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Abstract

This paper studies state observation for a heterogeneous quasilinear traffic flow system
with disturbances at the inlet of a considered road section. Based on the backstepping
method, an observer is designed for the quasilinear traffic flow system with only the
boundary measurements at the inlet of the considered road section. The observer is
constructed by duplicating the quasilinear system and adding the output injection
terms to the partial differential equations and boundary conditions. Making use of the
backstepping transformation, the injection gains of the observer system are derived by
the computation of kernel equations, which are obtained by mapping the error system
into an integral input-to-state stable target system. The applicability of the observer
for the design of an output feedback controller stabilizing the quasilinear system
is discussed. Finally the assumptions of the design of the observer are numerically
checked on a realistic congested traffic scenario.
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1 Introduction

Input-to-state stability (ISS) is known as one of the central notions in the control theory
of dynamical systems since the seminal paper [25]. Indeed it allows the description
of the disturbance effect on the state of nonlinear finite-dimensional systems and
provides some design methods of dynamical output feedback laws (see the survey
[26]). A closely related notion is the notion of integral input-to-state stability (iISS) as
considered, e.g., in [18]. Roughly speaking, this property estimates the impact of the
integral of the disturbances to the state norm. It is very well developed for nonlinear
finite-dimensional systems and networks (see e.g., [11]). The theory has been recently
generalized for infinite-dimensional systems in [14].

For the infinite-dimensional system, the observers can be derived directly by using
the backstepping approach which is the extension of Volterra integral transformations
and was initially introduced by [15, 16] and [24] for hyperbolic partial differential
equations (PDEs). Many works have been recently developed to use the backstepping
method for the observer design of macroscopic traffic flow systems. As an example,
consider [28] where a boundary observer is designed for a nonlinear ARZ traffic flow
system.

Different macroscopic traffic flow models are possible. The first-order Lighthill-
Whitham-Richards (LWR) model (see [17] and [23]) represents density-velocity
relation in equilibrium and fails to model stop-and-go traffic. The second-order
Payne-Whitham (PW) model (see [22] and [27]) consists of momentum equation
and conservation law, and it is a nonlinear second-order deviation from density-
velocity equilibrium. The second-order Aw-Rascle-Zhang (ARZ) model (see [1] and
[30]) is derived from the combination of these two models (LWR model and PW
model) through suitable definition and coefficients. Several equilibriums, frequent
lane changes, overtaking, and platoon dispersion probably happen in congested traffic
on account of the interplay between different types of vehicles and drivers [21]. Besides
the homogeneous models as above, there are many macroscopic traffic flow models for
heterogeneous traffic. Paper [6] studies a two-type vehicle heterogeneous traffic model
to acquire overtaking and creeping traffic flows. In [19], the extended macroscopic
N-type Aw-Rascle (AR) traffic model is used for heterogeneous traffic by using area
occupancy. In [20], a continuum multi-type traffic model is introduced on the basis
of a three-dimensional flow-concentration surface. An n-population generalization of
the Lighthill-Whitham-Richards traffic flow model is presented in [3].

In this paper, we exploit the iISS notion to a quasilinear infinite-dimensional system
with boundary control and perturbation. More precisely, we design an observer for a
quasilinear hyperbolic system so that the estimation error system is locally asymptotic
stable. Moreover, we consider a perturbed case, where the perturbation is on one
boundary and we derive an ISS property. The obtained result is motivated and explicitly
applied to the extended macroscopic N-type AR quasilinear traffic flow model. By
doing so, the designed observer guarantees the accurate observation (no error induced
by linearization) of the traffic state under the condition that the initial observation is
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not too far from the actual state. Exploiting the structure of the observer suggested
in [29], this paper gives, for the first time, the theoretical proof of local H? stability
of the quasilinear observer system, by the local H> Lyapunov analysis of the error
system.

This paper is organized as follows. Section 2 contains the preliminary for the design
of the quasilinear observer. The collocated observer is designed, and the theoretical
proof of iISS for the target system of error system is done in Sect. 3. In Sect. 4, numeri-
cal computations are presented to check the sufficient condition for the observer design
using a realistic traffic scenario. Finally, Sect.5 contains some concluding remarks.

