(0, T ;L2(T )) with kvkL2(0,T ;L2(T )) = 1. Now we are494

going to study the case sat = sat2 and sat = satloc separately.495

3.1.1. Case sat = sat2. First, we consider the case sat = sat2. We know that496

by (3.3), kuj(t, ·)kL2(T )  R and then by Lemma A.2 we have that497

0 
NX

n=1

Z
T

0

Z
`n

0
ankn(R)|vj

n
|2dxdt 

NX

n=1

Z
T

0

Z
`n

0

1

�j
sat2(an�

j
v
j

n
)vj

n
,498

which gives us using (3.5), as j ! 1,499

(3.10)

(2↵�N)kvj1(t, 0)k2L2(0,T ) + k@xvj(t, 0)k2L2(0,T ) +
NX

n=1

Z
T

0

Z
`n

0
ankn(R)|vj

n
|2dxdt ! 0.500

Furthermore, passing to the limit in (3.10) we get501

(2↵�N)kv1(t, 0)k2L2(0,T ) + k@xv(t, 0)k2L2(0,T ) +
NX

n=1

Z
T

0

Z
`n

0
ankn(R)|vn|2dxdt

 lim inf

 
(2↵�N)kvj1(t, 0)k2L2(0,T ) + k@xvj(t, 0)k2L2(0,T )

+
NX

n=1

Z
T

0

Z
`n

0
ankn(R)|vj

n
|2dxdt

!
= 0.

502

Thus, vn(t, x) = 0 in (0, T ) ⇥ !n and (2↵ � N)v1(t, 0) = @xvn(t, 0) = 0 in (0, T )503

for all n = 1, . . . , N . Additionally, as (�j)j2N is bounded and nonnegative, we can504

extract a convergent subsequence such that �j ! � � 0, consequently v satisfies505

kvkL2(0,T ;L2(T )) = 1 and solves the following system:506

(3.11)8
>><

>>:

@tvn + @xvn + @
3
x
vn + �vn@xvn = 0 8x 2 (0, `n), t > 0, n = 1, . . . , N,

vn(t, `n) = @xvn(t, `n) = @xvn(t, 0) = 0, t 2 (0, T ) 8n = 1, . . . , N,

(2↵�N)vn(t, 0) = 0, t 2 (0, T ),
vn(t, x) = 0, (t, x) 2 (0, T )⇥ !n.

507

1. If � = 0 the system satisfied by v is linear, then we can use Holmgrem’s508

theorem as in [18] to conclude that v = 0, which contradicts the fact that509

kvkL2(0,T ;L2(T )) = 1.510
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2. If � > 0, we have to prove that vn 2 L
2(0, T ;H3(0, `n)) in order to apply [23,511

Theorem 4.2]. Consider wn = @tvn then512

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

@twn + @xwn + @
3
x
wn + �wn@xvn + �vn@xwn = 0

8x 2 (0, `n), t > 0, n = 1, . . . , N,

wn(t, `n) = @xwn(t, `n) = @xwn(t, 0) = 0
8n = 1, . . . , N,

(2↵�N)wn(t, 0) = 0,
t 2 (0, T ) 8j = 1, . . . , N,

wn(t, x) = 0,
(t, x) 2 (0, T )⇥ !n,

wn(0, x) = �v
0
n
(0, x)� v

000
n
(0, x)� �vn(0, x)v0n(0, x) 2 H

�3(0, `n),
x 2 (0, `n), j = 1, . . . , N.

513

With [9, Lemma A.2] we can get that wn(0, x) 2 L
2(0, `n) and wn 2 C([0, T ],514

L
2(0, `n)) \ L

2(0, T ;H1(0, `n)). Thus, @3
x
vn = �(@tvn � @xvn � �vn@xvn) 2515

L
2(0, T ;L2(0, `n)) which implies vn 2 L

2(0, T ;H3(0, `n)). Applying [23, The-516

orem 4.2] we obtain that vn = 0 for all j = 1, . . . , N that contradicts the fact517

that kvkL2(0,T ;L2(T )) = 1.518

3.1.2. Case sat = satloc. Let us consider the case where sat = satloc, by the519

injection of H1(0, `n) into C([0, `n]), we can derive using similar estimate as in (3.9),520

