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a b s t r a c t

This paper addresses the control design problem of output feedback stabilization of a reaction–diffusion
PDE with a non-collocated boundary condition. More precisely, we consider a reaction–diffusion
equation with a boundary condition describing a proportional relationship between the left and right
Dirichlet traces. Such a boundary condition naturally emerges, e.g., in the context of reaction–diffusion
partial differential equations presenting a transport term and with a periodic Dirichlet boundary
condition. The control input takes the form of the left Neumann trace. Finally, the measurement is
selected as a pointwise Dirichlet measurement located either in the domain or at the boundary. The
adopted control strategy takes the form of a finite-dimensional controller coupling a state feedback and
a finite-dimensional observer. The stability of the closed-loop system is obtained provided the order
of the observer is selected to be large enough. Finally, we extend this result to the establishment of
an input-to-state stability estimate with respect to an additive perturbation in the application of the
boundary control.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Control design for 1-D reaction–diffusion partial differential
quations (PDEs) with collocated boundary conditions has been
idely studied in the literature in a great variety of configura-
ions [1,2]. By collocated, we mean here that the main reaction–
iffusion PDE is accompanied with a set of two boundary
onditions, each one describing the behavior of the system at one
f the two boundaries. In contrast, a non-collocated boundary
ondition refers to a single condition mixing the behavior of
he system at both boundaries simultaneously. In the case of
eaction–diffusion PDEs, such non-collocated boundary condi-
ions can be used, e.g., to describe the dynamics of the heat
istribution on a ring [3], closed circuit cooling or heat transfer
n heterogeneous materials [4]. Even if non-collocated boundary
onditions have been widely investigated in the context of the
oundary control of hyperbolic systems, see [5–7] and references
herein, the case of parabolic PDEs remains essentially unex-
lored. One of the main reasons is that the control design of
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such parabolic PDEs is particularly challenging due to inherent
technical difficulties in the application of backstepping control
design procedures [2] (which are particularly successful in the
collocated setting) in the presence of non-collocated boundary
conditions. To the best of our knowledge, this type of control
design problem for a reaction–diffusion PDE (with a collocated
boundary condition different from the one studied in this paper)
was solely addressed in [8,9] in the case of a state-feedback using
spectral reduction methods [1,10,11]. The problem of output
feedback stabilization of the linearized Kuramoto–Sivashinsky
PDE by means of bounded input and output operators was re-
ported in [12]. It is worth noting that a non-collocated boundary
condition can sometimes emerge due to the application of a static
output feedback control strategy when the input and the output
are non-collocated; see for example [13] for such a situation in
the case of a wave equation. In this case, the non-collocated
boundary condition helps to achieve the stabilization of the
plant. In sharp contrast, the non-collocated boundary condition
considered in this paper is one of the two sources of instability
for the plant. Hence, its harmful effect needs to be mitigated by an
adequate control strategy. In this general context, we solve for the
first time the problem of boundary output feedback stabilization
of a reaction–diffusion PDE presenting a non-collocated boundary
condition by means of a pointwise measurement.

From a general perspective, it is well-known that the collo-
cated setting confers strong structural properties to 1-D reaction–
diffusion PDEs. Indeed, the Sturm–Liouville theory [14] shows
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http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2022.105238&domain=pdf
mailto:hugo.lhachemi@centralesupelec.fr
mailto:christophe.prieur@gipsa-lab.fr
https://doi.org/10.1016/j.sysconle.2022.105238


H. Lhachemi and C. Prieur Systems & Control Letters 164 (2022) 105238

t
s
e
t
n
u
T
o

f
c
a
c
c
p
t
s
m
d
s
p
i
i
d
a
v
r
d
s
P
a
t
u
u
n
r
a
a
u
W
t
t
f
d
i
b
N
c
a
s
w
d
t
d
w
t
t
w
b

a
p
q
p
a
S
c
s

r

m

−

e
s
c
k
a
t

hat the unbounded operators associated with such PDEs are
elf-adjoint, present real eigenvalues, and the corresponding unit
igenvectors form a Hilbert basis of the state-space. In con-
rast, such structural properties may be lost when considering
on-collocated boundary conditions. In particular, the underlying
nbounded operators are (in general) not self-adjoint anymore.
his may give rise to interesting phenomena such as time-domain
scillations induced by complex conjugate eigenvalues.
We address in this paper the control design problem of output

eedback stabilization of reaction–diffusion PDEs with a boundary
ondition describing a proportional relationship between the left
nd right Dirichlet traces. As we shall see, such a boundary
ondition can emerge, e.g., after a change of variable in the
ontext of reaction–diffusion PDEs with a transport term and a
eriodic Dirichlet boundary condition. The control input takes
he form of a Neumann boundary trace. The measurement is
elected as an arbitrarily located pointwise Dirichlet measure-
ent. The adopted control strategy takes the form of a finite-
imensional observer [15–19] coupled with a finite-dimensional
tate-feedback. The design of the finite-dimensional observer is
erformed by leveraging ideas in terms of controller architecture
nitially reported in [19] coupled with the LMI-based approach
nitiated in [20], and more precisely on the enhanced proce-
ures described in [21,22] that allow to handle both Dirichlet
nd Neumann boundary measurements while performing, for
ery general 1-D reaction–diffusion PDEs, the control design di-
ectly with the actual boundary control input instead of its time-
erivative; see [23, Sec. 3.3] for generalities on boundary control
ystems. These procedures have been developed for parabolic
DEs with collocated boundary conditions (in addition of the
bove references for reaction–diffusion PDEs, see also [24] for
he case of the Kuramoto–Sivashinsky equation) for which the
nderlying unbounded operator is self-adjoint and the associated
nit eigenvectors form a Hilbert basis. Due to the non-collocated
ature of the boundary condition considered in this paper for the
eaction–diffusion PDE, we adapt these procedures to the case of
n underlying unbounded operator that is not self-adjoint, with
ll the eigenvalues but one that are complex conjugate, while the
nit eigenvectors do not form a Hilbert basis but a Riesz basis.
e show that the proposed control strategy always achieves

he exponential stabilization of the plant provided the order of
he observer is selected large enough. Beyond the sole output
eedback stabilization of the plant, we show that the procedure
eveloped in this paper also allows the establishment of an
nput-to-state stability (ISS) estimate with respect to an additive
oundary perturbation in the application of the boundary control.
ote that ISS estimates with respect to unmatched disturbances
an also be obtained in our framework for additive perturbations
pplied in the domain of the PDE (see, e.g., [25] for the study of
uch a case in the context of collocated reaction–diffusion PDE
ith bounded input and output operators while using an infinite-
imensional observer) or in the measurement. Note however
hat such input perturbations apply to the closed-loop system
ynamics as inputs of bounded operators. In this context, it is
ell-known that the establishment of ISS estimates with respect
o boundary perturbations is much more challenging compared
o perturbations applied through bounded operators [26]. This is
hy we focus the presentation of the results on the case of a
oundary disturbance.
The paper is organized as follows. The control design problem

ddressed in this paper is introduced in Section 2. The structural
roperties of the underlying unbounded operator and the subse-
uent spectral reduction of the PDE are reported in Section 3. The
roposed control strategy is described in Section 4. The stability
nalysis of the resulting closed-loop system is then carried out in
ection 5. A numerical illustration is reported in Section 6. Finally,
oncluding remarks regarding possible extensions of the control
trategy are formulated in Section 7.
2

