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a b s t r a c t

This paper studies the design of a finite-dimensional output feedback controller for the stabilization of
a reaction–diffusion equation in the presence of a sector nonlinearity in the boundary input. Due to the
input nonlinearity, classical approaches relying on the transfer of the control from the boundary into
the domain with explicit occurrence of the time-derivative of the control cannot be applied. In this
context, we first demonstrate using Lyapunov direct method how a finite-dimensional observer-based
controller can be designed, without using the time derivative of the boundary input as an auxiliary
command, in order to achieve the boundary stabilization of general 1-D reaction–diffusion equations
with Robin boundary conditions and a measurement selected as a Dirichlet trace. We extend this
approach to the case of a control applying at the boundary through a sector nonlinearity. We show
from the derived stability conditions the existence of a size of the sector (in which the nonlinearity is
confined) so that the stability of the closed-loop system is achieved when selecting the dimension of
the observer to be large enough.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The impact of various input nonlinearities in the control de-
ign and stability assessment of finite-dimensional systems has
een intensively studied in the literature [1–3]. These include,
o cite a few that are commonly encountered in practical appli-
ations [4], saturations, deadzones, general sector nonlinearities,
tc. Despite their relative simplicity, these nonlinearities, even
hen applied in input of a linear time invariant system, induce
any challenges such as multiple equilibrium points, existence of
region of attraction, etc. [5]. The extension of these problematics
o infinite dimensional systems, and particularly to the control of
artial differential equations (PDEs), has attracted much attention
n the recent years. Among the early contributions in this field,
ne can find the study of saturation mechanisms in [6,7]. More
ecently, Lyapunov-based stabilization of different class of PDEs,
ncluding wave and Korteweg–de Vries equations, in the presence
f cone-bounded nonlinearities in the control input have been re-
orted in [8–10]. Model predictive control was proposed in [11] in
rder to achieve the feedback stabilization of reaction–diffusion
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(ANR-19-P3IA-0003).
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equations in the presence of constraints. Singular perturbations
techniques were reported in [12].

In this paper, we are concerned with the output feedback
stabilization of a 1-D reaction–diffusion equation presenting a
sector nonlinear in the boundary input. The developed approach
relies on spectral reduction methods [13] that have been inten-
sively used for the control of parabolic PDEs in a great variety of
settings [14–21]. They were in particular used in the context of
the both local stabilization and estimation of region of attraction
for reaction–diffusion equations in the presence of an in-domain
input saturation; see [22,23] in the context of state and output
feedback, respectively. It should be noted that spectral reduction
methods have been very attractive for parabolic PDEs because
they allow the design of finite-dimensional state-feedback, mak-
ing them particularly relevant for practical applications. How-
ever, due to the distributed nature of the state, the design of
an observer is generally necessary. Such observers can be de-
signed using, e.g., either backstepping [24] of spectral methods
[25, Sec. 4.3.2]. Because the resulting observers mimic the dynam-
ics of the plant, they generally take the form of a PDE, resulting
in an infinite-dimensional control strategy. In order to avoid
late lumping approximations required for the implementation
of observers with infinite dimensional dynamics, a number of
works have been devoted to the design of finite-dimensional
observer-based control strategies, in particular for parabolic PDEs

[26–33].
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Following ideas initially introduced in [33], the control de-
sign strategy adopted in this paper takes the form of a finite-
dimensional observer coupled with a finite-dimensional state
feedback. More precisely, we leverage the controller architecture
reported first in [33] augmented with the LMI-based procedure
suggested in [30]. These control design procedures were en-
hanced and generalized to Dirichlet and/or Neumann boundary
actuation and measurement in [32], achieving the exponential
stabilization of the PDE trajectories in H1 norm. In these two
latter works, the boundary control input u was handled using the
lassical procedure consisting of a change of variable that allows
he transfer of the input from the boundary into the domain
34, Sec. 3.3]. However, this procedure requires the use of the
ime derivative v = u̇ of the input u as an auxiliary input to
esign the control law. When considering a nonlinearity ϕ in
he application of the control input u, such an approach fails in
eneral. This is because the actual input applied to the system
s uϕ = ϕ(u) and its time derivative reads vϕ = u̇ϕ = ϕ′(u)u̇.
herefore, since u remains the actual command to be applied
n input of the system, it is generally not possible to use vϕ as
n auxiliary input to perform the control design. This is because
uch an approach would require the integration of this latter u-
ynamics to obtain u from the knowledge of vϕ . Such a dynamics
ay produce trajectories that are not well defined for all t ≥ 0

e.g., if ϕ′ vanishes at certain isolated points or on a certain inter-
al, as possible in the class of nonlinear functions ϕ considered
n this paper) and rise stability assessment issues for the actual
nput signal u.

Using Lyapunov direct method, the first objective of this pa-
er is to demonstrate how a finite-dimensional observer-based
ontroller can be designed, without using the time derivative of
he boundary input as an auxiliary command, in order to achieve
he output feedback boundary stabilization of a linear reaction–
iffusion equation with Robin boundary conditions. More specifi-
ally, we consider the case of a control input applying through
Robin boundary condition while the measurement takes the

orm of a Dirichlet trace located at the other boundary. Note that
similar setting has been achieved in [28] by invoking small-
ain arguments for PDE trajectories evaluated in L2 norm (see
lso [35] for a Lyapunov-based approach but which is limited to
he specific case of a bounded output operator and a Neumann
ontrol input while considering the L2 norm). In contrast, the
esults presented in this paper rely on the use of Lyapunov func-
ionals and provide stability estimates in both L2 and H1 norms.
his is achieved by first designing the control strategy on the
riginal PDE (which only involves the input u) while the stability
nalysis is performed (1) based on a homogeneous representation
f the PDE that involves v = u̇; and (2) by extending the
caling strategy employed in [32]. The second objective consists
n taking advantage of the aforementioned Lyapunov functional
n order to tackle the case of a boundary control input subject
o a sector nonlinearity. We show the existence of a size of
he sector (in which the nonlinearity is confined) so that the
roposed strategies always achieve the exponential stabilization
f the plant when selecting the dimension of the observer to be
arge enough.

The remainder of this paper is organized as follows. Notations
nd properties of Sturm–Liouville operators are presented in
ection 2. The preliminary study consisting of the design of a
inite-dimensional observer-based controller for the linear
eaction–diffusion without using the time derivative of the input
s an auxiliary command input is reported in Section 3. The
xtension to the case of a reaction–diffusion equation with a
ector nonlinearity in the boundary input is reported in Sec-
ion 4. A numerical illustration is carried out in Section 5. Finally,

oncluding remarks are formulated in Section 6.