Notation. max(S) is the maximum value of all the elements in S, if S isaset. 9; f and
dx f, respectively, denote the partial derivatives of a function f with respect to the vari-
ablesand x. f’ denotes the first derivative of a function f with respect to the variable x,
f denotes the first derivative of a function f withrespect to the variable ¢, and f denotes
the second derivative of a function f* with respect to the variable ¢. For a function ¢ =

[@1.....@a]" : [0, L] — R", define || = Y/, |¢il. @l = esssup,o 1@l

1
. i
the L2-norm ¢ 2 = (fi (36 1)+ -+ + 26, 0) d ), the H2-norm ] > =

1

(5 (HelZ, + llex 2 + llgaxl3s ) dx)* and liglic: = ll@lloe + [9lloc + [¥l1c-
0p,; denotes the n, ! zero matrix. I, is a n-dimensional identity matrix. The block
diagonal matrix is represented as M = diag{ My, M>, ..., M, }, where the main diag-
onal argument M; (i = 1,2,...,n) are matrices. M —1 denotes the inverse matrix
of a square matrix M. M T denotes the transpose of a matrix M. A(M) is the set of
all the eigenvalues of a matrix M, and |A(M)] is the set of absolute values of all the
eigenvalues if M is a square matrix. The symbol % stands for a symmetric block in a
matrix.

2 Preliminary
2.1 Heterogeneous traffic flow model and problem statement

Extending the results of the papers [10] and [9], we design an observer in the H>
space for a particular quasilinear hyperbolic system, with a boundary control and
a collocated perturbation. More specifically, following [19], the following heteroge-
neous quasilinear hyperbolic traffic flow system is considered, given a road segment
with N vehicle classes, W road width and L road length, forallx € (0, L), ¢ € [0, 00),

9 pi(x, 1) + 9x (pi (x, HHvi (x, 1)) =0, 2.1
9 (vi(x, 1) + pi(Ao(p))) + vi(x, 1)dx (vi(x, 1) + pi(Ao(p)))
_ Vei(Ao(p)) —vi(x, 1)
T; ’

2.2)
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with the boundary conditions, for all ¢ € [0, 00),

(P10, )1 (0, 1) = p} (0] (0), ..., pv (0, Hun (0, 1) — py (0)117\/(0))T
=d(t)+0U@), (2.3)
pi(L, 1) = p; (L), 2.4

and the initial conditions

pi (-, 0) = poi(-) € HX([0, L]; R), 2.5)
vi (-,0) = vo; (-) € H*([0, L]; R), (2.6)

where the density p; and velocity v; of vehicle class i depend on the space variable
x € [0, L] and the time variable z € [0, 00),i (i = 1,2, ..., N)is the index of vehicle
class, and t; is the relaxation time depending on the driving behavior of vehicle classi.
The area occupancy is Ao(p) = “TVP, witha = (a1, ay, ..., aN)T (a; is the occupied
surface per vehicle for class i) and p = (p1, P2, ..., pN) . Area occupancy Ao(p)
describes the percentage of road space that is occupied by all the vehicle classes on the
road segment, and 0 < Ao(p) < 1. The traffic pressure function p; (Ao(p)) of vehicle
Vi
class i is (see [4]) pi(Ao(p)) = le (%) ,i =1,2,..., N, with the free-flow
velocity viM O <y < viM ), the maximum area occupancy 0 < AolM < 1, and the
pressure exponent constant y; > 1 of class i. The free-flow velocity v IM stands for the
desired velocity of vehicle type i, and the maximum area occupancy AolM describes
the percentage of the occupied road surface for which the corresponding vehicle class
i is jammed, if no other vehicle class is present. Denoting the maximal density by
oM, we assume that the inequality 0 < p; < pM holds. The equilibrium speed-Ao
relationship of vehicle classi (=1, 2, ..., N) is given by Greenshields model in [7],

Vi
Vei(A0(p)) = v} — pi(Ao(p)) = v} (1 ~ (%) )
The equilibrium p}*, v} € C2([0, L]; R) satisfies, fori = 1,2, ..., N,

vipi + ol =0, @)
V. i(Ao(p*)) — vf
vruf + vl pl(Ao(p®) = Yot (f_ Voo (2.8)
1
with p* = (o}, 03, ..., p]’i,)T. From (2.7), note that p}*v} = d; with the given constant
d; and the given value for ,o;" (0),i =1,2..., N.Assume that there exists a equilibrium

P > 0, v’ > 0 defined on [0, L] satistying (2.7)—~(2.8), as done in [2] for a different
class of 2 x 2 hyperbolic systems.