Notations. Real spaces Rn are equipped with the usual Euclidean
norm denoted by ∥ · ∥. The associated induced norms of matrices
are also denoted by ∥ · ∥. For any two vectors X and Y , col(X, Y )
represents the vector [X⊤, Y⊤

]
⊤. The space of square integrable

functions on (0, 1) is denoted by L2(0, 1) and is endowed with
the inner product ⟨f , g⟩ =

∫ 1
0 f (x)g(x) dx. The associated norm is

denoted by ∥ · ∥L2 . For an integer m ≥ 1, Hm(0, 1) stands for the
m-order Sobolev space and is endowed with its usual norm ∥·∥Hm .
For any symmetric matrix P ∈ Rn×n, P ⪰ 0 (resp. P ≻ 0) indicates
that P is positive semi-definite (resp. positive definite).

2. Problem description and abstract representation

2.1. Problem description

We consider in this paper the boundary control of the reaction–
diffusion system described by

zt (t, x) = pzxx(t, x) + rz(t, x) (1a)

z(t, 1) = sz(t, 0) (1b)

zx(t, 0) = ud(t) ≜ u(t) + d(t) (1c)

yD(t) = z(t, ξ ) (1d)

z(0, x) = z0(x) (1e)

for t > 0 and x ∈ (0, 1). Here p > 0 is the diffusion coefficient
and r ∈ R is the reaction coefficient. Boundary condition (1b) is
non-collocated with coefficient s > 1. The control input u(t) ∈ R
applies to the left Neumann trace (1c) with unknown boundary
disturbance d(t) ∈ R. Throughout the paper, we assume that d ∈

C2(R+). The system output is selected as the pointwise Dirichlet
measurement yD(t) defined by (1d) for some given ξ ∈ [0, 1].
Finally, the initial condition (1e) is characterized by z0. It is worth
noting that for r ≥ 0 and s > 1, the open-loop PDE (1) is unstable;
see Lemma 1 for further details.

The control objective is to design a finite-dimensional control
strategy that achieves the output feedback exponential stabiliza-
tion of (1).

Remark 1. For p > r and d = 0, if we assume that z(t, 0)
and zx(t, 1) are available for feedback control, the exponential
stabilization of (1a)–(1c) can be achieved by setting u(t) =

szx(t, 1) + kz(t, 0) for k > 0 sufficiently large positive. In-
deed, defining V (t) =

1
2

∫ 1
0 |z(t, x)|2 dx, we infer that V̇ (t) =∫ 1

0 |z(t, x)|2 dx + p
∫ 1
0 z(t, x)zxx(t, x) dx. An integration by parts

gives
∫ 1
0 z(t, x)zxx(t, x) dx = z(t, 0) {szx(t, 1) − u(t)}−

∫ 1
0 |zx(t, x)|2

dx = −k|z(t, 0)|2 −
∫ 1
0 |zx(t, x)|2 dx. Let ϵ > 0 be such that

p > r(1 + ϵ−1). Then using Cauchy–Schwarz and Young inequal-
ities, we infer that

∫ 1
0 |z(t, x)|2 dx ≤ (1 + ϵ)|z(t, 0)|2 + (1 +

ϵ−1)
∫ 1
0 |zx(t, x)|2 dx. Hence, we have

V̇ (t) ≤ −{kp − r(1 + ϵ)} |z(t, 0)|2

−
{
p − r(1 + ϵ−1)

} ∫ 1

0
|zx(t, x)|2 dx

So if we select k > r
p (1 + ϵ), we obtain the existence of α =

in
(
kp − r(1 + ϵ), p − r(1 + ϵ−1)

)
> 0 and κ > 0 so that V̇ (t) ≤

α

{
|z(t, 0)|2 +

∫ 1
0 |zx(t, x)|2 dx

}
≤ −2κV (t). This ensures the

xponential stabilization of the plant. Note however the following
tructural limitations. First, this approach requires the structural
onstraint p > r . Second, while the above approach requires the
nowledge of both zx(t, 1) and z(t, 0), such a strategy cannot be
pplied in the case of the sole point measurement (1d). Finally,
his approach is not easily extendable to settings presenting, for
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nstance, input nonlinearities or long input/output/state delays.
he method developed in this paper allows to remove all these
imitations.

emark 2. The occurrence of the s-parameter in the non-
collocated boundary condition (1b) naturally arises in the context
of reaction–diffusion equations with a transport term and a
periodic Dirichlet boundary conditions. More specifically, let us
consider the system described by

yt (t, x) = αyxx(t, x) + βyx(t, x) + γ y(t, x) (2a)

y(t, 1) = y(t, 0) (2b)

yx(t, 0) = v(t) (2c)

yD(t) = y(t, 1) (2d)

where α > 0 and β, γ ∈ R. In order to obtain an equivalent for-
mulation of (2) without transport term, we introduce the classical
change of variable formula z(t, x) = e

β
2α xy(t, x). Then we have

hat

t (t, x) = αzxx(t, x) +

{
γ −

β2

4α

}
z(t, x) (3a)

(t, 1) = e
β
2α z(t, 0) (3b)

−
β

2α
z(t, 0) + zx(t, 0) = v(t) (3c)

yD(t) = z(t, 0) (3d)

Hence, if we set v(t) = −
β

2α yD(t)+u(t) we infer that zx(t, 0) =

(t), giving (1) with p = α, r = γ −
β2

4α , s = e
β
2α , ξ = 0, and d = 0.

2.2. Preliminary change of variable and abstract form

Let us consider the change of variable

w(t, x) = z(t, x) −

(
x +

1
s − 1

)
ud(t). (4)

This allows us to derive the following equivalent homoge-
neous representation of (1) described by

u̇(t) = v(t) (5a)

wt (t, x) = pwxx(t, x) + rw(t, x) + a(x)u(t) + b(x)v(t) (5b)

+ a(x)d(t) + b(x)ḋ(t)

w(t, 1) = sw(t, 0), wx(t, 0) = 0 (5c)

ỹD(t) = w(t, ξ ) (5d)

w(0, x) = w0(x) (5e)

where a(x) = r
(
x +

1
s−1

)
and b(x) = −

(
x +

1
s−1

)
while ỹD(t) =

D(t) −
(
ξ +

1
s−1

)
ud(t) and the initial condition w0(x) = z0(x) −

x +
1

s−1

)
ud(0).