2

. Notation and properties

Spaces Rn are equipped with the usual Euclidean norm de-
oted by ∥ · ∥. The associated induced norms of matrices are
lso denoted by ∥ · ∥. For any two vectors X and Y of arbitrary
imensions, col(X, Y ) denotes the vector [X⊤, Y⊤]⊤. The space
2(0, 1) stands for the space of square integrable functions on
0, 1) and is endowed with the usual inner product ⟨f , g⟩ =∫ 1
0 f (x)g(x) dx. The associated norm is denoted by ∥ · ∥L2 . For an

integer m ≥ 1, the m-order Sobolev space is denoted by Hm(0, 1)
and is endowed with its usual norm ∥ · ∥Hm . For a symmetric
matrix P ∈ Rn×n, P ⪰ 0 (resp. P ≻ 0) means that P is positive
semi-definite (resp. positive definite).

Let θ1 ∈ (0, π/2], θ2 ∈ [0, π/2], p ∈ C1([0, 1]) and q ∈
C0([0, 1]) with p > 0 and q ≥ 0. Let the Sturm–Liouville operator
A : D(A) ⊂ L2(0, 1)→ L2(0, 1) be defined by Af = −(pf ′)′ + qf
n the domain D(A) = {f ∈ H2(0, 1) : cos(θ1)f (0)−sin(θ1)f ′(0) =
os(θ2)f (1) + sin(θ2)f ′(1) = 0}. The eigenvalues λn, n ≥ 1, of
are simple, non negative, and form an increasing sequence
ith λn → +∞ as n → +∞. Moreover, the associated unit
igenvectors φn ∈ L2(0, 1) form a Hilbert basis. The domain of the
peratorA is equivalently characterized by D(A) = {f ∈ L2(0, 1) :
n≥1 |λn|

2
|⟨f , φn⟩|

2 < +∞}. Introducing p∗, p∗, q∗ ∈ R such that
< p∗ ≤ p(x) ≤ p∗ and 0 ≤ q(x) ≤ q∗ for all x ∈ [0, 1],

hen it holds 0 ≤ π2(n − 1)2p∗ ≤ λn ≤ π2n2p∗ + q∗ for all
≥ 1 [36]. Moreover if p ∈ C2([0, 1]), we have (see, e.g., [36,37])

hat φn(ξ ) = O(1) and φ′n(ξ ) = O(
√
λn) as n → +∞ for any

given ξ ∈ [0, 1]. Assuming further that q > 0, an integration by
parts and the continuous embedding H1(0, 1) ⊂ L∞(0, 1) show
the existence of constants C1, C2 > 0 such that

C1∥f ∥2H1 ≤

∑
n≥1

λn⟨f , φn⟩
2
= ⟨Af , f ⟩ ≤ C2∥f ∥2H1 (1)

for any f ∈ D(A). The latter inequalities and the Riesz-spectral
nature of A imply that the series expansion f =

∑
n≥1⟨f , φn⟩φn

holds in H2(0, 1) norm for any f ∈ D(A). Due to the contin-
uous embedding H1(0, 1) ⊂ L∞(0, 1), we obtain that f (0) =∑

n≥1⟨f , φn⟩φn(0). We finally define, for any integer N ≥ 1,
RN f =

∑
n≥N+1⟨f , φn⟩φn.

3. Design for linear reaction–diffusion equation

Consider the reaction–diffusion system described by

zt (t, x) = (p(x)zx(t, x))x − q̃(x)z(t, x) (2a)

cos(θ1)z(t, 0)− sin(θ1)zx(t, 0) = 0 (2b)

cos(θ2)z(t, 1)+ sin(θ2)zx(t, 1) = u(t) (2c)

y(t) = z(t, 0) (2d)

z(0, x) = z0(x) (2e)

for t > 0 and x ∈ (0, 1) where θ1 ∈ (0, π/2], θ2 ∈ [0, π/2], p ∈
C2([0, 1]) with p > 0, and q̃ ∈ C0([0, 1]). Here z(t, ·) represents
the state at time t , u(t) is the command, y(t) is the measurement,
and z0 is the initial condition. Without loss of generality, let q ∈
C0([0, 1]) and qc ∈ R be such that

q̃(x) = q(x)− qc, q(x) > 0. (3)

3.1. Spectral reduction

Introducing the change of variable

w(t, x) = z(t, x)−
x2

u(t) (4)

cos(θ2)+ 2 sin(θ2)
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nd defining v(t) = u̇(t) we infer that

˙(t) = v(t) (5a)

t (t, x) = (p(x)wx(t, x))x − q̃(x)w(t, x)+ a(x)u(t)+ b(x)v(t) (5b)

cos(θ1)w(t, 0)− sin(θ1)wx(t, 0) = 0 (5c)

cos(θ2)w(t, 1)+ sin(θ2)wx(t, 1) = 0 (5d)

y(t) = w(t, 0) (5e)

w(0, x) = w0(x) (5f)

where a(x) = 1
cos(θ2)+2 sin(θ2)

{2p(x) + 2xp′(x) − x2q̃(x)}, b(x) =
x2

cos(θ2)+2 sin(θ2)
, and w0(x) = z0(x)− x2

cos(θ2)+2 sin(θ2)
u(0). We define

zn(t) = ⟨z(t, ·), φn⟩, wn(t) = ⟨w(t, ·), φn⟩, an = ⟨a, φn⟩, and
bn = ⟨b, φn⟩. In particular, one has

wn(t) = zn(t)+ bnu(t), n ≥ 1. (6)

The projection of (2) into the Hilbert basis (φn)n≥1 gives

żn(t) = (−λn + qc)zn(t)+ βnu(t) (7)

with

βn = an + (−λn + qc)bn
= p(1){− cos(θ2)φ′n(1)+ sin(θ2)φn(1)} = O(

√
λn) (8)

while the projection of (5) reads

u̇(t) = v(t) (9a)

ẇn(t) = (−λn + qc)wn(t)+ anu(t)+ bnv(t), (9b)

y(t) =
∑
n≥1

wn(t)φn(0) (9c)

Remark 1. Representation (7) is more convenient for control
design since only the input u appears in the dynamics. However,
Lyapunov stability analysis based on this representation is dif-
ficult because βn = O(

√
λn). Conversely, representation (9) is

ess natural for control design since both input u and its time
erivative v = u̇ appear in the dynamics. Nevertheless, this
epresentation is easier to handle in the context of a Lyapunov
tability analysis because an, bn ∈ ℓ2(N); see [30,32] where v = u̇
as used as the input for control design. In this section, we
emonstrate for the general setting of (2) how to perform the
ontrol design directly with u as the input, based on representa-
ion (7), while carrying out the Lyapunov stability analysis using
epresentation (9) in order to obtain stability estimates in both L2
nd H1 norms.