(3.12)

Z
T

0
|uj

n
(t, x)|2dt  `nkujk2

L2(0,T ;H1
e(T ))  `n�521

for � = (R2 +R
4). Now, inspired by [14], take ⌦n,i ⇢ [0, T ] defined as follows:522

(3.13) ⌦n,i =

(
t 2 [0, T ], sup

x2[0,`n]
|un(t, x)| > i

)
.523

Then denote ⌦c

n,i
as the complement of ⌦n,i and observe that524

Z
T

0
sup

x2[0,`n]
|uj

n
(t, x)|2dt �

Z

⌦n,i

sup
x2[0,`n]

|uj

n
(t, x)|2dt � i

2
⌫(⌦n,i)525

for ⌫(⌦n,i) the Lebesgue measure of ⌦n,i. Thus, using (3.12) we obtain ⌫(⌦n,i) 
`n�

i2
.526

Hence,527

(3.14) max

✓
T � `n�

i2
, 0

◆
 ⌫(⌦c

n,i
)  T.528

Now using Lemma A.2529

NX

n=1

Z
T

0

Z
`n

0

1

�j
satloc(an�

j
v
j

n
)vj

n
dxdt =

NX

n=1

Z

⌦n,i

Z
`n

0

1

�j
satloc(an�

j
v
j

n
)vj

n
dxdt

+
NX

n=1

Z

⌦c
n,i

Z
`n

0

1

�j
satloc(an�

j
v
j

n
)vj

n

�
NX

n=1

Z

⌦c
n,i

Z
`n

0

1

�j
satloc(an�

j
v
j

n
)vj

n

�
NX

n=1

Z

⌦c
n,i

Z
`n

0
ankn(R)|vj

n
|2dxdt,

530
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which gives us, using (3.5),531

(3.15)

(2↵�N)kvj1(t, 0)k2L2(0,T ) + k@xvj(t, 0)k2L2(0,T ) +
NX

n=1

Z

⌦c
n,i

Z
`n

0
ankn(R)|vj

n
|2dxdt ! 0.532

Thus, the limit function v satisfies (2↵ � N)v1(t, 0) = @xvn(t, 0) = 0 in (0, T ) for533

all n = 1, . . . , N and vn(t, x) = 0 in [i2N⌦
c

n,i
⇥ !n. Using (3.14), we know that534

⌫([i2N⌦
c

n,i
) = T , thus we get that, for almost every t 2 [0, T ], vn(t, x) = 0 for x 2 !n.535

Last v is a solution to (3.11) and we conclude as we do in the case sat = sat2.536

Finally, we obtain that (Obs) is valid for a solution (KdV-S) with kun

n
kL2(T )  R.537

Proof of Theorem 1.4. The proof closely follows [16] (see also [14]). Note that538

for u0 2 L
2(T ) such that ku0kL2(T )  R using that the energy is nonincreasing using539

(3.1) and (Obs) we argue the existence of C = C(R) > 0 such that.540

(3.16) E(T )  �E(0) with � =
C

1 + C
< 1.541

Now as the system is invariant by translation in time, we can repeat this argument542

on [(m� 1)T,mT ] for m = 1, 2, . . . to obtain543

E(mT )  �E((m� 1)T )  · · ·  �
m
E(0).544

Hence we have E(mT )  e
�µmT

E(0), where µ = 1
T
ln( 1

�
) > 0. Let t > 0 then there545

exists m 2 N
⇤ such that (m� 1)T < t  mT , and then again using the nonincreasing546

property of the energy we get547

E(t)  E((m� 1)T )  e
�µ(m�1)T

E(0)  1

�
e
�µt

E(0).548

This concludes the proof of Theorem 1.4.549

3.2. Stability (LKdV-S). Now we study the stabilization of (LKdV-S). For550

doing that, we follow the approach of section 3.1, and we prove the following observ-551

ability inequality552

(Obs2)

ku0k2
L2(T )  C

0

@(2↵�N)