Let us now define the unbounded operator A : D(A) ⊂
2(0, 1) → L2(0, 1) defined by Af = f ′′ on the domain D(A) =

f ∈ H2(0, 1) : f (1) = sf (0), f ′(0) = 0}. Hence (5a)–(5c) can be
ritten under the following abstract form:

u̇(t) = v(t) (6a)

t (t, ·) = (pA + rIL2 )w(t, ·) + au(t) + bv(t) + ad(t) + bḋ(t) (6b)

. Structural properties and spectral reduction

.1. Riesz spectral properties of A

We start by the following lemma describing the point spec-
rum of A.
3

emma 1. Let s > 1 and define τ = s +
√
s2 − 1 > 1.

he eigenvalues µn ∈ C of A and the corresponding eigenvectors
n ∈ L2(0, 1), with n ∈ Z, are described by

µn = (log τ )2 − 4n2π2
+ 4inπ log τ ,

n(x) = cosh ((log τ + 2inπ )x) .

roof. We are looking for µ ∈ C and a non zero f ∈ H2(0, 1)
o that f ′′

− µf = 0, f (1) = sf (0), and f ′(0) = 0. Since s ̸= 1,
he resolution of the above ODE in the case µ = 0 gives f = 0.
ence the case µ = 0 is discarded. Let

√
µ ̸= 0 denote one

of the two square roots of µ. Function f must be of the form
(x) = αe

√
µx

+ βe−
√
µx. The condition f ′(0) = 0 along with

√
µ ̸= 0 implies α = β hence f (x) = 2α cosh(

√
µx). Now

the condition f (1) = sf (0) along with α ̸= 0 (because we are
looking for a non zero function f ) gives cosh(

√
µ) = s. Writing

cosh in terms of exponentials, this latter identity is equivalent to
(e

√
µ)2 − 2se

√
µ

+ 1 = 0, implying that e
√
µ

= τ ≜ s +
√
s2 − 1

or e
√
µ

= τ− ≜ s −
√
s2 − 1. So we have either

√
µ = log τ +

2inπ or
√
µ = log τ− + 2inπ for some n ∈ Z. Thus we have

µ = (log τ + 2inπ )2 or µ = (log τ− + 2inπ )2 for some n ∈ Z.
oting that τ− = 1/τ hence log τ− = − log τ , this implies that
= (log τ + 2inπ )2 = (log τ )2 − 4n2π2

+ 4inπ log τ for some
n ∈ Z. This concludes the proof.

In order to further study the properties of {φn}n∈Z, we shall
need to establish the existence, and determine the expression, of
a family {ψn}n∈Z that is biorthogonal to {φn}n∈Z, i.e., ⟨φn, ψm⟩ =

δn,m for all n,m ∈ Z where δn,m ∈ {0, 1} with δn,m = 1 if and only
if n = m. To do so, we first compute A∗, the adjoint operator of
A.

Lemma 2. The adjoint operator A∗ is described by A∗f = f ′′ on
the domain D(A∗) = {f ∈ H2(0, 1) : f (1) = 0, f ′(0) = sf ′(1)}.

Proof. We first note that A is invertible with inverse given
for all g ∈ L2(0, 1) by (A−1g)(x) =

∫ x
0

∫ ξ1
0 g(ξ2) dξ2 dξ1 +

1
s−1

∫ 1
0

∫ ξ1
0 g(ξ2) dξ2 dξ1, showing that 0 ∈ ρ(A). Hence we know

hat (A∗)−1
= (A−1)∗ (see [23, Lem. A.3.65]). Direct computations

ive, for all w ∈ L2(0, 1), ((A−1)∗w)(x) =
∫ 1
x

∫ 1
ξ1
w(ξ2) dξ2 dξ1 +

1−x
s−1

∫ 1
0 w(ξ ) dξ . The inversion of the latter operator gives the

claimed result.

We now obtain the required biorthogonal sequence {ψn}n∈Z
by studying the eigenstructures of A∗.

Lemma 3. Let s > 1 and define τ = s +
√
s2 − 1 > 1. The

igenvalues µad
n ∈ C of A∗ and the corresponding eigenvectors

n ∈ L2(0, 1), with n ∈ Z, are described by

µad
n = µn = (log τ )2 − 4n2π2

− 4inπ log τ ,

n(x) = −
2

√
s2 − 1

sinh ((log τ − 2inπ )(x − 1)) .

Moreover, {ψn}n∈Z is biorthogonal to {φn}n∈Z.

roof. We are looking for µ ∈ C and a non zero f ∈ H2(0, 1)
so that f ′′

− µf = 0, f (1) = 0, and f ′(0) = sf ′(1). Since s ̸= 1,
the resolution of the above ODE in the case µ = 0 gives f = 0.
ence the case µ = 0 is discarded. Let

√
µ ̸= 0 denote one

of the two square roots of µ. Function f must be of the form
(x) = αe

√
µx

+βe−
√
µx. The conditions f (1) = 0 and f ′(0) = sf ′(1)

along with
√
µ ̸= 0 give[

e
√
µ e−

√
µ

√
µ −

√
µ

][
α
]

= 0.

1 − se −1 + se β
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Hence, the function f is non zero if and only if the determinant
of the above 2 × 2 matrix is zero, i.e., cosh(

√
µ) = s. We now

btained the claimed closed-form for µad
n by following the same

teps that the ones of Lemma 1. Moreover, since f (1) = 0 implies
hat β = −αe2

√
µ, we infer that f (x) = α

(
e
√
µx

− e2
√
µe−

√
µx
)

=

αe
√
µ sinh(

√
µ(x−1)). We obtain the claimed closed form for ψn

y setting α = −
e−

√
µ

√
s2−1

.

To complete the proof, it remains to show that {ψn}n∈Z is
iorthogonal to {φn}n∈Z. Note first that µn ⟨φn, ψm⟩ = ⟨Aφn, ψm⟩ =

φn,A∗ψm⟩ =
⟨
φn, µ

ad
mψm

⟩
= µm ⟨φn, ψm⟩. For n ̸= m we have

n ̸= µm hence ⟨φn, ψm⟩ = 0. Finally, explicit computations show
hat ⟨φn, ψn⟩ = 1 for all n ∈ Z.

We are now in position to show that {φn}n∈Z forms a Riesz
asis of L2(0, 1). This means that the vector space spanned by
φn}n∈Z is dense in L2(0, 1) and that there exist mR,MR > 0
o that, for any N ≥ 0 and any αi ∈ C, mR

∑
|n|≤N |αn|

2
≤

∥
∑

|n|≤N αnφn∥
2

≤ MR
∑

|n|≤N |αn|
2. In this case, we have for any

f ∈ L2(0, 1) the series expansion f =
∑

n∈Z ⟨f , ψn⟩φn and

mR

∑
n∈Z

| ⟨f , ψn⟩ |
2

≤ ∥f ∥2
L2 ≤ MR

∑
n∈Z

| ⟨f , ψn⟩ |
2. (7)

Lemma 4. The family {φn}n∈Z is a Riesz basis of L2(0, 1).

Proof. Using the characterization of Riesz bases reported in [27,
Chap. 1, Thm. 9], we need to show that 1) the two vector spaces
spanned by {φn}n∈Z and its biorthogonal family {ψn}n∈Z are both
ense in L2(0, 1); and 2) both families {φn}n∈Z and {ψn}n∈Z form
ach a Bessel sequence. We recall that a family (ϕn)n∈N of L2(0, 1)
s said to be a Bessel sequence if for any f ∈ L2(0, 1) we have
⟨f , ϕn⟩)n∈N ∈ ℓ2(N).