.2. Control strategy

Let δ > 0 and N0 ≥ 1 be such that −λn + qc < −δ < 0
or all n ≥ N0 + 1. For an arbitrarily given N ≥ N0 + 1, we
esign an observer to estimate the N first modes of the plant in

z-coordinates while the state-feedback is computed based on the
estimation of the N0 first modes of the plant. More precisely and
inspired by the early work [33], the control strategy investigated
in this section takes the form:

ŵn(t) = ẑn(t)+ bnu(t) (10a)
˙̂zn(t) = (−λn + qc)ẑn(t)+ βnu(t) (10b)

− ln

{
N∑

k=1

ŵk(t)φk(0)− y(t)

}
, 1 ≤ n ≤ N0

˙̂z (t) = (−λ + q )ẑ (t)+ β u(t), N + 1 ≤ n ≤ N (10c)
n n c n n 0 X

3

u(t) =
N0∑
k=1

kkẑk(t) (10d)

Here ln ∈ R and kk ∈ R are the observer and feedback gains,
espectively. Compared to [32] where the observer was designed
o estimate the modes wn in homogeneous coordinates (5), the
ontroller architecture (10) proposed in this paper differs as it
anages to directly estimate the modes zn of the plant in original
on-homogeneous coordinates (2). This change of the structure
f the observer is key to perform the control design directly with
instead of v = u̇. Note that the series expansion (9c) of the

ystem output y(t) holds in w coordinates but not in original
coordinates. This is why the estimated system output used

o compensate the error of observation in (10b) takes the form
N
k=1 ŵk(t)φk(0). Here the terms ŵn stand for the estimates of the
odes in w coordinates. They are obtained from the estimates ẑn
f the modes in z coordinates through (10a) which mimics (6).

emark 2. We denote by ẑ(t) ∈ RN the state of the observer. The
ell-posedness of the closed-loop system composed of (5) and
10) in terms of classical solutions for initial conditionsw0 ∈ D(A)
and ẑ(0) ∈ RN and defined for all t ≥ 0, namely (w, ẑ) ∈
C0(R≥0; L2(0, 1) × RN ) ∩ C1(R>0; L2(0, 1) × RN ) with w(t, ·) ∈
D(A) for all t > 0, is a direct consequence of [38, Thm. 6.3.1
nd 6.3.3]. Moreover, from the proof of [38, Thm. 6.3.1], we have
w ∈ C0(R>0; L2(0, 1)) and A1/2w ∈ C0(R≥0; L2(0, 1)).

.3. Model for stability analysis

We define en = zn − ẑn for all 1 ≤ n ≤ N . From (10a)–(10b)
nd using (6) and (9c), we infer that

˙̂
n = (−λn + qc)ẑn + βnu+ ln

N∑
k=1

φk(0)ek + lnζ (11)

or 1 ≤ n ≤ N0 where ζ (t) =
∑

n≥N+1wn(t)φn(0). We define first
he scaled quantities z̃n = ẑn/λn and, as in [32], ẽn =

√
λnen. We

then introduce ẐN0 =
[
ẑ1 . . . ẑN0

]⊤, EN0 =
[
e1 . . . eN0

]⊤,
Z̃N−N0 =

[
z̃N0+1 . . . z̃N

]⊤, and ẼN0 =
[
ẽN0+1 . . . ẽN

]⊤. We
obtain from (10d) that

u = KẐN0 (12)

where K =
[
k1 . . . kN0

]
. Next, we infer from (10) and (11)

that
˙̂ZN0 = (A0 +B0K )ẐN0 + LC0EN0 + LC̃1ẼN−N0 + Lζ (13a)

ĖN0 = (A0 − LC0)EN0 − LC̃1ẼN−N0 − Lζ (13b)
˙̃ZN−N0 = A1Z̃N−N0 + B̃1KẐN0 (13c)
˙̃EN−N0 = A1ẼN−N0 (13d)

where the different matrices are defined by A0 = diag(−λ1 +
qc, . . . ,−λN0 + qc), A1 = diag(−λN0+1 + qc, . . . ,−λN + qc),

B0 =
[
β1 . . . βN0

]⊤, B̃1 =

[
βN0+1
λN0+1

. . .
βN
λN

]⊤
, C0 =

φ1(0) . . . φN0 (0)
]
, C̃1 =

[
φN0+1(0)√
λN0+1

. . .
φN (0)
√
λN

]
, and L =

l1 . . . lN0

]⊤. Therefore, defining the vector

X = col
(
ẐN0 , EN0 , Z̃N−N0 , ẼN−N0

)
, (14)

e infer that

˙ = FX + Lζ (15)
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here

=

⎡⎢⎢⎣
A0 +B0K LC0 0 LC̃1

0 A0 − LC0 0 −LC̃1

B̃1K 0 A1 0
0 0 0 A1

⎤⎥⎥⎦ , L =

⎡⎢⎣ L
−L
0
0

⎤⎥⎦ .
Remark 3. The pairs (A0,B0) and (A0, C0) satisfy the Kalman con-
ition. Indeed, since A0 is diagonal with simple eigenvalues, the
alman conditions hold if and only if, from the definition of the
atrices B0 and C0, βn = p(1){− cos(θ2)φ′n(1)+ sin(θ2)φn(1)} ̸= 0
nd φn(0) ̸= 0 for all 1 ≤ n ≤ N0. From the definition of the
igenvectors φn and by Cauchy uniqueness, this is indeed case.
ence, we can always compute a feedback gain K ∈ R1×N0 and
n observer gain L ∈ RN0 such that A0 + B0K and A0 − LC0 are
urwitz with eigenvalues that have a real part strictly less than
δ < 0. In that case, from the above definition of the matrix F ,
ne can observe that matrix F is Hurwitz with eigenvalues that
ave a real part strictly less than −δ < 0.

Finally, defining X̃ = col (X, ζ ) and based on (12) and (13a),
e also have

= K̃X, v = u̇ = K ˙̂ZN0 = EX̃ (16)

ith E = K
[
A0 +B0K LC0 0 LC̃1 L

]
and K̃ =

K 0 0 0
]
.

.4. Main stability results

heorem 1. Let θ1 ∈ (0, π/2], θ2 ∈ [0, π/2], p ∈ C2([0, 1]) with
> 0, and q̃ ∈ C0([0, 1]). Let q ∈ C0([0, 1]) and qc ∈ R be such that
3) holds. Let δ > 0 and N0 ≥ 1 be such that −λn+ qc < −δ for all
n ≥ N0+ 1. Let K ∈ R1×N0 and L ∈ RN0 be such that A0+B0K and
A0 − LC0 are Hurwitz with eigenvalues that have a real part strictly
less than −δ < 0. For a given N ≥ N0 + 1, assume that there exist
P ≻ 0, α > 1, and β, γ > 0 such that

Θ1 ⪯ 0, Θ2 ≤ 0 (17)

where

Θ1 =

[
F⊤P + PF + 2δP + αγ ∥RNa∥2L2 K̃

⊤K̃ PL
L⊤P −β

]
+ αγ ∥RNb∥2L2E

⊤E (18a)

Θ2 = 2γ
{
−

(
1−

1
α

)
λN+1 + qc + δ

}
+ βMφ (18b)

and with Mφ =
∑

n≥N+1
|φn(0)|2
λn

< +∞. Then there exists a constant
> 0 such that for any initial conditions z0 ∈ H2(0, 1) and ẑn(0) ∈