As described in [8], high traffic demand is the most effective ingredient causing
traffic breakdown. The disturbances caused by bottlenecks or individual drivers cannot
grow and propagate on account of unconditional stability if the traffic load is low
enough. In order to increase the efficiency and stability of traffic flow, we solve the

@ Springer



Mathematics of Control, Signals, and Systems

Qrmp U)

Interface Flow Restriction
d(r) \\’>< \ /
I e NT @
Qi n > > ——
0 L

Fig. 1 Heterogeneous vehicle traffic on a road with disturbances at the inlet boundary and a velocity drop
in the right boundary

control problem of high traffic demand by ramp metering in the presence of a bottleneck
and disturbances on the road. The diagram is presented in Fig. 1.

The input U € C'([0, oo); RN ) with the coefficient matrix ® € RN-2N =" acts
as an on-ramp metering at the upstream boundary of the considered road segment.
The referenced inflow QF € RN and the nominal on-ramp flux rate Otmp € RN at
the inlet x = O satisfy

0 + Qlp = (PTOW(0). p3)V30). ... P OW5 (D).

With the unknown disturbance input d € C2([0, 00); RV) at the inlet of the
boundary, the total inflow at the inlet consisting of the inflow at the ramp 0 <
[11...1](Qfypy + OU) < Om3 (O is the flux limit on the on-ramp), and the
inflow at the inlet 0 < [1 1 ... 1](Q} +d) < QM¥ (QM s the flux limit of the
incoming road) is limited by the maximum flow Qpax > [1 1 ... 1](Qf, +d+ Opp+
©®U) > 0,and 0 < Ao(p(0, -)) < max{Ao}, Ao}, ..., AoN}. As described in [10],
the interface at the bottleneck is a buffer zone for velocity drop (the velocity in the inter-
face is continuously decreasing from the left boundary of the interface to x = L). The
value of variable speed limit v; (L, -) (0 < v;(L,-) <v lM ) is derived from the constant
density p/(L) and the measurement of the flux ¢; (L, -) (constrained by a maximum
flow which is less than Q1x) at the inlet of the bottleneck, fori = 1,2, ..., N. From
a practical perspective, an output is needed for the observer design to address the state
observation problem of quasilinear traffic flow systems (2.1)—(2.6) in this paper. The
boundary measurements of density p; (0, ¢) and velocity v; (0, t), t € [0, co) are taken
at the boundary x = 0 collocated with a known input U; then the measured output of
systems (2.1)—(2.6) is, for all ¢ € [0, 00),

y1(t) = (p1(0, 1), v1(0, 1), p2(0, 1), v2(0, 1), ..., pn (0, 1), v (0, 1)) .
Defining u* = (o}, v}, ..., px, vi) " € C*(0, LI R*Y), u = (p1,v1,..., pw,
vn)T € H*([0, L] x [0, 00); R*N), and & = u — u* = (p1,01,..., oy, Un) | €
H2([0, L] x [0, 00); R?N) with p; = p; — pf, 0 = v; — v}, fori = 1,2,..., N,
systems (2.1)—(2.6) are rewritten as in paper [9], for all x € (0, L), ¢t € [0, 00),

ou(x, 1) + F, u™)ou(x, 1) = G, u*)u(x, ), (2.9)

@ Springer



Mathematics of Control, Signals, and Systems

with the boundary conditions, for all ¢ € [0, 00),

A0, 1) =d(1) + OU (1) + wi (1) + wa(t) — My (u(0, 1)), (2.10)
Biu(L, 1) = Oy 1, (2.11)
where
Fi(,u*) Fio@,u*) - Fin, u®*)
For(w,u*) Fo@,u*) - Fon(, u*)
F(i,u*) = . ) ) ,

Fni(u, u*) Fno(u, u*) --- Fyy (@, u®)
with, fori, j =1,2,..., N,

'T)}Jrvi* pi + o} if =i
0 Vi 4 vF — (B + pHBii(p) | ’

N 0 Y i) A,
| (Wi +v7) = @ +v7)dij(p)  —(p) + p})Bij(p)

[ G, u*) G, u*) -+ Gy, u*)
Go(u,u*) GG, u*) --- Gon(u, u*)