We start by studying the properties of {φn}n∈Z. Let f ∈ L2(0, 1)
e such that ⟨f , φn⟩ = 0 for all n ∈ Z. We recall that φn
s given in closed form by Lemma 1. The case n = 0 gives
f cosh((log τ )·), 1⟩ = 0. In the case n ≥ 1 we have

0 = ⟨f , φn⟩ = ⟨f cosh((log τ )·), cos(2nπ ·)⟩
− i ⟨f sinh((log τ )·), sin(2nπ ·)⟩

= ⟨f , φ−n⟩ = ⟨f cosh((log τ )·), cos(2nπ ·)⟩
+ i ⟨f sinh((log τ )·), sin(2nπ ·)⟩

ence we deduce that ⟨f cosh((log τ )·), cos(2nπ ·)⟩ = 0 and
f sinh((log τ )·), sin(2nπ ·)⟩ = 0. Using these results, the Fourier
eries of f cosh((log τ )·) ∈ L2(0, 1) reads

cosh((log τ )·) =

∑
n≥1

αn sin(2nπ ·)

here αn ∈ C. This implies that

⟨f cosh((log τ )·), f sinh((log τ )·)⟩

=

∑
n≥1

αn⟨f sinh((log τ )·), sin(2nπ ·)⟩ = 0.

e deduce that

=

∫ 1

0
|f (x)|2 sinh((log τ )x) cosh((log τ )x) dx

=
1
2

∫ 1

0
|f (x)|2 sinh(2(log τ )x) dx.

Owing to τ > 1, we have sinh(2(log τ )x) > 0 for all x > 0 hence
f = 0 in L2(0, 1). This shows that the vector space spanned by
{φn}n∈Z is dense in L2(0, 1).

Let us now show that {φn}n∈Z is a Bessel sequence. To do
so, let f ∈ L2(0, 1) be arbitrarily fixed. Noting that φ (x) =
n

4

cosh((log τ )x) cos(2nπx) + i sinh((log τ )x) sin(2nπx), we deduce
using the triangular and Young’s inequalities that

∑
n∈Z

| ⟨f , φn⟩ |
2

≤ 4
∑

n≥0 | ⟨f cosh((log τ )·), cos(2nπ ·)⟩ |
2

+

4
∑

n≥1 | ⟨f sinh((log τ )·), sin(2nπ ·)⟩ | < ∞ where the right hand
side of the inequality is finite because f cosh((log τ )·) ∈ L2(0, 1)
and f sinh((log τ )·) ∈ L2(0, 1) and owing to the fact that the
Fourier coefficients of elements of L2(0, 1) are square summable.
This shows that {φn}n∈Z is a Bessel sequence.

Using similar arguments, one can show that {ψn}n∈Z is a Bessel
sequence and that the vector space spanned by this family is
dense in L2(0, 1). This completes the proof.

Finally, using the terminology of [23, Def. 2.3.4], A is a Riesz
spectral operator. Moreover, since supn∈Z Reµn = (log τ )2 < ∞,
e obtain from [23, Thm. 2.3.5] the following result.

emma 5. A is a Riesz spectral operator that generates a C0-
emigroup on L2(0, 1). Its domain is characterized by D(A) =

f ∈ L2(0, 1) :
∑

n∈Z |µn|
2
| ⟨f , ψn⟩ |

2 < ∞} with Af =

n∈Z µn ⟨f , ψn⟩φn for all f ∈ D(A).

Let f ∈ D(A) be arbitrarily given. From the Riesz basis property
e have f =

∑
n∈Z ⟨f , ψn⟩φn with convergence of the series in

2(0, 1) norm. From the previous lemma, we also infer that f ′′
=

n∈Z ⟨f , ψn⟩φ
′′
n with also convergence of the series in L2(0, 1)

orm. Finally, from the definition of the domain of the operator
, we have f ∈ H2(0, 1) and f ′(0) = 0. Invoking Poincaré’s

nequality, we infer that f ′
=
∑

n∈Z ⟨f , ψn⟩φ
′
n in L2(0, 1) norm.

ence we have that f =
∑

n∈Z ⟨f , ψn⟩φn with convergence of the
eries in H2(0, 1) norm. The continuous embedding H1(0, 1) ⊂
∞(0, 1) implies that the latter series converges in L∞(0, 1) norm.

.2. Spectral reduction

We introduce the coefficients of projection defined by zn(t) =

z(t, ·), ψn⟩, wn(t) = ⟨w(t, ·), ψn⟩, an = ⟨a, ψn⟩, and bn = ⟨b, ψn⟩.
hen we have from (4) that

n(t) = zn(t) + bnud(t). (8)

oreover, the projection of (6) onto the Riesz basis {φn}n∈Z gives

u̇(t) = v(t) (9a)

˙ n(t) = λnwn(t) + anu(t) + bnv(t) + and(t) + bnḋ(t), n ∈ Z (9b)

ith λn = pµn + r . Finally, using (8) into (9) to return to the
riginal coordinate z, the projection of (1) reads

˙n(t) = λnzn(t) + βnud(t), n ∈ Z (10)

ith βn = an + λnbn. From Lemma 3 we have µnbn = ⟨b,A∗ψn⟩.
sing an integration by parts, direct computations show that
nbn = −2 for all n ∈ Z, hence bn = −2/µn and an = −rbn =

r/µn. This implies that βn = −2p ∈ R for all n ∈ Z, hence is a
onstant independent of n.

emark 3. We observe that |µn||bn|2 =
4

|µn|
∼

1
n2π2 hence∑

n∈Z |µn||bn|2 < ∞. Consequently, if for t ≥ 0 we have w(t, ·) ∈

(A), we infer from (8) that
∑

n∈Z |µn||zn(t)|2 < ∞.

We observe that the ODEs (10) are complex-valued. However,
he trajectories of the original problem described by (2) are real-
alued. So, to perform the control design and obtain a real-valued
ontrol strategy, i.e. u(t) ∈ R, we need to derive a real-valued
ersion of (10). Since λ = λ , φ = φ , ψ = ψ , z(t, x) ∈ R,
n −n n −n n −n
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nd d(t) ∈ R, we have z0(t) ∈ R and, for all n ≥ 1, zn(t) = z−n(t)
with

·  [
Re zn
Im zn

]
(t) =

[
Re λn − Im λn
Im λn Re λn

]
  

=An

[
Re zn
Im zn

]
(t)  

=zn(t)

+

[
−2p
0

]
  

=Hn

ud(t) (11)

here all the quantities appearing in the latter identity are real-
alued. Moreover, introducing wn =

[
Rewn Imwn

]⊤ and owing
to (8), we have for all n ≥ 1

wn(t) = zn(t) + Gnud(t). (12)

ith Gn =
[
Re bn Im bn

]⊤.
When considering classical solutions, the discussion after

Lemma 5 shows that the system output ỹD(t) given by (5d) can
e expressed as the following series expansions:

˜D(t) = w(t, ξ ) =

∑
n∈Z

wn(t)φn(ξ )

= w0(t)φ0(ξ ) + 2
N∑

n=1

Re {wn(t)φn(ξ )} +

∑
|n|≥N+1

wn(t)φn(ξ )

= w0(t)φ0(ξ ) +

N∑
n=1

Cnwn(t) + ζ (t) (13)

for any given N ≥ 1, where Cn = 2
[
Reφn(ξ ) − Imφn(ξ )

]
and

ζ (t) =
∑

|n|≥N+1wn(t)φn(ξ ).