R such that cos(θ1)z0(0) − sin(θ1)z ′0(0) = 0 and cos(θ2)z0(1) +
in(θ2)z ′0(1) = KẐN0 (0), the trajectories of the closed-loop system
omposed of the plant (2) and the controller (10) satisfy

z(t, ·)∥2H1 +

N∑
n=1

ẑn(t)2 ≤ Me−2δt
(
∥z0∥2H1 +

N∑
n=1

ẑn(0)2
)

or all t ≥ 0. Moreover, the constraints (17) are always feasible for
selected large enough.

roof. Let the Lyapunov function candidate

(X, w) = X⊤PX + γ
∑

n≥N+1

λn⟨w, φn⟩
2 (19)

or X ∈ R2N and w ∈ D(A). Note that the first term of V accounts
or the N first modes of the PDE expressed in z-coordinates (2)
hile the second term accounts for the modes labeled n ≥ N + 1
4

f the PDE expressed in w-coordinates (5). Compared to [32]
where the considered Lyapunov functional only captures the dy-
namics of the modes in homogeneous coordinates, the rationale
for considering both non-homogeneous and homogeneous repre-
sentations of the plant for control design and stability analysis
has been described in Remark 1. The computation of the time
derivative of V along classical solutions of the system composed
of (9) and (15), whose existence is provided by [38, Thm. 6.3.1],
gives

V̇ = X̃⊤
[
F⊤P + PF PL

L⊤P 0

]
X̃

+ 2γ
∑

n≥N+1

λn {(−λn + qc)wn + anu+ bnv}wn.

here X̃ = col (X, ζ ). Using Young inequality, we infer for any
> 0 that

2
∑

n≥N+1

λnanuwn ≤
1
α

∑
n≥N+1

λ2nw
2
n + α∥RNa∥2L2u

2,

2
∑

n≥N+1

λnbnvwn ≤
1
α

∑
n≥N+1

λ2nw
2
n + α∥RNb∥2L2v

2

where, using (16), u2
= X⊤K̃⊤K̃X and v2 = X̃⊤E⊤EX̃ . Moreover,

since ζ =
∑

n≥N+1wnφn(0), Cauchy–Schwarz inequality gives
ζ 2 ≤ Mφ

∑
n≥N+1 λnw

2
n . Combining the above estimates, we infer

that

V̇ + 2δV ≤ X̃⊤Θ1X̃ +
∑

n≥N+1

λnΓnw
2
n

where Γn = 2γ
{
−
(
1− 1

α

)
λn + qc + δ

}
+ βMφ . Recalling that

> 1, we have Γn ≤ Θ2 ≤ 0 for all n ≥ N + 1. Since Θ1 ⪯ 0,
we have that V̇ +2δV ≤ 0. Using (1), (4), (6), and (12), we obtain
the claimed stability estimate.

It remains to show that the constraintsΘ1 ⪯ 0 andΘ2 ≤ 0 are
always feasible for N ≥ N0 + 1 selected large enough. To do so,
we apply Lemma 1 reported in appendix to the matrix F + δI .
This is possible because (i) A0 + B0K + δI and A0 − LC0 + δI
are Hurwitz; (ii) ∥e(A1+δI)t∥ ≤ e−κ0t for all t ≥ 0 with κ0 =
λN0+1− qc − δ > 0 defined independently of N; and (iii) ∥LC̃1∥ ≤

∥L∥∥C̃1∥ and ∥B̃1K∥ ≤ ∥B̃1∥∥K∥ where K and L are independent
of the number of observed modes N while ∥C̃1∥ = O(1) and
∥B̃1∥ = O(1) when N → +∞. Hence the solution P ≻ 0 to the
Lyapunov equation F⊤P+PF +2δP = −I is such that ∥P∥ = O(1)
as N →+∞. With this choice of matrix P , the constraint Θ1 ⪯ 0
becomes equivalent to Θ1p + αγ ∥RNb∥2L2E

⊤E ⪯ 0 where

Θ1p =

[
−I + αγ ∥RNa∥2L2 K̃

⊤K̃ PL
L⊤P −β

]
.

We note that ∥K̃∥ = ∥K∥ and ∥L∥ =
√
2∥L∥ are independent of

. Hence, fixing the value of α > 1 and selecting β =
√
N and

γ = 1/N with N ≥ N0 + 1 large enough, we infer that (i) Θ2 ≤ 0
and (ii) by invoking Schur complement, Θ1p ⪯ −

1
2 I . Noting from

(16) that ∥E∥ = O(1) as N → +∞, this implies that Θ1 ⪯ 0 for
N ≥ N0 + 1 large enough. We have shown that the constraints
(17) are feasible when selecting N ≥ N0 + 1 to be large enough.
This completes the proof.

Remark 4. For a given number of modes of the observer N ≥
N0 + 1, the constraints (17) are nonlinear w.r.t. the decision
variables P ≻ 0, α > 1, and β, γ > 0. However, fixing the
value of α > 1, the constraints (17) now take the form of LMIs
of the decision variables P ≻ 0 and β, γ > 0. This latter LMI
formulation of the constraints remains feasible for N ≥ N0 + 1
selected large enough as shown in the proof of Theorem 1. Note
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owever that this approach requires to fix a priori the value of
> 1. Hence, the obtained value N for the dimension of the

bserver depends in general of the fixed value of α, which may
ntroduce some conservatism. A second approach, which has the
enefit of not introducing any conservatism compared to the
riginal constraints (17), goes as follows. Proceeding with the
ubstitutions P ← γ P and β ← γ β into (18) and factoring out
> 0, we observe that (17) holds if and only if Θ1,γ=1 ⪯ 0

nd Θ2,γ=1 ≤ 0 where Θ1,γ=1 and Θ2,γ=1 are obtained by setting
= 1 into (18). In this case, Θ1,γ=1 takes the form of a LMI of

he decision variables P ≻ 0, α > 1, and β > 0 while the use
f the Schur complement shows that Θ2,γ=1 can be equivalently
ecast into the LMI formulation:
2{−λN+1 + qc + δ} + βMφ

√
2λN+1√

2λN+1 −α

]
⪯ 0.

his LMI formulation of the problem is equivalent to (17), hence
s always feasible for N ≥ N0 + 1 selected to be large enough. A
imilar remark applies to the next theorems.

emark 5. The result of Theorem 1 in the case of the Dirich-
et measurement (2d) can easily be adapted to the case of the
eumann measurement y(t) = zx(t, 0) with θ1 ∈ [0, π/2) and
2 ∈ [0, π/2] by combining the approach developed in this paper
long with the rescaling procedure reported in [32].