Z
T

0
|u1(t, 0)|2dt+

NX

j=1

Z
T

0
|@xun(t, 0)|2dt

+
X

j2I⇤
c

Z
T

0

Z
`n

0
sat(anun)undxdt

1

A

553

for any solution u of (LKdV-S). Suppose that it is false, then there exists a se-554

quence (u0,j)j2N ⇢ L
2(T ) such that ku0,jkL2(T ) = 1 and the corresponding solution555

of (LKdV-S) satisfies556

(2↵�N)kuj

1(·, 0)k2L2(0,T ) + k@xuj(·, 0)k2
L2(0,T ) +

X

n2I⇤
c

Z
T

0

Z
`n

0
sat(anu

j

n
)uj

n
dxdt ! 0,557

as j ! 1. Using the same arguments as in Theorem 1.4 we can find a nontrivial558

solution v 2 BT of (LKdV-S) such that559

8
>><

>>:

(2↵�N) kv1(·, 0)kL2(0,T ) = 0,
k@xv(·, 0)kL2(0,T ) = 0,
vn = 0 in (0, T )⇥ !n, n 2 I

⇤
c
,

kvkL2(0,T ;L2(T )) = 1.

560
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We distinguish three cases:561

• For n 2 I
⇤
c
, vn = 0 in (0, T )⇥ !n. Then, @tvn + @xvn + @

3
x
vn = 0 and thanks562

to Holmgrem’s theorem, vn = 0 for all n 2 I
⇤
c
. Note that this implies that563

vn(t, 0) = 0 for all n 2 I
⇤
c
and by the continuity condition vn(t, 0) = 0 for all564

n = 1, . . . , N .565

• For n 2 {1, . . . , N}\Ic, vn is the solution to566

8
>>>><

>>>>:

@tvn + @xvn + @
3
x
vn = 0, x 2 (0, `n), t 2 (0, T ), n = 1, . . . , N,

vn(t, 0) = 0, t 2 (0, T ) 8j = 1, . . . , N,P
N

n=1 @
2
x
vn(t, 0) = 0, t 2 (0, T ),

vn(t, `n) = @xvn(t, `n) = 0, t 2 (0, T ), n = 1, . . . , N,

vn(0, x) = v
0
n
, x 2 (0, `n).

567

Then thanks to [1, Lemma 3.2], vn = 0.568

• For n 2 Ic\I⇤c , vn then satisfies569

8
>><

>>:

@tvn + @xvn + @
3
x
vn = 0, t 2 (0, T ) 8x 2 (0, `n),

vn(t, 0) = @xvn(t, 0) = @
2
x
vn(t, 0) = 0, t 2 (0, T ),

vn(t, `n) = @xvn(t, `n) = 0, t 2 (0, T ),
vn(0, x) = v

0
n
, x 2 (0, `n).

570

Due to the three null conditions at the central node, we obtain that vn = 0.571

Thus v = 0 and we get a contradiction, with kvkL2(0,T ;L2(T )) = 1 which ends the proof572

of (Obs2). As we have the observability inequality (Obs2), to derive the exponential573

decay of the energy of (LKdV-S) given in Theorem 1.5, it is enough to follow the574

proof of Theorem 1.4.575

4. Conclusions and remarks. In this paper, the global well-posedness was576

studied and the exponential stability of a KdV equation on a star-shaped network577

with internal saturated feedback terms has been established. The well-posedness578

was addressed using the Laplace transform of the linearization and obtaining Kato579

smoothing properties which gave the local-in-time well-posedness, then using multi-580

plier estimates the global-in-time result was deal with.581

4.1. Generalization of the well-posedness result. In the work [7] a com-582

plete result for general linear boundary conditions for the KdV equation on a bounded583

domain was derived. In this work, homogeneous Dirichlet and Neumann right condi-584

tions (un(t, `n) = @xun(t, `n) = 0) were considered. These conditions come from the585

problems studied in [1, 16], but in a more general framework the following problem586

could be studied:587

8
>>>>>>><

>>>>>>>:

(@tun+@xun+un@xun+@3xun)(t, x) = fn(t, x), 8x 2 (0, `n), t > 0, n = 1, . . . , N,

un(t, 0) = un0(t, 0) 8n, n0 = 1, . . . , N,

NX

n=1

@
2
x
un(t, 0) = �↵u1(t, 0)�

N

3
u
2
1(t, 0) + h(t), t > 0,

un(t, `n) = gn(t), @xun(t, `n) = pn(t), t > 0, n = 1, . . . , N,

un(0, x) = u
0
n
, x 2 (0, `n).