4. Control design

4.1. Control strategy

Let δ > 0 and N0 ≥ 0 be such that Re λn < −δ for all
|n| ≥ N0 + 1. Let N ≥ N0 + 1 be arbitrarily fixed and that will be
specified later. We consider the control strategy described by

ŵ0(t) = ẑ0(t) + b0u(t) (14a)

ŵn(t) = ẑn(t) + Gnu(t), 1 ≤ n ≤ N (14b)

ŷD(t) = ŵ0(t)φ0(ξ ) +

N∑
k=1

Ckŵk(t) (14c)

˙̂z0(t) = λ0ẑ0(t) + β0u(t)

− l0
{
ŷD(t) − (yD(t) + b(ξ )u(t))

}
(14d)

˙̂zn(t) = Anẑn(t) + Hnu(t)

− Ln
{
ŷD(t) − (yD(t) + b(ξ )u(t))

}
, 1 ≤ n ≤ N0 (14e)

˙̂zn(t) = Anẑn(t) + Hnu(t), N0 + 1 ≤ n ≤ N (14f)

u(t) = k0ẑ0(t) +

N0∑
k=1

Kkẑk(t) (14g)

where l0 ∈ R and Ln ∈ R2 are the observer gains while k0 ∈

R and Kk ∈ R1×2 stand for the feedback gains. Note that the
controller dynamics (14) does not involve the unknown boundary
perturbation d(t).

Remark 4. In the disturbance-free case d = 0, the output ỹD(t) of
(5)) is directly accessible because ỹD(t) = yD(t) + b(ξ )u(t) where
yD(t) is the actual measurement and u(t) the applied command
input. Hence the correction term due to the error of estimation
appearing in (14d)–(14e) reduces to ŷD(t) − (yD(t) + b(ξ )u(t)) =

ŷD(t) − ỹD(t). In the disturbed case (i.e., d ̸= 0), ỹD(t) = yD(t) +

b(ξ )u (t) with u (t) = u(t) + d(t) where d(t) is assumed to be
d d

5

unknown. Hence ỹD(t) cannot be used to implement the control
strategy. This is why ỹD(t) is approximated by yD(t) + b(ξ )u(t) in
(14d)–(14e).

Remark 5. The well-posedness in terms of classical solutions
(defined for all t ≥ 0) of the closed-loop system, formed by the
plant in homogeneous coordinates (5) and the controller (14),
for initial conditions w0 ∈ D(A), ẑ0(0) ∈ R, and ẑn(0) ∈ R2,
and a boundary disturbance d ∈ C2(R+), is a direct consequence
of [28, Thm. 6.3.1 and Thm. 6.3.3]. Invoking the change of variable
formula (4), this implies the well-posedness in terms of classical
solutions of the closed-loop system composed of the plant in
original coordinates (1) and the controller (14) for any initial
conditions z0 ∈ H2(0, 1), ẑ0(0) ∈ R, and ẑn(0) ∈ R2, and any
boundary disturbance d ∈ C2(R+), all such that z0(1) = sz0(0)
and z ′

0(0) = k0ẑ0(0) +
∑N0

k=1 Kkẑk(0) + d(0).

4.2. Truncated finite-dimensional model

Defining first ẐN0 =
[
ẑ0 ẑ⊤1 . . . ẑ⊤N0

]⊤
, we obtain from

(14g) that

u = KẐN0 (15)

where K =
[
k0 K1 . . . KN0

]
. Let the observation error be

defined by e0 = z0 − ẑ0 and en = zn − ẑn for all 1 ≤ n ≤ N . Using
(8), (12), and (13), the error of observation ŷD(t)−(yD(t)+b(ξ )u(t))
of the controller (14) can be rewritten as

ŷD − (yD + b(ξ )u) = ŷD − ỹD + b(ξ )d

= −φ0(ξ )e0 −

N∑
k=1

Ckek − ζ − νd (16)

where ν = φ0(ξ )b0 +
∑N

k=1 CkGk − b(ξ ). Defining the scaled
quantities z̃n = ẑn/n and ẽn =

√
|µn|en and the vectors EN0 =[

e0 e⊤1 . . . e⊤N0

]⊤
, Z̃N−N0 =

[
z̃⊤N0+1 . . . z̃⊤N

]⊤
, and ẼN0 =[

ẽ⊤N0+1 . . . ẽ⊤N
]⊤

, we infer from (14) that

˙̂ZN0 = (A0 + B0K )ẐN0 + LC0EN0 + LC̃1ẼN−N0 + Lζ + νLd (17a)

ĖN0 = (A0 − LC0)EN0 − LC̃1ẼN−N0 − Lζ + (B0 − νL)d (17b)
˙̃N−N0 = A1Z̃N−N0 + B̃1KẐN0 (17c)
˙̃EN−N0 = A1ẼN−N0 + B̃2d (17d)

where the different matrices are defined by

A0 = diag(λ0,A1, . . . ,AN0 ),
A1 = diag(AN0+1, . . . ,AN ),

B0 =
[
β0 H⊤

1 . . . H⊤

N0

]⊤
,

B̃1 =

[
1

N0+1H
⊤

N0+1 . . . 1
NH

⊤

N

]⊤

,

B̃2 =
[√

|µN0+1|H
⊤

N0+1 . . .
√

|µN |H⊤

N

]⊤
,

C0 =
[
φ0(ξ ) C1 . . . CN0

]
,

C̃1 =

[
1√

|µN0+1|
CN0+1 . . . 1

√
|µN |

CN
]
,

L =
[
l0 L⊤

1 . . . L⊤

N0

]⊤
.

In particular, noting that |φn(ξ )| ≤ cosh((log τ )ξ ), we have
∥B̃1∥ = O(1) and ∥C̃1∥ = O(1) as N → +∞.

Introducing the vector

X = col
(
ẐN0 , EN0 , Z̃N−N0 , ẼN−N0

)
, (18)

the reduced model (17) can be rewritten as

Ẋ = FX + Lζ + L d (19)
d
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here

F =

⎡⎢⎢⎣
A0 + B0K LC0 0 LC̃1

0 A0 − LC0 0 −LC̃1

B̃1K 0 A1 0
0 0 0 A1

⎤⎥⎥⎦ ,
L = col(L,−L, 0, 0),

Ld = col(νL,B0 − νL, 0, B̃2).

Moreover we have

u = K̃X (20)

with the matrix K̃ =
[
K 0 0 0

]
.