We also state below a L2 version of the stability result pre-
ented in Theorem 1.

heorem 2. Let θ1 ∈ (0, π/2], θ2 ∈ [0, π/2], p ∈ C2([0, 1]) with
> 0, and q̃ ∈ C0([0, 1]). Let q ∈ C0([0, 1]) and qc ∈ R be such that
3) holds. Let δ > 0 and N0 ≥ 1 be such that −λn+ qc < −δ for all
n ≥ N0+ 1. Let K ∈ R1×N0 and L ∈ RN0 be such that A0+B0K and
A0 − LC0 are Hurwitz with eigenvalues that have a real part strictly
less than −δ < 0. For a given N ≥ N0 + 1, assume that there exist
P ≻ 0 and α, β, γ > 0 such that

Θ1 ⪯ 0, Θ2 ≤ 0, Θ3 ≥ 0 (20)

where Θ1 is defined by (18a) and

Θ2 = 2γ
{
−λN+1 + qc + δ +

1
α

}
+ βMφλ

3/4
N+1

3 = 2γ −
βMφ

λ
1/4
N+1

with Mφ =
∑

n≥N+1
|φn(0)|2

λ
3/4
n

< +∞. Then there exists a constant

M > 0 such that for any initial conditions z0 ∈ H2(0, 1) and ẑn(0) ∈
R such that cos(θ1)z0(0) − sin(θ1)z ′0(0) = 0 and cos(θ2)z0(1) +
sin(θ2)z ′0(1) = KẐN0 (0), the trajectories of the closed-loop system
composed of the plant (2) and the controller (10) satisfy

∥z(t, ·)∥2L2 +
N∑

n=1

ẑn(t)2 ≤ Me−2δt
(
∥z0∥2L2 +

N∑
n=1

ẑn(0)2
)

or all t ≥ 0. Moreover, the constraints (20) are always feasible for
selected large enough.

roof. Let the Lyapunov function candidate

(X, w) = X⊤PX + γ
∑

n≥N+1

⟨w, φn⟩
2 (21)

or X ∈ R2N and w ∈ L2(0, 1). Proceeding as in the proof of
heorem 1 while replacing the estimate of ζ by ζ 2 ≤

Mφ

∑
n≥N+1 λ

3/4
n w2

n , we infer that

V̇ + 2δV ≤ X̃⊤Θ1X̃ +
∑

Γnw
2
n

n≥N+1 i

5

where X̃ = col (X, ζ ) and Γn = 2γ
{
−λn + qc + δ + 1

α

}
+

Mφλ
3/4
n . For n ≥ N + 1 we have λ3/4n = λn/λ

1/4
n ≤ λn/λ

1/4
N+1

ence

n ≤ −Θ3λn + 2γ
{
qc + δ +

1
α

}
≤ −Θ3λN+1 + 2γ

{
qc + δ +

1
α

}
= Θ2 ≤ 0

where we have used that Θ3 ≥ 0. Combining this result with
Θ1 ⪯ 0, we obtain that V̇ + 2δV ≤ 0 and which implies the
claimed stability estimate.

To show that the constraints (20) are always feasible for N ≥
N0 + 1 selected large enough, we proceed as in the proof of
Theorem 1 while setting α = 1, β = N1/8, and γ = 1/N1/4.

4. Design in the presence of a sector nonlinearity

Consider now the reaction–diffusion system presenting a sec-
tor nonlinearity in the control input, described by

zt (t, x) = (p(x)zx(t, x))x − q̃(x)z(t, x) (22a)

cos(θ1)z(t, 0)− sin(θ1)zx(t, 0) = 0 (22b)

cos(θ2)z(t, 1)+ sin(θ2)zx(t, 1) = uϕ(t) ≜ ϕ(u(t)) (22c)

(t) = z(t, 0) (22d)

(0, x) = z0(x) (22e)

for t > 0 and x ∈ (0, 1) where θ1 ∈ (0, π/2], θ2 ∈ [0, π/2],
∈ C2([0, 1]) with p > 0 and q̃ ∈ C0([0, 1]). As in the previous

section, we consider without loss of generality q ∈ C0([0, 1]) and
qc ∈ R such that (3) holds. The mapping ϕ : R → R is assumed
to be a function of class C1 for which there exist kϕ > 0 and
∆kϕ ∈ (0, kϕ) so that

(kϕ −∆kϕ)|x| ≤ sign(x)ϕ(x) ≤ (kϕ +∆kϕ)|x| (23)

for all x ∈ R. We also assume that ϕ′ is locally Lipschitz con-
tinuous2 and ∥ϕ′∥L∞ < +∞. The objective is to design a finite-
dimensional controller and to derive a set of sufficient conditions
on the size ∆kϕ > 0 of the sector condition (23) ensuring the
exponential stabilization of (22).

Remark 6. If one further assumes that the mapping ϕ is one
to one, then one could merely set u(t) = ϕ−1(w(t)) to obtain
uϕ(t) = w(t). In this particular case, the control design can be
asily performed by directly applying any available method for
he boundary output feedback stabilization of linear reaction–
iffusion equations (such as backstepping, spectral methods, or
thers). Such an approach fails in general as soon as the mapping
is non-injective, forcing to directly deal with the nonlinear

nput uϕ(t) = ϕ(u(t)). In this more general setting, the traditional
pproach consisting in introducing the time-derivative of the
ommand as an auxiliary input for control design using spectral
ethods is neither a viable approach. Indeed, defining vϕ = u̇ϕ =
′(u)u̇, one could design the auxiliary control input vϕ . However,
he actual control input to be applied remains u, which satisfies
he dynamics ϕ′(u(t))u̇(t) = vϕ(t) for all t ≥ 0. Hence, knowing
ϕ , one needs to explicitly compute u. This raises two main issues.
irst, this ODE may not admit solutions defined for all t ≥ 0. This
ssue arises, in particular, when ϕ′ vanishes at certain isolated
oints or possibly on certain intervals. Second, provided the well-
osedness of this ODE, the stability of this u-dynamics is not
uaranteed because not assessed when designing vϕ .

2 This Lipschitz continuity assumption is only introduced for ensuring the
ell-posedness of the closed-loop system trajectories but is not explicitly used

n the stability analysis.
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.1. Spectral reduction

Introducing the change of variable

(t, x) = z(t, x)−
x2

cos(θ2)+ 2 sin(θ2)
uϕ(t) (24)

e infer that

ϕ(t) = u̇ϕ(t) = ϕ′(u(t))u̇(t) (25a)

t (t, x) = (p(x)wx(t, x))x − q̃(x)w(t, x) (25b)

+ a(x)uϕ(t)+ b(x)vϕ(t) (25c)

cos(θ1)w(t, 0)− sin(θ1)wx(t, 0) = 0 (25d)

cos(θ2)w(t, 1)+ sin(θ2)wx(t, 1) = 0 (25e)

y(t) = w(t, 0) (25f)

w(0, x) = w0(x) (25g)

where a, b are defined as in the previous section and w0(x) =
z0(x) − x2

cos(θ2)+2 sin(θ2)
uϕ(0). With the coefficients of projection

defined in the previous section, we have

wn(t) = zn(t)+ bnuϕ(t), n ≥ 1. (26)

he projection of (22) into (φn)n≥1 gives

żn(t) = (−λn + qc)zn(t)+ βnuϕ(t) (27)

with βn defined by (8) while the projection of (25) reads

u̇ϕ(t) = vϕ(t) = ϕ′(u(t))u̇(t) (28a)

ẇn(t) = (−λn + qc)wn(t)+ anuϕ(t)+ bnvϕ(t), n ≥ 1 (28b)

y(t) =
∑
n≥1

wn(t)φn(0) (28c)

Remark 7. Representation (25) cannot be used for control design
with vϕ selected as an auxiliary input signal. This is because,
as discussed in Remark 6, vϕ = ϕ′(u)u̇ where u remains the
actual to-be-implemented input of the plant (22). Hence the
approach proposed in [32] is inapplicable in the presence of the
input nonlinearity ϕ. We solve this problem by adopting the
approach reported in the previous section, namely by performing
the control design on (22) while carrying out the Lyapunov-based
stability analysis using (25).