Fij(i,u*) =

G, u*) =

’

| Gni @, u®) Gno (i, u*) - Gy (i, u™)
with, fori, j =1,2,..., N,
Gij @, u™)

¥ pfk/
1 1
| 281 (p™) + vF Xl oiki (0¥)pf = 8ii (o)) 2+ v + 0L s ik (0¥}
ifj=1i,

0 0
, i j £,
| 285 (p™) + v Y0 oiki (0 op = 8ij (o)} =8y <p>p;"}

andfori, j,k=1,2,...,N,

M i A yi—1
8ij(p) = 8y, pi (Ao(p)) = Vi vidj ( 0(,0)> ’

AolMW AolM
M w\ 7!
v;"viaj [ Ao(p*)
8 (p%) = 0, pi (Ao(p*)) = ,
ij (%) = 8p; pi (Ao(p™)) Ao{”W( Aol
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i (P = 0y (07) = =0 iy Aol
1

1

yi—2
vMyi(yi — Daga; <A0(p*))

The coefficient matrices A; = diag{[v}(0), o} (O)], ..., [V} (0), p} (O]} € RN:2N,

L 10 10 IN 2N .
B = diag { [0 O:| e [0 0:| } eR , and the nonlinear term

£1(0, )v1(0, )

£2(0, )v2(0, )

My (@O, ) = e C([0, 00); RY).

on (0, vy (0, 1)
The added terms wi, wy € C 2([0, 00); RY ) are the solutions to the following system,

wy = —djwi,
Wy = —drwy,
with the constants dj,dx(di _ # d»), and the initial conditions wi(0) =
_gz(uog)l;i-_ﬁléfl(uo)’ w,(0) = dlgl(;?)——;fzw())’ with
g1(ip) = A11p(0) — d(0) — OU(0) 4 My (1p(0)),
g2(1l) = Ay (—F (@o(0), u*(0))it(0) + G (i1p(0), u*(0))iig(0)) — d(0) — OU(0)
dITyg
du t=0

(=F (@0(0), u*(0)itg(0) + G(@o(0), u*(0))io(0)) -

The initial condition
(-, 0) = @o(-) € H*([0, L], R*Y), (2.12)
satisfies the second-order compatibility conditions

A1i5(0) = d(0) + OU(0) + w1 (0) + w2(0) — My (o (0)), (2.13)
Biuip(L) = Oxn 1, (2.14)
Ay (= F (iig(0), u*(0))iig(0) + G(iip(0), u*(0))iio(0))

=d(0) + OU(0) + (—d1w1(0) — drwy(0))

dn N N o

— | (FF @), u* 0)iE(0) + Gig(0). w* O)Fp(©) . (2.15)
t=0

By F (ito(L), u*(L))ig(L) = B1G (o(L), u*(L))io(L). (2.16)

The hyperbolicity of systems (2.9)—(2.16) exists around zero equilibrium on the basis
of the discussion in paper [10], because for all u* € C2([0, L]; R?M), as t — oo,
the matrix F(#, u*) — F(0, u*), which has 2N real distinct nonzero eigenvalues
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M > A > > Ap >0 > —Apgg > - > —hon, (A € C*([0,L]; R),
i =1,...,2N, m is the number of positive eigenvalues and 0 < m < 2N), and
—Am+1, - - -» —Aon < 0 means that the traffic wave moves backward in the congested
regime. For x € [0, L], define A = diag{A™, =A™}, AT = diag{A{, A2, ..., Am},
A~ =diag{Amt1, Amg2, ..., Aoy}, A =diag{A], ..., A, _)‘;n+1’ coo Ay ) We
will study the scenarios 2N —m > 1 in the H? sense in this paper. The corresponding
right eigenvectors of 2N eigenvalues consist of the columns of the invertible matrix
T e C?([0, L]; R*N:2N) The density and speed gaps p; (0, -), ¥; (0, -) of vehicle class
i,i =1,...,2N, between the measurements p; (0, -), v; (0, -) and the corresponding
equilibrium p;“ 0), v;" (0) at the inlet of the considered road section are involved in the
output of systems (2.9)—(2.16), for ¢ € [0, 00),

Y(®) = [02n—mm Tan—m] T~ (0)H(0, 1) € R*N . (2.17)