Remark 6. Both pairs (A0,B0) and (A0, C0) satisfy the Kalman
condition. This can be easily observed from the Hautus test us-
ing the fact that the eigenvalues λn, |n| ≤ N0, of A0 are sim-
ple. The case of the pair (A0,B0) now follows from the fact
that β0 ̸= 0 and that the pairs (An,Hn) satisfy the Kalman
condition because p ̸= 0 and Im λn ̸= 0 for n ≥ 1. Re-
garding the pair (A0, C0), the conclusion follows from the facts
that Im λn ̸= 0 for n ≥ 1 and φn(ξ ) ̸= 0 for all n ∈ Z.
The latter is because |φn(ξ )|2 = | cosh((log τ )ξ )|2 cos2(2nπξ ) +

| sinh((log τ )ξ )|2 sin2(2nπξ ) ≥ | sinh((log τ )ξ )|2 > 0 for ξ ̸= 0
while φn(0) = 1 for all n ∈ Z.

5. Exponential stability assessment

5.1. Stability of the disturbance-free system

We assume throughout this subsection that the boundary
disturbance is zero, i.e. d = 0. Introducing X̃ = col (X, ζ ) we
obtain from (15) and (17a) that

v = u̇ = K ˙̂ZN0 = EX̃ (21)

with the matrix E = K
[
A0 + B0K LC0 0 LC̃1 L

]
.

The main result of this subsection is stated by the following
theorem.

Theorem 1. Let p > 0, r ∈ R, and s > 1 be given. Let δ > 0
and N0 ≥ 0 be such that Re λn < −δ for all |n| ≥ N0 + 1. Let
K ∈ R1×(2N0+1) and L ∈ R2N0+1 be such that A0 +B0K and A0 −LC0
are Hurwitz with eigenvalues that have a real part strictly less than
−δ < 0. For a given N ≥ max

(
N0 + 1,

⌊ log τ
2π

⌋)
, assume that there

xist P ≻ 0, α > 1/p, and β, γ > 0 such that

1 ⪯ 0, Θ2 < 0 (22)

here

1 =

[
F⊤P + PF + 2δP + αγ cµSaK̃⊤K̃ PL

L⊤P −β

]
+ αγ cµSbE⊤E (23)

2 = 2γ
{
−

(
p −

1
α

)
| ReµN+1| + r + δ

}
+ βMφ

with Sa =
∑

|n|≥N+1 |an|2, Sb =
∑

|n|≥N+1 |bn|2, Mφ =∑
|n|≥N+1

|φn(ξ )|2
|µn|

, and cµ =
|µN+1|

| ReµN+1|
=

4(N+1)2π2
+(log τ )2

4(N+1)2π2−(log τ )2
. Then there

exists a constant M > 0 such that for any initial conditions z0 ∈

H2(0, 1), ẑ0(0) ∈ R, and ẑn(0) ∈ R2 such that z0(1) = sz0(0) and
z ′

0(0) = KẐN0 (0), the trajectories of the disturbance-free (i.e., d = 0)
closed-loop system composed of the plant (1) and the controller (14)
satisfy∑

|µn||zn(t)|2 + |ẑ0(t)|
2
+

N∑
∥ẑn(t)∥2
n∈Z n=1

6

≤ Me−2δt

(∑
n∈Z

|µn||zn(0)|2 + |ẑ0(0)|
2
+

N∑
n=1

∥ẑn(0)∥2

)
(24)

or all t ≥ 0. Moreover, the constraints (22) are always feasible for
selected large enough.

roof. Since Θ2 < 0, we fix ϵ > 0 so that

2,ϵ = 2γ
{
−

(
p −

1
α

)
| ReµN+1| + r + δ

}
+ (1 + ϵ)βMφ ≤ 0.

Following [22], it seems natural to consider the Lyapunov func-
tion candidate defined for X ∈ R2(2N+1) and w ∈ D(A) by

V∞(X, w) = X⊤PX + γ
∑

|n|≥N+1

|µn|| ⟨w,ψn⟩ |
2. (25)

However, contrary to the case of reaction–diffusion PDEs with
collocated boundary conditions such as the ones studied in [22],
the underlying unbounded operator A is not self-adjoint. In this
case, and contrary to the self-adjoint case, it is not straight-
forward to assess the continuous differentiability of the series
appearing in (25) along the system trajectories. To avoid this
technical difficulty, we introduce for any given M ≥ N + 1 the
functional

VM (X, w) = X⊤PX + γ
∑

N+1≤|n|≤M

|µn|| ⟨w,ψn⟩ |
2. (26)

The computation of the time derivative of VM along the system
trajectories (9) and (19) with d = 0 gives

V̇M = X⊤
{F⊤P + PF}X + 2X⊤PLζ

+ 2γ
∑

N+1≤|n|≤M

|µn| Re ({λnwn + anu + bnv}wn)

≤ X̃⊤

[
F⊤P + PF PL

L⊤P 0

]
X̃

+ 2γ
∑

N+1≤|n|≤M

|µn| Re λn|wn|
2

+ 2γ
∑

N+1≤|n|≤M

|µn| {|an||u| + |bn||v|} |wn|.

Using Young’s inequality, we infer that

2
∑

N+1≤|n|≤M

|µn||an||u||wn|

≤
1
αcµ

∑
N+1≤|n|≤M

|µn|
2
|wn|

2
+ αcµSa|u|2∑

N+1≤|n|≤M

|µn||bn||v||wn|

≤
1
αcµ

∑
N+1≤|n|≤M

|µn|
2
|wn|

2
+ αcµSb|v|

2.

From Lemma 1 we have |µn| = (log τ )2 + 4n2π2 and Reµn =

log τ )2 − 4n2π2. Since N ≥ ⌊
log τ
2π ⌋ >

log τ
2π − 1, we have Reµn ≤

ReµN+1 = (log τ )2−4(N+1)2π2 < 0 for all |n| ≥ N+1. Therefore
we infer for |n| ≥ N + 1 that |µn|

| Reµn|
≤

|µN+1|

| ReµN+1|
= cµ hence

µn| ≤ cµ| Reµn|. The combination of these estimates and the
se of (20)–(21) imply

˙M + 2δVM ≤ X̃⊤Θ1,β=0X̃

+ 2γ
∑

N+1≤|n|≤M

|µn|

{
−

(
p −

1
α

)
| Reµn| + r + δ

}
|wn|

2
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here Θ1,β=0 is obtained from (23) by setting β = 0. Recalling
hat ζ =

∑
|n|≥N+1wnφn(ξ ), we infer that

2
≤ (1 + ϵ)

⎛⎝ ∑
N+1≤|n|≤M

wnφn(ξ )

⎞⎠2

+

(
1 +

1
ϵ

)⎛⎝ ∑
|n|≥M+1

wnφn(ξ )

⎞⎠2

≤ (1 + ϵ)Mφ

∑
N+1≤|n|≤M

|µn||wn|
2

+

(
1 +

1
ϵ

)
Rφ,M

∑
|n|≥M+1

|µn||wn|
2

here Rφ,M =
∑

|n|≥M+1
|φn(ξ )|2

|µn|
→ 0 when M → +∞ and where

ϵ > 0 has been fixed at the beginning of the proof. Combining
the latter estimates, we obtain that

V̇M + 2δVM ≤ X̃⊤Θ1X̃ +

∑
N+1≤|n|≤M

|µn|Γn|wn|
2

+

(
1 +

1
ϵ

)
βRφ,M

∑
n∈Z

|µn||wn|
2

where Γn = 2γ
{
−
(
p −

1
α

)
| Reµn| + r + δ

}
+ (1 + ϵ)βMφ . Since

α > 1/p, we note that Γn ≤ ΓN+1 = Θ2,ϵ ≤ 0 for all |n| ≥ N + 1.
Using in addition Θ1 ⪯ 0, we deduce that

V̇M + 2δVM ≤

(
1 +

1
ϵ

)
βRφ,M

∑
n∈Z

|µn||wn|
2.