4.2. Control strategy

Let δ > 0 and N0 ≥ 1 be such that −λn + qc < −δ < 0 for
all n ≥ N0+ 1. We consider the following observer-based control
strategy:

ŵn(t) = ẑn(t)+ bnuϕ(t) (29a)
˙̂zn(t) = (−λn + qc)ẑn(t)+ βnuϕ(t) (29b)

− ln

{
N∑

k=1

ŵk(t)φk(0)− y(t)

}
, 1 ≤ n ≤ N0

˙̂zn(t) = (−λn + qc)ẑn(t)+ βnuϕ(t), N0 + 1 ≤ n ≤ N (29c)

u(t) =
N0∑
k=1

kkẑk(t) (29d)

Here ln ∈ R and kk ∈ R are the observer and feedback gains,
espectively.

emark 8. We denote ẑ(t) ∈ RN the state of the observer. Under
he above mentioned assumption for the sector nonlinearity ϕ,
6

he well-posedness of the closed-loop system composed on (25)
nd (29) in terms of classical solutions for initial conditions w0 ∈

D(A) and ẑ(0) ∈ RN , namely (w, ẑ) ∈ C0([0, T ); L2(0, 1) ×
RN ) ∩ C1((0, T ); L2(0, 1) × RN ), defined on a maximal interval
of existence [0, T ) with either T > 0 or T = +∞, is a direct
consequence of [38, Thm. 6.3.1]. Moreover, w(t, ·) ∈ D(A) for all
t > 0 and, from the proof of [38, Thm. 6.3.1], we have Aw ∈
C0((0, T ); L2(0, 1)) and A1/2w ∈ C0([0, T ); L2(0, 1)). Finally, from
a similar argument that the one stated as a preliminary remark
of the proof of [38, Thm. 6.3.3], if T < +∞ then ∥A1/2w(t, ·)∥2

L2
+

∥ẑ(t)∥2 =
∑

n≥1 λnwn(t)2 + ∥ẑ(t)∥2 is unbounded on [0, T ).

4.3. Model for stability analysis

We define the mapping ψ : R→ R by

ψ(x) = ϕ(x)− kϕx. (30)

Adopting the definitions and the approach of Section 3.3, we infer
from (29) that

u = KẐN0 (31a)
˙̂ZN0 = (A0 + kϕB0K )ẐN0 + LC0EN0 (31b)

+ LC̃1ẼN−N0 + Lζ +B0ψ(KẐN0 )

ĖN0 = (A0 − LC0)EN0 − LC̃1ẼN−N0 − Lζ (31c)
˙̃ZN−N0 = A1Z̃N−N0 + kϕB̃1KẐN0 + B̃1ψ(KẐN0 ) (31d)
˙̃EN−N0 = A1ẼN−N0 (31e)

Hence, with X defined by (14), u can still be expressed by u = K̃X
and we have that

Ẋ = FX + Lζ + Lψψ(KẐN0 ) (32)

where

F =

⎡⎢⎢⎣
A0 + kϕB0K LC0 0 LC̃1

0 A0 − LC0 0 −LC̃1

kϕB̃1K 0 A1 0
0 0 0 A1

⎤⎥⎥⎦ ,
L = col (L,−L, 0, 0), and Lψ = col

(
B0, 0, B̃1, 0

)
. With X̃ =

col
(
X, ζ , ψ(KẐN0 )

)
and based on (31a)–(31b), we infer that

vϕ = u̇ϕ = ϕ′(KẐN0 )K ˙̂ZN0 = ϕ′(KẐN0 )EX̃ (33)

where E = K
[
A0 + kϕB0K LC0 0 LC̃1 L B0

]
.

4.4. Main stability results

Theorem 3. Let θ1 ∈ (0, π/2], θ2 ∈ [0, π/2], p ∈ C2([0, 1]) with
p > 0, and q̃ ∈ C0([0, 1]). Let kϕ > 0, ∆kϕ ∈ (0, kϕ), and Mϕ > 0.
Let q ∈ C0([0, 1]) and qc ∈ R be such that (3) holds. Let δ > 0
and N0 ≥ 1 be such that −λn + qc < −δ for all n ≥ N0 + 1. Let
K ∈ R1×N0 and L ∈ RN0 be such that A0 + kϕB0K and A0 − LC0
are Hurwitz with eigenvalues that have a real part strictly less than
−δ < 0. For a given N ≥ N0 + 1, assume that there exist P ≻ 0,
α > 3/2, and β, γ , τ > 0 such that

Θ1 ⪯ 0, Θ2 ≤ 0 (34)

where

Θ1 =

⎡⎣Θ1,1 PL PLψ
L⊤P −β 0
L⊤ψP 0 αγ ∥RNa∥2L2 − τ

⎤⎦+ αγ ∥RNb∥2L2M
2
ϕE
⊤E

Θ = F⊤P + PF + 2δP +
{
αγ k2∥R a∥2 + τ∆k2

}
K̃⊤K̃
1,1 ϕ N L2 ϕ
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Θ2 = 2γ
{
−

(
1−

3
2α

)
λN+1 + qc + δ

}
+ βMφ

and with Mφ =
∑

n≥N+1
|φn(0)|2
λn

< +∞. Then there exists a constant
> 0 such that for any ϕ ∈ C1(R) such that (23) holds with ϕ′

ocally Lipschitz continuous and ∥ϕ′∥L∞ ≤ Mϕ , and for any initial
onditions z0 ∈ H2(0, 1) and ẑn(0) ∈ R such that cos(θ1)z0(0) −
in(θ1)z ′0(0) = 0 and cos(θ2)z0(1)+ sin(θ2)z ′0(1) = ϕ(KẐ

N0 (0)), the
rajectories of the closed-loop system composed of the plant (22) and
he controller (29) satisfy

z(t, ·)∥2H1 +

N∑
n=1

ẑn(t)2 ≤ Me−2δt
(
∥z0∥2H1 +

N∑
n=1

ẑn(0)2
)

or all t ≥ 0. Moreover, for any given kϕ,Mϕ > 0, there exists
kϕ ∈ (0, kϕ) such that the constraints (34) are always feasible
hen selecting N to be large enough.

roof. Considering the Lyapunov function candidate defined by
19), the computation of its time derivative along the system
rajectories (28) and (32) gives