2.2 State transformation

In order to simplify the analysis, by using the invertible transformation R = ®u €
H?([0, L] x [0, 00); R?N) with ® € C*®°([0, L]; R*N-2N) from & to the new variable
R : [0, L] x [0,00) — RZV, systems (2.9)—(2.16) are mapped into the following
system in the form of characteristic values as in [9, 13] (see the explicit expression of
@ in [13, Equations (3.1)—(3.2)]), for all x € (0, L), t € [0, 00),

OrR(x,t) + Ax)0xR(x,t) + ANL(R,x)0xR(x,t) = Z(x)R(x,t) + EnL (R, x)R(x,1),
(2.18)

with the boundary conditions, for all ¢ € [0, 00),

Rin(0) = K p Rou(®) + To(d(0) + ©U 1)) + To(wi (1) + wa(1)) = Dol 1 (TO)RO, 1),
(2.19)

and the initial condition
R(-,0) = Ro() € H*([0, L] R*Y), (2.20)
satisfying the following second-order compatibility conditions,

Rin(0) = K p Row(0) + Tg (d(0) + OU (0)) + To(w (0) + w2 (0))
— DIy (T (0)Ro(0)), (2.21)
(M N1 <i<m. IMPmti<j<an)
= Kp(IM1<i<m [M[lnt1<j<on) " +To (d(0) + OU(0))

U =0

+ Fo(—=diw1(0) — dow2(0)) — I

T(O)( — (A0) + AnL(Ro(0), 0) R)(0) + (2(0) + Sy 1 (Ro(0), 0)) Ro(O)),
(2.22)
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with

M' = — (A0) + AnL(Ro(0),0) RH(0) + (£(0) + Sy (Ro(0), 0)) Ro(0).
M? = — (A(L) + AnL(Ro(L), L)) Ry(L) + (S(L) + Ty (Ro(L), L)) Ro(L),

where R = (RT, R7)T : [0, L] x [0, 00) = RZN Ry, = (RT(0,),R~(L, )" €
L([0, 00); RN, Rywe = (RT(L, ), R=(0, )T € L%([0, 00); RZY), with RT :
[0, L] x [0, 00) — R™, R~ : [0, L] x [0, 00) — RZN-m

AyL = OF (clrlR, u*) o~ — A,

SnL = G ((b‘lR, u*) o — dF (d)‘lR, u*) @1y - =,

Tt e
2=+ e C2([0, L]; RPN—mmy 5=~ e C%([0, L]; R?2N=m2N=m) "the main diagonal
elements of the matrix = € C2([0, L]; R*N-2N) are zeros, K p € R*N-2V Ty € RNV
are given gain matrices. Since for x € [0, L], Axr(0,x) = Oan.on, Enr(0,x) =
02n2n and Iy (0) = dg;“ (0) = O2n.1, then quasilinear systems (2.18)—(2.22)
have zero equilibrium.

For all ¢ € [0, 00), the boundary measurements are taken at the boundary x = 0
collocated with the control input and output (2.17) that is equivalent to

Z-H- E+_
Y= [ ] with =+ e C2([0, L]; R™™), =+t~ e C%([0, L]; R™2N—m),

y(@) = R0, 7). (2.23)

3 Nonlinear collocated observer

3.1 Quasilinear observer design

Under the consideration of the nonobservability of the unknown disturbance input d,
it is not taken into account in the design of the quasilinear observer. The following
observer is designed for quasilinear systems (2.18)—(2.22) by constructing quasilinear

systems (2.18)—(2.22) with the output injection terms, for all x € (0, L), t € [0, c0),

R, 1)+ A R(x, 1) + AnL(R, x)d R(x, 1)
= SR, 1) + Sz (R, )R, 1) + S(x) (y(t) — R, z)) , G.1)

with the boundary condition, for all ¢ € [0, 00),

Rin(t) = K p Rour(t) + To(wi (1) +w2(0)) + To (0U (1) = Tz (TOYRO,1)) )

r, f N
- [Ozzvm,zzvm]/o (v -~ ©.)dr (3.2)

@ Springer



Mathematics of Control, Signals, and Systems

and the initial condition
R(-,0) = Ro(-) € H*([0, L]; R*M), (3.3)

satisfying the following second-order compatibility conditions,

Rin(0) = K p Rou(0) + To(w1 (0) + w2(0)) + o (0U©) = Tz (TO)Ro(®)) ).