(4.1)

588

589

We expected that adapting the ideas introduced in this paper and in [3], it could be590

possible to obtain the following result.591
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Conjecture 4.1. Let (`n)n=1,...,N 2 (0,1)N , 0  s  3, and T > 0. There592

exists 0 < T
⇤  T such that for all593

u
0 2

NY

n=1

H
s(0, `n), (h, g, p) 2 H

s�1

3 (0, T )⇥
NY

n=1

H
s+1

3 (0, T )⇥
NY

n=1

H
s
3 (0, T ),

f 2
NY

n=1

W
s
3
,1(0, T ;L2(0, `n)),

594

satisfying the compatibility condition,595

8
>>>><

>>>>:

u
0
n
(`n) = gn(0) n = 1, . . . , N if 1

2 < s  3,

@xu
0
n
(`n) = pn(0) n = 1, . . . , N if 3

2 < s  3,

P
N

n=1 @
2
x
u
0
n
(0) = h(0) if 5

2 < s  3,

596

there exists a unique solution u 2
Q

N

n=1 C([0, T ];Hs(0, `n)) \ L
2(0, T ⇤;Hs+1(0, `n))597

of (4.1). Moreover @
x
un 2 L

1
x
(0, `n;H

s+1�
3 (0, T ⇤)) for  = 0, 1, 2.598

The complications would come from the study of the matrix, which is obtained599

by replacing the column j + 3(n � 1) of AN by [0 1 0 · · · 0]T for the gn case and600

[0 0 1 · · · 0]T for the pn case. It is not clear how to derive a result similar to (2.23).601

4.2. Exact controllability in the network. In the paper [1] the exact con-602

trollability of linearization around 0 of (KdV-N) was achieved by acting with N + 1603

boundary controls (N controls in the external nodes and one in the central node) if604

#{`n 2 N}  1. Recently, in [10] the authors could reduce the numbers of controls605

(N controls acting on the external nodes), but the controllability holds for a large606

time and small lengths. This raises the question of what happens for the boundary607

control and how many components corresponding to the critical lengths one needs608

to control in the network case. In particular, we can mention the following open609

problems:610

• Is the linearization around 0 of (KdV-N) exactly controllable with N controls611

acting in the external nodes for T > 0 and `n /2 N for all n 2 {1, . . . , N}?612

• Is (KdV-N) exactly controllable from the boundary in the case where for some613

lengths we have `n 2 N ? A starting point could be, to consider the smallest614

critical lengths (k = l = 1 or k = l = 2).615

4.3. Generalization of stabilization results. The stabilization results were616

obtained, proving appropriate observability inequalities working directly on the non-617

linear systems. In the work [19] more general feedback laws were considered as cone618

bounded control laws. Note that Theorems 1.4 and 1.5 hold, replacing sat by any odd619

nonlinearity that satisfies the properties given in Lemmas A.1, A.2, and A.3.620

Appendix A. Useful lemmas. In this section, we present some technical621

lemmas about the regularity and sector condition of the saturation maps sat. Let622

a : [0, L] ! R such that623

a
⇤ � a � a⇤ > 0 in an open nonempty set ! of (0, L).(A.1)
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Lemma A.1 (Lemma 3.2 of [14]). For all (f, ef) 2 L
2(0, L), we have624