˙ = X̃⊤

⎡⎣F⊤P + PF PL PLψ
L⊤P 0 0
L⊤ψP 0 0

⎤⎦ X̃

+ 2γ
∑

n≥N+1

λn
{
(−λn + qc)wn + anuϕ + bnvϕ

}
wn.

here X̃ = col
(
X, ζ , ψ(KẐN0 )

)
. Since uϕ = ϕ(KẐN0 ) = kϕ K̃X +

(KẐN0 ), using Young inequality, we infer for any α > 0 that∑
n≥N+1

λnanuϕwn ≤
2
α

∑
n≥N+1

λ2nw
2
n

+ α∥RNa∥2L2
{
k2ϕ(K̃X)

2
+ ψ(KẐN0 )2

}
,∑

n≥N+1

λnbnvϕwn ≤
1
α

∑
n≥N+1

λ2nw
2
n + α∥RNb∥2L2v

2
ϕ

here, using (33), v2ϕ ≤ M2
ϕ X̃
⊤E⊤EX̃ . Moreover, since ζ =∑

n≥N+1wnφn(0), Cauchy–Schwarz inequality gives ζ 2 ≤

φ

∑
n≥N+1 λnw

2
n . Combining the above estimates, we have V̇ +

δV ≤ X̃⊤Θ1,τ=0X̃ +
∑

n≥N+1 λnΓnw
2
n where Θ1,τ=0 is obtained

rom Θ1 by setting τ = 0 and Γn = 2γ
{
−
(
1− 3

2α

)
λn + qc + δ

}
βMφ . We now need to take advantage of the sector condi-

ion (23) satisfied by ϕ. More precisely, (23) implies that (ϕ(x)−
kϕ + ∆kϕ)x)(ϕ(x) − (kϕ − ∆kϕ)x) ≤ 0 for all x ∈ R. Using (30),
his is equivalent to ψ(x)2 − ∆k2ϕx

2
≤ 0 for all x ∈ R. The use of

his sector condition applied at x = KẐN0 = K̃X into the above
stimate of V̇ + 2δV implies that

˙ + 2δV ≤ X̃⊤Θ1X̃ +
∑

n≥N+1

λnΓnw
2
n .

sing α > 3/2, we have Γn ≤ Θ2 ≤ 0 for all n ≥ N + 1.
ince Θ1 ⪯ 0, we infer that V̇ + 2δV ≤ 0. From (19) we infer
hat ∥A1/2w(t, ·)∥2

L2
=
∑

n≥1 λnwn(t)2 and ∥ẑ(t)∥ are bounded
n the maximal interval of existence of the system trajectories.
ence the trajectories are well-defined for all t ≥ 0 (see end of
emark 8) and we obtain the claimed stability estimate.
It remains to show for any given kϕ,Mϕ > 0 the existence

f some ∆kϕ ∈ (0, kϕ) so that the constraints Θ1 ⪯ 0 and
2 ≤ 0 are always feasible when taking N ≥ N0 + 1 large
nough. Proceeding as in the proof of Theorem 1, the application
f Lemma 1 reported in appendix to the matrix F+δI ensures that

⊤
he solution P ≻ 0 to the Lyapunov equation F P+PF+2δP = −I

7

s such that ∥P∥ = O(1) as N → +∞. This ensures the existence
f a constant MP > 0 such that ∥P∥ ≤ MP for all N ≥ N0 + 1.
here also exists a constant Mψ > 0 such that ∥Lψ∥ ≤ Mψ for
ll N ≥ N0 + 1. This allows us to define τ = 1+ 4M2

PM
2
ψ + ∥a∥

2
L2

nd ∆kϕ = min
(

1
1+2∥K∥

√
τ
,

kϕ
2

)
which are constants independent

of N and ϕ. We also set α = 2, β =
√
N , and γ = 1/N . Since

∥K̃∥ = ∥K∥ and ∥L∥ =
√
2∥L∥ are constants independent of N ,

he use of Schur complement implies that

1 =

[
−I + αγ k2ϕ∥RNa∥2L2 K̃

⊤K̃ PL
L⊤P −β

]
⪯ −

3
4
I.

for N large enough. Since τ − αγ ∥RNa∥2L2 − 1/2 > 0 for N ≥ 2,
we infer from the Schur complement that

Ξ2 =

[
Ξ1 Ψ

Ψ ⊤ αγ ∥RNa∥2L2 − τ

]
⪯ −

1
2
I,

where Ψ = col(PLψ , 0), if and only if

Ξ1 +
1
2
I +

1
τ − αγ ∥RNa∥2L2 − 1/2

ΨΨ ⊤ ⪯ 0.

A sufficient condition ensuring that this latter inequality is satis-
fied is provided by 4∥P∥2∥Lψ∥2 ≤ 4M2

PM
2
ψ ≤ τ−αγ ∥RNa∥2L2−

1
2 ,

hich is true for N ≥ 2 based on the definitions of τ , α, γ . Noting
ow from (33) that ∥E∥ = O(1) as N → +∞, we obtain that
αγ ∥RNb∥2L2M

2
ϕE
⊤E ⪯ 1

4 I for N large enough. Putting together the
above estimates, we infer that Θ1 ⪯ −

1
4 I + τ∆k2ϕ∥K∥

2I for N
arge enough. Since ∆kϕ ≤ 1/(1 + 2∥K∥

√
τ ), we have Θ1 ⪯ 0

for N large enough. Finally, recalling that α = 2, β =
√
N ,

and γ = 1/N , we also note that Θ2 ≤ 0 for N large enough.
In conclusion, we have found a ∆kϕ ∈ (0, kϕ) such that the
constraints (34) are feasible when selecting N ≥ N0 + 1 to be
large enough. This completes the proof

Remark 9. A similar approach that the one reported in Re-
mark 4 can be employed to recast the constraints (34) into a LMI
formulation for any given N ≥ N0 + 1.

Remark 10. For any arbitrary choice of the feedback and observer
gains K ∈ R1×N0 and L ∈ RN0 such that the matrices A0 + kϕB0K
and A0 − LC0 are Hurwitz, Theorem 3 ensures the existence and
allows the computation of a∆kϕ > 0. Hence, the maximum value
obtained for ∆kϕ > 0 depends on the specific realizations of the
gains K and L. Note however that the problem of maximizing the
value of ∆kϕ > 0 by tuning the gains K and L is difficult because
highly nonlinear. For example, Θ1 presents through the term E⊤E
a biquadratic dependency on the feedback gain K .

As a corollary of Theorem 3, we have the following L2 version
for the stability of the closed-loop system.