Integrating on the time interval [0, t], we have

M (t) ≤ e−2δtVM (0)

+

(
1 +

1
ϵ

)
βRφ,M

∫ t

0
e−2δ(t−τ )

∑
n∈Z

|µn||wn(τ )|2 dτ

which implies, by letting M → +∞, that V∞(t) ≤ e−2δtV∞(0).
The claimed stability estimate (24) now easily follows from the
definition of V∞, the use of (8) and Remark 3.

We now assess the feasibility of the constraints (22) for N se-
lected large enough. First, the application of the lemma reported
in [21, Appendix] to the matrix F + δI , shows the existence of
P ≻ 0 so that F⊤P + PF + 2δP = −I with ∥P∥ = O(1) when
N → +∞. We now fix arbitrarily α > 1/p and we set γ = 1/N
and β =

√
N . Hence we have Θ2 → −∞ when N → +∞.

oreover, noting that ∥K̃∥ = ∥K∥ is a constant independent of
and ∥E∥ = O(1) as N → +∞, the use of Schur complement

hows that Θ1 ⪯ 0 for N selected large enough. This completes
he proof.

emark 7. Noting that minn∈Z |µn| = (log τ )2 > 0, because
τ > 1, we infer from the stability estimate (24) and the Riesz
basis inequalities (7) that ∥z(t, ·)∥L2 exponentially decreases to
zero.

Remark 8. It is worth mentioning that the result of Theorem 2
can be easily extended to the derivation of an ISS estimate with
respect to a distributed perturbation φ(t, ·) ∈ L2(0, 1) and a
erturbation dm(t) of the measurement. More precisely, (1a) is
eplaced by zt (t, x) = pzxx(t, x) + rz(t, x) + φ(t, x) and the
measurement (1d) is replaced by yD(t) = z(t, ξ ) + dm(t). This
result is easily obtained because the subsequent perturbations φ
and dm act on the closed-loop system dynamics through bounded
operators. The situation is much more involved in the case of the
7

boundary perturbation d(t) applying at the control input via (1c).
This is because the establishment of ISS estimates with respect
to boundary perturbations is much more challenging compared to
perturbations applied through bounded operators [26]. Therefore,
we focus our next subsection on the derivation of an ISS property
with respect to the boundary perturbation d.

5.2. Input-to-state stability

We now consider the case of the closed-loop system in the
presence of a boundary perturbation d ̸= 0.

Theorem 2. Let p > 0, r ∈ R, and s > 1 be given. Let δ > 0
and N0 ≥ 0 be such that Re λn < −δ for all |n| ≥ N0 + 1. Let

∈ R1×(2N0+1) and L ∈ R2N0+1 be such that A0 +B0K and A0 −LC0
are Hurwitz with eigenvalues that have a real part strictly less than
−δ < 0. For a given N ≥ max

(
N0 + 1, ⌊ log τ

2π ⌋
)
, assume that there

xist P ≻ 0, α > 1/(2p), and β, γ > 0 such that

Θ1 ≺ 0, Θ2 < 0, Θ3 > 0 (27)

where

Θ1 =

[
Θ1,1 PL
L⊤P −β

]
Θ1,1 = F⊤P + PF + 2δP + (αγS1 + 2βMφS2)K̃⊤K̃

Θ2 = 2γ
{
−

(
p −

1
2α

)
| ReµN+1| + r + δ

}
+ 2βMφc3/4µ | ReµN+1|

3/4

Θ3 = 2γ
(
p −

1
2α

)
−

2βMφc
3/4
µ

| ReµN+1|
1/4

with Mφ =
∑

|n|≥N+1
|φn(ξ )|2

|µn|3/4
, S1 =

∑
|n|≥N+1

|βn|
2

| Reµn|
, S2 =

|n|≥N+1 |µn|
3/4

|bn|2, and cµ =
|µN+1|

| ReµN+1|
=

4(N+1)2π2
+(log τ )2

4(N+1)2π2−(log τ )2
.

Then there exist constants M1,M2 > 0 such that for any initial
conditions z0 ∈ H2(0, 1), ẑ0(0) ∈ R, and ẑn(0) ∈ R2, and any
oundary disturbance d ∈ C2(R+), all such that z0(1) = sz0(0) and
′

0(0) = KẐN0 (0) + d(0), the trajectories of the closed-loop system
omposed of the plant (1) and the controller (14) satisfy

z(t, ·)∥2
L2 + |ẑ0(t)|

2
+

N∑
n=1

∥ẑn(t)∥2

≤ M1e−2δt

(
∥z0∥2

L2 + |ẑ0(0)|
2
+

N∑
n=1

∥ẑn(0)∥2

)
(28)

+ M2 sup
τ∈[0,t]

e−2δ(t−τ )
|d(τ )|2

or all t ≥ 0. Moreover, the constraints (27) are always feasible for
selected large enough.

roof. In view of (27), let δ′ > δ and ϵ > 0 be fixed such that
1,ϵ ≺ 0, Θ2,ϵ < 0, and Θ3,ϵ > 0 where

Θ1,ϵ =

[
Θ1,1,ϵ PL
L⊤P −β

]
1,1,ϵ = F⊤P + PF + 2δ′P

+ (αγ (1 + ϵ)S1 + (2 + ϵ)βMφS2)K̃⊤K̃

Θ2,ϵ = 2γ
{
−

(
p −

1
2α

)
| ReµN+1| + r + δ′

}
+ (2 + ϵ)βMφc3/4µ | ReµN+1|

3/4

Θ3,ϵ = 2γ
(
p −

1
)

−
(2 + ϵ)βMφc

3/4
µ

1/4 .

2α | ReµN+1|
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We consider the Lyapunov functional defined by V (X, z) =
⊤PX + γ

∑
|n|≥N+1 | ⟨z, ψn⟩ |

2. The computation of the time
erivative of V along the system trajectories (10) and (19) gives

˙ = X⊤
{F⊤P + PF}X + 2X⊤PLζ + 2X⊤PLdd

+ 2γ
∑

|n|≥N+1

Re ({λnzn + βnud} zn)

≤ X̃⊤

[
F⊤P + PF PL

L⊤P 0

]
X̃ + 2γ

∑
|n|≥N+1

Re λn|zn|2

+ 2X⊤PLdd + 2γ
∑

|n|≥N+1

|βn||ud||zn|.

The use of Young’s inequality implies that∑
|n|≥N+1

|βn||ud||zn| ≤ αS1|ud|
2
+

1
α

∑
|n|≥N+1

| Reµn||zn|2.