(A.2) ksat(f)� sat( ef)kL2(0,L)  3kf � efkL2(0,L).625

Lemma A.2 (Lemma 4.3 of [14]). Let r be a positive value and a : [0, L] ! R be626

a function satisfying (A.1) and k(r) defined by627

(A.3) k(r) = min

⇢
M

a⇤r
, 1

�
:628

1. Given sat = sat2 and f 2 L
2(0, L) such that kfkL2(0,L)  r, we have629

(A.4) (sat2(a(x)f(x))� k(r)a(x)f(x))f(x) � 0 8x 2 [0, L].630

2. Given sat = satloc and f 2 L
1(0, L) such that 8x 2 [0, L], |f(x)|  r, we631

have632

(A.5) (satloc(a(x)f(x))� k(r)a(x)f(x))f(x) � 0 8x 2 [0, L].633

Lemma A.3 (Proposition 3.4 of [14]). Let a : [0, L] ! R satisfy (A.1). If634

y 2 L
2(0, T ;H1(0, L)), then sat(ay) 2 L

1(0, T ;L2(0, L)) is continuous and 8y, z 2635

L
2(0, T ;H1(0, L)) we have636

ksat(ay)� sat(az)kL1(0,T ;L2(0,L))  3L1/2
T

1/2
a
⇤ky � zkL2(0,T ;H1(0,L)).637

Appendix B. For all s 6= 0 with Re(s) � 0, it holds that �1(s) 6= 0.638

This property was stated in [7, Remark 2.5] without proof; here, for the sake of639

completeness, we give a proof based on [6]. Suppose that �1(s) = 0 for some s with640

Re(s) � 0. Then, there exists f 2 H
3(0, `1), a nontrivial solution of641

(B.1)

⇢
sf(x) + f

000(x) = 0, x 2 (0, `1),
f
00(0) = f

0(`1) = f(`1) = 0.
642

Now, consider the conjugate of (B.1):643

(B.2)

⇢
sf(x) + f 000(x) = 0, x 2 (0, `1),
f 00(0) = f 0(`1) = f(`1) = 0.

644

Multiplying (B.1) by f , integrating over (0, `1), and performing integration by parts,645

we get646

(B.3) s

Z
`1

0
|f |2dx�

Z
`1

0
ff 000dx+ |f 0(0)|2 = 0.647

Similarly, multiplying (B.2) by f and integrating over (0, `1), we get648

(B.4) s

Z
`1

0
|f |2dx+

Z
`1

0
f 000fdx = 0.649

Then adding (B.3) and (B.4) yields650

(B.5) 2Re(s)

Z
`1

0
|f |2dx = �|f 0(0)|2.651
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As f is nontrivial and Re(s) � 0, we get f 0(0) = 0. Then, by (B.5) Re(s) = 0. Thus,652

we can make the change of variable s = i⇢
3 for ⇢ 2 R. Multiplying (B.1) by xf ,653

integrating over (0, `1), and performing integration by parts, we get654

(B.6) i⇢
3

Z
`j

0
x|f |2dx+ 3

Z
`j

0
|f 0|2dx�

Z
`j

0
xff 000dx = 0.655

Similarly, multiplying (B.2) by xf and integrating over (0, `j), we get656

(B.7) � i⇢
3

Z
`j

0
x|f |2dx+

Z
`j

0
xf 000fdx = 0.657

Then, adding (B.6) and (B.7), we obtain f
0 ⌘ 0. Using the boundary conditions of658

(B.1) we deduce f ⌘ 0 which is a contradiction. Finally f ⌘ 0 and �1(s) 6= 0 for all659

s 6= 0 with Re(s) � 0.660

Appendix C. For all ⇢>0 and j2{1, . . . , N}, it holds that det(Dj) 6=0.661

Let j 2 {1, . . . , N}. Following [6] and Appendix B, suppose that det(Dj) = 0 for662

some ⇢ > 0. Then, there exists f 2 H
3(0, `j), a nontrivial solution of663

(C.1)

⇢
i⇢

3
f(x) + f

000(x) = 0, x 2 (0, `j),
f(0) = f(`j) = f

0(`j) = 0.
664

Now, consider the conjugate of (C.1),665

(C.2)