Corollary 1. In addition of all the assumptions of Theorem 3,
assume further that N ≥ N0 + 1 is selected such that there exist
P ′ ≻ 0, and α′, β ′, γ ′, τ ′ > 0 so that

Θ ′1 ⪯ 0, Θ ′2 ≤ 0, Θ ′3 ≥ 0 (35)

where

Θ ′1 =

⎡⎣Θ ′1,1 P ′L P ′Lψ
L⊤P ′ −β ′ 0
L⊤ψP

′ 0 α′γ ′∥RNa∥2L2 − τ
′

⎤⎦
+ α′γ ′∥RNb∥2L2M

2
ϕE
⊤E

Θ ′1,1 = F⊤P ′ + P ′F + 2δP ′ +
{
α′γ ′k2ϕ∥RNa∥2L2 + τ

′∆k2ϕ
}
K̃⊤K̃

Θ ′2 = 2γ ′
{
−λN+1 + qc + δ +

3
′

}
+ β ′M ′φλ

3/4
N+1
2α
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Fig. 1. Input sector nonlinear ϕ with ϕ(x) ∼ 0.5x for x < −6 and x > 6.

Θ ′3 = 2γ ′ −
β ′M ′φ
λ
1/4
N+1

nd with M ′φ =
∑

n≥N+1
|φn(0)|2

λ
3/4
n

< +∞. Then there exists a constant
M ′ > 0 such that, under the same assumptions for ϕ and the
nitial conditions that the ones of Theorem 3, the trajectories of the
losed-loop system composed of the plant (22) and the controller
(29) satisfy

∥z(t, ·)∥2L2 +
N∑

n=1

ẑn(t)2 ≤ M ′e−2δt
(
∥z0∥2L2 +

N∑
n=1

ẑn(0)2
)

or all t ≥ 0. Moreover, for any given kϕ,Mϕ > 0, there exists
kϕ ∈ (0, kϕ) such that the both constraints (34) and (35) are

always feasible when selecting N to be large enough.

Proof. From Theorem 3, we infer the existence of solutions
defined for all t ≥ 0. Now the proof is based on the Lyapunov
unctional (21) and relies on similar arguments that the ones
eported for Theorems 2 and 3.

emark 11. The statement of Corollary 1 requires the constraints
35) of Theorem 3. This is because, even if (35) is sufficient by
tself to ensure the exponential decay in L2 norm, it fails to ensure
hat ∥A1/2w(t, ·)∥2

L2
=
∑

n≥1 λnwn(t)2 remains bounded on any
time intervals of finite length. This latter point is required to
apply the argument at the end of Remark 8 to ensure that the
system trajectories are well defined for all t ≥ 0.

5. Numerical illustration

Let the unstable reaction–diffusion equation described by (22)
with θ1 = π/2, θ2 = 0, p = 1 and q̃ = −3. We consider the sector
nonlinearity ϕ that takes the form depicted in Fig. 1 and which
satisfies (23) for kϕ = 1 and∆kϕ = 0.5 while ∥ϕ′∥L∞ ≤ 9.02. This
function is not injective and has a derivative that vanishes both at
certain isolated points and on an interval. Hence, this nonlinear
mapping checks all the pathological behaviors discussed in Re-
mark 6 that prevent the design of the control strategy using the
auxiliary control input vϕ = u̇ϕ .

With N0 = 1, the feedback gain K = −0.8250, and the
observer gain L = 1.2958, the sufficient conditions (34) of
heorem 3 are found feasible for δ = 0.3 when using an observer
f dimension N = 3, ensuring the exponential stability of the
losed-loop system in H1-norm. Simulation results are presented
n Fig. 2. It can be observed that the both state of the PDE
nd observation error converge exponentially to zero despite the
trong impact of the sector nonlinearity applying on the control
nput as shown in Fig. 2(c). This is compliant with the theoretical
redictions of Theorem 3. For the same system, the conditions
f Corollary 1 that ensure the stability of the system in L2-norm
ppear to be more stringent from a numerical perspective. For
8

Fig. 2. Time evolution of the closed-loop system.

instance, the sufficient conditions (34) and (35) of Corollary 1 are
found feasible for δ = 0.3 when using an observer of dimension
N = 16.

It can be observed in simulation that the reported control
strategy cannot achieve the stabilization of the plant for arbi-
trarily large values of the size ∆kϕ of the sector non linearity
23). Indeed, in the setting of the previous paragraph with a
onlinearity similar to the one of Fig. 1 but rescaled with a size of
he sector condition increased from∆kϕ = 0.5 to∆kϕ ≈ 0.72, we
obtain in simulation divergent closed-loop system trajectories.
Moreover, one can expect that the value of ∆kϕ decreases with
the level of instability of the open-loop plant (characterized by its
growth bound), i.e., when decreasing the value of q̃. This can be
observed numerically by considering for example the constraints
of Theorem 3 with kϕ = 1 and δ = 0.3 while placing the poles
of both A0 + kϕB0K and A0 − LC0 at −1.3. In this case we obtain
for a dimension N = 15 of the observer: ∆kϕ = 0.54 for q̃ = −3,
∆kϕ = 0.24 for q̃ = −5, ∆kϕ = 0.12 for q̃ = −7, and ∆kϕ = 0.03
for q̃ = −9.

6. Conclusion

This paper has investigated the finite-dimensional observer-
based stabilization of a reaction–diffusion equation in the pres-
ence of a sector nonlinearity in the control input. It is worth
noting that even if the method has been presented in the case
of a Robin boundary input with parameter θ ∈ (0, π/2] and
1
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θ

∥

t
e
(

R

2 ∈ [0, π/2], the approach readily extends to the case θ1 ∈ (0, π )
and θ2 ∈ [0, π ) provided q in (3) is selected sufficiently large
positive so that (1) still holds and by replacing the change of
variable (4) by w(t, x) = z(t, x) − xα

cos(θ2)+α sin(θ2)
u(t) for any fixed

α > 1 so that cos(θ2)+ α sin(θ2) ̸= 0. Future research directions
may be concern with extensions to other types of nonlinearities.
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Appendix. Useful lemma

The following Lemma is borrowed from [32] and generalizes
a result presented in [30].

Lemma 1. Let n,m,N ≥ 1, M11 ∈ Rn×n and M22 ∈ Rm×m

Hurwitz, M12 ∈ Rn×m, MN
14 ∈ Rn×N , MN

24 ∈ Rm×N , MN
31 ∈ RN×n,

MN
33,M

N
44 ∈ RN×N , and

FN
=

⎡⎢⎣M11 M12 0 MN
14

0 M22 0 MN
24

MN
31 0 MN

33 0
0 0 0 MN

44

⎤⎥⎦ .
We assume that there exist constants C0, κ0 > 0 such that ∥eM

N
33t∥ ≤

C0e−κ0t and ∥eM
N
44t∥ ≤ C0e−κ0t for all t ≥ 0 and all N ≥ 1.

Moreover, we assume that there exists a constant C1 > 0 such that
MN

14∥ ≤ C1, ∥MN
24∥ ≤ C1, and ∥MN

31∥ ≤ C1 for all N ≥ 1. Then
here exists a constant C2 > 0 such that, for any N ≥ 1, there
xists a symmetric matrix PN

∈ Rn+m+2N with PN
≻ 0 such that

FN )⊤PN
+ PNFN

= −I and ∥PN
∥ ≤ C2.
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