3.4)
(M1 <izm. (M3 lmg1<j<on) |
= KP([M?]lsifm» [M}]m+1§j§2N)T + Fo(=d1w1(0) — daw>(0))
. dIl N ~
+ToOU(0) — Mo—* T(0)< — (MO + AN (Ro(0),0)) £ (0)
=0
+ (2O + En(Ro©), 0)) Ro(0) + 50) ((0) - 1%(7(0)))
Iy Al
- |:02N—m,2N—mi| (0 - & ®). 3.5)

with
M == (M) + Anr(Ro©),0)) R(®) + (S(0) + Zn1.(Ro(0), 0)) Ro(0)
+S0) (y0) — Ry ),
W2 = = (ML) + Ane(Ro(L), 1)) Ry(L) + (2(L) + Ewr (Ro(L), 1)) Ro(L)
+5(L) (y0) = &5 ©).
where R = (R, Ié_A)—r 210, L] x [0, 00) — RN, Ry = (R*(0,-), R~(L, )" €
L0, 00): R*V), Row = (RT(L.),R70.)" € L®(0,00):RN), § =
(§1, SHT : (0,L) — R2N’2N_’"; Iy € R™IN-m 1n the previous equations,
Rt :[0,L] x [0,00) = R™ and R~ : [0, L] x [0, 00) — R2N=" are the obser-

vation of state variables RT and R~ the terms S; € C2([0, L]; R™2N—™) and
S> € C%([0, L]; R2N—m.2N=my are output injection gains.

3.2 Local H? ilSS of quasilinear observer system
So as to theoretically verify the applicability of state observation of the designed
quasilinear observer, the following error system is obtained by subtracting observers

(3.1)—(3.5) from quasilinear systems (2.18)—(2.22), for all x € (0, L), t € [0, 00),

SR, 1)+ A(x)3:R(x,1) + FyLIR, R, 3: R, 3, R] = Z(x)R(x, 1) — S(x)R(0, 1),
(3.6)
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with the boundary condition, for all ¢ € [0, 00),

Iy

Rin(1) = Kp Rou(1) + [O
2N—m,2N—m

] /Ot R™(0, 7)dt + Tod(?)
— GnLIR(0,1), RO, 1)1, 3.7
and the initial condition
R(.0) = Ro(-) € H*(10, L] R*Y), (3.8)
satisfying the following second-order compatibility conditions

Rin(0) = K p Row(0) + Tod (0) — Gy LIR0(0), Ro(0)], 3.9)
(M Ni<i<m: [MFmi1<j<on)

Iy

_ 21, . V! . T
= KP([M, ]ISZSWH [M] ]m+1§j§2N) + |:O2N—m,2N—m

} R; (0) + Tod (0)

—dgGNL

( — A(0)R)(0) + =(0)Ro(0) — Fn[Ro(0), Ro(0), Ry(0), R)(0)]
=0

— S(O)ﬁg(O)) —3;GnL

( — (M) + A (Ro(0), ) R (0)
=0

+ (2O + v (Ro0), 0)) Ro(0) + S<0)Ea(0>>, (3.10)
with

M"' = —A(0)R)(0) + Z(0)Ro(0) — Fy1[Ro(0). Ro(0), Ry(0), Ry(0)] — SO) Ry (0),
M? = —A(L)R)(L) + B(L)Ro(L) — Fy[Ro(L). Ro(L), Ry(L), Ry(L)] — S(L)Ry (L),

where R = (R, R7)T : [0, L] x [0, 00) — R*N, Ry = (R*(0,), R (L, )| €
L%([0, 00); R2N), Rowe = (RT(L, ), R=(0, )T € L*°([0, c0); R*M), and

FyLIR, R, 0cR, 0x Rl = Ay (R + R, x) (axi'é+ axlé) —SNL(R+ R, x) (E+ 1%)
— ANL(R, )% R+ ZNL(R, )R,
G LIR(©, 9, RO, 91 =ToMyz (T©) (RO, + RO, 9)) = ToTyL (TORO, ).