Moreover, from ud = u + d with (20), we deduce that |ud|
2

≤

1 + ϵ)X⊤K̃⊤K̃X + (1 + 1/ϵ)|d|2. Recalling the definition ζ =

|n|≥N+1wnφn(ξ ) and in view of (8) and (20), we infer that

2
≤ Mφ

∑
|n|≥N+1

|µn|
3/4

|wn|
2

≤ (2 + ϵ)Mφ

∑
|n|≥N+1

|µn|
3/4

|zn|2 + (2 + ϵ)MφS2X⊤K̃⊤K̃X

+ (1 + 2/ϵ)MφS2|d|2.

Finally, since N ≥ ⌊
log τ
2π ⌋ >

log τ
2π − 1, we have Reµn ≤

ReµN+1 = (log τ )2 − 4(N + 1)2π2 < 0 for all |n| ≥ N + 1. Hence,
for any |n| ≥ N +1, we have Re λn = p Reµn + r = −p| Reµn|+ r
and we infer that |µn|

| Reµn|
≤

|µN+1|

| ReµN+1|
= cµ thus |µn| ≤ cµ| Reµn|.

utting together all the above estimates, we deduce that

˙ + 2δ′V ≤ X̃⊤Θ1,ϵ X̃ +

∑
|n|≥N+1

Γn|zn|2 + 2X⊤PLdd + cd|d|2

here cd = αγ (1 + 1/ϵ)S1 + (1 + 2/ϵ)βMφS2 and

n = 2γ
{
−

(
p −

1
2α

)
| Reµn| + r + δ′

}
+ (2 + ϵ)βMφc3/4µ | Reµn|

3/4.

We now note that | Reµn| ≥ | ReµN+1| for all |n| ≥ N + 1
ence | Reµn|

3/4
=

| Reµn|

| Reµn|1/4
≤

| Reµn|

| ReµN+1|1/4
. This implies that

n ≤ −Θ3,ϵ | Reµn|+2γ {r+δ′
} ≤ −Θ3,ϵ | ReµN+1|+2γ {r+δ′

} =

2,ϵ ≤ 0 for all |n| ≥ N + 1, where we have used that Θ3,ϵ ≥ 0.
his implies that V̇ + 2δ′V ≤ X̃⊤Θ1,ϵ X̃ + 2X⊤PLdd+ cd|d|2. Since
1,ϵ ≺ 0, the use of Schur complement shows the existence of a

sufficiently large constant c ′

d > 0 so that V̇ + 2δ′V ≤ c ′

d|d|
2. The

laimed ISS estimate (28) now easily follows from the integration
f the latter inequality, the definition of V , the use of (7), and the
act that δ′ > δ.

It remains to assess the fact that the constraints (27) are
easible provided N is selected large enough. To do so, we first
pply the lemma reported in [21, Appendix] to the matrix F + δI ,
howing the existence of P ≻ 0 so that F⊤P+PF +2δP = −I with

∥P∥ = O(1) when N → +∞. We then arbitrarily fix α > 1/(2p)
and we set γ = 1. We note that Mφ ̸= 0 for all N ≥ N0 + 1
(because φn(ξ ) ̸= 0; see the end of Remark 6). Hence we can
define β = 1/

√
Mφ . We note that S1, S2,Mφ → 0, hence β →

+∞ and βMφ → 0, as N → +∞. Finally we have from Lemma 1
that Reµn = (log τ )2 − 4n2π2. This shows that Θ2 → −∞ and
Θ3 → 2γ

(
p −

1
2α

)
> 0 when N → +∞. Moreover, the use of

chur complement givesΘ1 ≺ 0 for N selected large enough. This
ompletes the proof.
8

Remark 9. It is worth noting that the procedure employed for the
proof of Theorem 2 can also be used to establish an ISS estimate
with respect to an additive boundary perturbation of the control
input for the classical reaction–diffusion PDE (with collocated
boundary conditions) studied in [22] in the specific case of a
Dirichlet boundary measurement and a Neumann actuation. This
is because the Neumann actuation setting gives βn = O(1). Note
however that this approach fails for Dirichlet and Robin boundary
actuations because, in that case, one has in general no better than
βn = O(

√
λn).

6. Numerical illustration

We illustrate the theoretical results of this paper by consid-
ering the reaction–diffusion PDE described by (1) with p = 0.1,

= 1, s = 5, and ξ = 3/4. The open-loop system is unstable.
oreover, note that r > p hence the basic control strategy
escribed in Remark 1 cannot be applied.
For a desired exponential decay rate δ = 1, we set the

eedback and observer gains as K = 17.6276 and L = 1.9186,
espectively. The constraints (22) of Theorem 1 are found feasible
or N = 2, ensuring the exponential stability of the disturbance-
ree (i.e., d = 0) closed-loop system in the sense of (24). In
he presence of a boundary perturbation d ̸= 0, the constraints
27) of Theorem 2 appear to be more stringent from a numerical
erspective as they are found feasible for N = 22. This ensures
he exponential input-to-state stability of the closed-loop system
n the sense of (28).

For numerical simulation of the above results, we consider the
nitial condition z0(x) = 2 + 2(s − 1) sin

( 5π
2 x
)
while the initial

condition of the observer is set so that z ′

0(0) = KẐN0 (0)+d(0). The
time domain evolution of the closed-loop system composed of the
PDE (1) and the controller (14) without perturbation (d = 0) is
depicted in Fig. 1. Considering the boundary disturbance d(t) =

5 sin(t2), the time domain evolution of the disturbed closed-loop
system is depicted in Fig. 2. These results are compliant with the
theoretical predictions of Theorem 1 and Theorem 2, respectively.

7. Conclusion

This paper addressed the topic of output feedback stabiliza-
tion of reaction–diffusion PDEs with a non-collocated boundary
condition. To the best of our knowledge, this is the first time
that a solution is reported for such a control design problem.
The control strategy couples a finite-dimensional observer and
a state-feedback for which it was shown that the exponential
stability of the resulting closed-loop system is always achieved
when the order of the observer is selected to be large enough.

It is worth noting that, using control architectures similar to
the one employed in this paper, the output feedback boundary
control of general 1-D reaction–diffusion PDEs with collocated
boundary conditions using Dirichlet/Neumann boundary mea-
surements was achieved in the case of regulation control [29],
input nonlinearities [22], and arbitrarily long input [30], out-
put [31], and state [32] delays. Taking advantage of the procedure
described in this paper, all these approaches can be adapted to the
PDE described by (1) with non-collocated boundary condition.

Finally, the method employed in this paper to address the
disturbance-free setting can also be used to address the dual
problem to (1a)–(1c). More precisely, and in view of the adjoint
operator A∗ characterized by Lemma 2, we consider the PDE
described by

zt (t, x) = pzxx(t, x) + rz(t, x)
zx(t, 0) = szx(t, 1)
z(t, 1) = u(t)
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Fig. 1. Time evolution of the closed-loop system without perturbation.

Fig. 2. Time evolution of the closed-loop system in the presence of a boundary
perturbation.

Selecting the system output as yD(t) = z(t, ξ ) for some ξ ∈

[0, 1), the exponential stabilization of the plant can be obtained

using a similar procedure that the one described in this paper.
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