⇢
�i⇢

3
f(x) + f 000(x) = 0, x 2 (0, `j),

f(0) = f(`j) = f 0(`j) = 0.
666

Multiplying (C.1) by f , integrating over (0, `j), and performing integration by parts,667

we get668

(C.3) i⇢
3

Z
`j

0
|f |2dx�

Z
`j

0
ff 000dx+ |f 0(0)|2 = 0.669

Similarly, multiplying (C.2) by f and integrating over (0, `j), we get670

(C.4) � i⇢
3

Z
`j

0
|f |2dx+

Z
`j

0
f 000fdx = 0.671

Then, adding (C.3) and (C.4) yields f 0(0) = 0. Multiplying (C.1) by xf , integrating672

over (0, `j), and performing integration by parts, we get673

(C.5) i⇢
3

Z
`j

0
x|f |2dx+ 3

Z
`j

0
|f 0|2dx�

Z
`j

0
xff 000dx = 0.674

Similarly, multiplying (C.2) by xf and integrating over (0, `j), we get675

(C.6) � i⇢
3

Z
`j

0
x|f |2dx+

Z
`j

0
xf 000fdx = 0.676

Then, adding (C.5) and (C.6), we obtain f
0 ⌘ 0. Using the boundary conditions of677

(C.1) we deduce f ⌘ 0 which is a contradiction. Hence, det(Dj) 6= 0 for all ⇢ > 0.678
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Appendix D. For all ⇢ > 0, it holds that
NX

j=1

det(Fj)

det(Dj)
6= 0. Letting679

j 2 {1, . . . , N}, we are going to show that Re

✓
det(Fj)

det(Dj)

◆
< 0. Using (2.20) and680

(2.21) we get681

det(Fj)

det(Dj)
=

p
3⇢3

⇣
e
�i⇢`j + e

� 1

2
⇢(

p
3�i)`j + e

� 1

2
⇢(�

p
3�i)`j

⌘

p
3⇢

 
e
�i⇢`j +

 
�1

2
�
pp

3

2
i

!
e

⇣
� ⇢

p
3

2
+i

⇢
2

⌘
`j +

 
�1

2
+

p
3

2
i

!
e

⇣
⇢
p

3

2
+i

⇢
2

⌘
`j

! .682

=

⇢
2

 
e
�i`j⇢ + 2e

i`j⇢

2 cosh

 p
3`j⇢

2

!!

e�i`j � e
i`j⇢

2 cosh

 p
3`j⇢

2

!
+
p
3ie

i`j⇢

2 sinh

 p
3`j⇢

2

! .683

684

After some algebraic manipulations and writing the complex numbers in their binomial685

form (Re + iIm), we obtain686

det(Fj)

det(Dj)
=

⇢
2

 
cos

✓
3`j⇢

2

◆
+ 2 cosh

 p
3`j⇢

2

!
� i sin

✓
3`j⇢

2

◆!

cos

✓
3`j⇢

2

◆
� cosh

 p
3`j⇢

2

!
+ i

 
p
3 sinh

 p
3`j⇢

2

!
� sin

✓
3`j⇢

2

◆! .687

Letting ⇣ = cos
⇣

3`j⇢
2

⌘
� cosh

⇣p
3`j⇢
2

⌘
+ i

⇣p
3 sinh

⇣p
3`j⇢
2

⌘
� sin

⇣
3`j⇢
2

⌘⌘
, and mul-688

tiplying the previous equation by
⇣

⇣
we get689

Re

✓
det(Fj)

det(Dj)

◆
=

⇢
2

|⇣|2

 
1 + cos

✓
3`j⇢

2

◆
cosh

 p
3`j⇢

2

!
� 2 cosh2

 p
3`j⇢

2

!

�
p
3 sin

✓
3`j⇢

2

◆
sinh

 p
3`j⇢

2

!!
.

690

By analyzing the function691

F (⇢, `j) = 1 + cos

✓
3`j⇢

2

◆
cosh

 p
3`j⇢

2

!
� 2 cosh2

 p
3`j⇢

2

!
692

�
p
3 sin

✓
3`j⇢

2

◆
sinh

 p
3`j⇢

2

!
,693

694

it can be shown that for all ⇢ > 0, `j > 0 it holds that F (⇢, `j) < 0. Thus,695

Re(
P

N

j=1
det(Fj)
det(Dj)

) < 0, and thus
P

N

j=1
det(Fj)
det(Dj)

6= 0.696

Remark 4. In the case `1 = · · · = `N , the proof become easier. In fact,697

NX

j=1

det(Fj)

det(Dj)
= N

det(F1)

det(D1)
6= 0698

because, det(F1) = �1,+ 6= 0 thanks to Appendix B. �699
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