By using the backstepping transformation, for all x € (0, L), ¢ € [0, 00),

oy = o Om,m Fl(xs 5)} >
R(X,I)—Z(X,I)—'—‘/(‘) |:O2N—m,m F2(x,‘§) Z(Evt)dé

= FlZ], (.11
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where the piecewise differentiable kernels F' and F? are the solutions to the following
kernel equations on the triangular domain T = {(x,&) € R?|0 <& <x < L} as
described in [12],

AT F (x,8) — 9 F' (x, ) A~ (&) = F'(x, &) (A7) ) + T () F' (x, £)

+ETT P (x, 8), (3.12)

AT ()0 F2(x,6) + 0: F>(x, §)A™(§) = —F>(x, §)(A7) (§) — T7~ () F?(x, £)
-2t F (x, 8), (3.13)
Fla, OA~ () + AT F (x,x) = =t (x), (3.14)
F2(x, x)A"(x) = A“(X)F*(x,x) = 7 (x), (3.15)
F*(L,&) —T2F' (L&) = Ko(L — &), (3.16)

with a given coefficient matrix I'; € R*M =" Moreover, the injection gains of the
observer are, for all x in (0, L),

Si(x) = Fl(x,0)A~ (L), (3.17)
Sr(x) = F2(x,0)A~ (L), (3.18)

error systems (3.6)—(3.10) are mapped into the following quasilinear target system,
forall x € (0, L), t € [0, 00),

9,70, 1)+ A)d Z(x. 1) + OnL [2 R.3,7. axlé]

= 22(x>2(x,z>+/0 Di(x,6)Z(&, 1) d§, (3.19)

with the boundary condition, for all ¢ € [0, 00),

Zin(0) = KpZow(®) + X (1), (3.20)
t L
X(@t) = K,/ Zout(0) do —/ ka(x)Z(x,t)dx + Tod(t) — GNLIZ(0, 1), R0, )],
0 0
(3.21)

and the initial condition

Z(-,0) = Zo(-) € HX([0, L]; R*V), (3.22)
X(0) = Xo = Tod(0) — Gnr[Zo(0), Ro(0)] € R¥Y, (3.23)

satisfying the second-order compatibility conditions

L
Zin(0) = KpZouw(0) — /0 ka(x)Zo(x) dx + Tod(0) — GnL[Z0(0), Ro(0)], (3.24)

([ﬁil]lﬁigmv [ﬁjz]m+1§j52N)T
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= Kp(INlizizm. [N} Img1<j<on) "
L ~ ~ A ~ A ~
- /0 kz(x)( — A3, Zo(x) — QnLIZo(x), Ro(x), 8 Zo(x), 8 Ro(x)] + Z2(x) Zo(x)

+ / D1 (x,0)Zo(0) da) dx + K; Zow (0) + Tod (0)
0

—07GNL (_ A0)Z(0) — OnLIZo(0), Ro(0), Z;(0), Ry (0)] + 22(0)20(0))
1=0
e ( — (A(O) + AnL(Ro(0), 0)) R)(0)
1=0
+ (Z0 + Sxr(Ro(©0), 0)) Ro(0) + SO Ry (o>>, (3:25)

with

N' = —A0)Z{(0) — OnL[Z(0), Ro(0), Z{,(0), RH(0)] + £2(0)Zo(0),
N? = —A(L)Z{(L) — OnLIZo(L), Ro(L), Z{(L), Ry(L)] + Sa(L) Zo(L)

L ~
+ fo Di(L. 6)Z0(6) de,

wherez_(z+ 7= )T 10, L] x [0,00) — RV, ZT 10, L] x [0, 00) — R™,
z— [0, L] x [0, 00) — R2N=m  Zin=(Z1(0,), Z7(L, )T € L®([0, 00); R?V),
Zow = (ZH(L.-). Z-(0. ) € L™(10. 00); B2V),

++ 7
22=[E Om2N—m | Dl<x,5)=[

D+(X,E) Om,ZN—m
= OoNemaN—m | ’

D™ (x,8) OoN—m2oN—m

_ Om,m 0m,2N7m 2 . 2N,2N
k2(-x) - |:02N—m,m Kz(x) ] € C ([03 L]? R )7

B Kll K12

for all (x,£) in T, and K; = 1 1 , KM e RO K12 €
_02N7m,m 02N7m,2N7m

R™2N=m Here K is a strictly upper triangular matrix, and D*, D™ are given as

the piecewise differentiable solutions to the Volterra integral equations

DT (x,86) = —F'(x,5)277(&) — f Fl'(x,5)D™ (s, &) ds,
13

D™ (x,&) = —F*(x,£)271(&) — / F2(x,5)D™ (s, &) ds.
&

The nonlinear terms Qv [2 R, 0.7, 0, 1%] and Gy 1[Z(0, -), R(0, )] satisfy, for all
x€(0,L),1t€[0,00),

T Owm F'(x,8) ~ A~
(12N+ /0 [OZN_m’m £y g)] ds) One |Z, k0.7, 0:R]
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= ANL(FIZ] + R, x)3:(FIZ] + R) — Sn1(FIZ]+ R, x)(FIZ]1 + R)
— ANL(R, X)dc(R) + ZyL(R, X)(R). (3.26)
GNLIZ(0.1), R0, 1)]
= ToMyL (T(O)(f[Z](o, 1) + RO, r))) — ToMyy (T(O)Ié(o, t)) . (327

Use the inverse backstepping transformation of (3.11), for all x € (0, L), t €
[0, 00),

- s T Owm Kl(x,é)}~
Z(x,1) = R(x,1) /0 [OZN_mm K2(x. £) R(&,1)dE, (3.28)

where the piecewise differentiable kernels K ! and K are solutions to suitable kernel
equations on the triangular domain T = {(x ) eR}0<é<x< L} as considered
in [13, Theorem A.2]. As descnbed in [13], differentiating twice with respect to x in
the invertible transformatlon F [Z] it is shown that the H2 norm of Z is equivalent
to the H? norm of R. So local iISS of error systems (3.6)—(3.10) is same as local
iISS of target systems (3.19)—(3.25). Therefore, in order to prove the state observation
performance of quasi-linear observer systems (3.1)—(3.5), we need to prove the iISS
of quasilinear target systems (3.19)—(3.25). By using the Lyapunov method, the local
iISS of target systems (3.19)—(3.25) in the H 2_norm is studied by analyzing the growth
of ||Z||Lz, ||8tZ||Lz and ||8,,Z||Lz as follows.

Theorem 3.1 If there exist positive constants «, qi1, q2, 43, q4, diagonal positive-
definite matrices P11, P3, Py € R2N.2ZN symmetric positive-definite matrix Py, €
R*N-2Nand a matrix P1y € R*N-2N such that the following matrix inequalities hold,
forall x € [0, L],

Qp1(x) Q12 Q13(x) Q14 Q15
* Qo Q3 Qo4 5

Qx) = * * Q33 Q34 Q35| >0, (3.29)
* * x  Qua Qus
* * * * Q55

where

Qi1(x) = —A'(x)P1; —aPyy
L L\, T
22 () P11 + P11 Z2(x) +q1Lv112N + p —+ P Dy (L,x)Di(L,x) |,

Qo = —P2Ky,
Q3(x) = —A'(x)P1a —aPjy — EZT(X)PIL
Qg4 = Q15 = Q5 = Q34 = Q35 = 0§ 2N,

1 1 1+
922=ZE2P11—ZKPE1P11KP—ZK1 E| 3Ky,
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1 1

Qo3 = —ZK;EIP“ -7 <K;M1 + M2> — K;—Pzz,
LT

Q4 = _ZKI E1P3Kp,

1 1
Q33 = —ZEI Py — I (Ml + MlT) —aPy —quvglzN,

1 I+ 1+
Qu4 = ZE2P3 — ZKPEngKp —ZKI E\P4Ky,

LT
Qy5 = — 7 Ki ExPaKp,

t - ++ -
with My = [ AYOPLT AT O)P) } Vo — [—A+(L)P12 —AT(L)PY }

A~ (L)Plz+ —A~ (L)P” A=O)P," AP,
Pl-;-i- e R™ m’ P+— e R™ 2N— m, Pl_2+ c R2N—m,m’ P1_2_ e RZN—m,ZN—m’
Ey = diag{A*(O),A’(L)}, Ey = diag{AT(L), A7(0)}, vi = max (A(P11)),
vy = max (|[A(P12)|), and

M(x) = (=N (x) —aly) P

- (EZT(x)Pg + P3%o(x) + 3Lvihy + qL—ngT(L, )Di(L, x)) >0
(3.30)
K(x) = (—A(x) —aly) P4
— (ST @) P+ PrZa() + qaLo}lon + quDI(L, ODIL, 1) = 0,
(3.31)

with v3 = max (AL(P3)), v4 = max (A(Py)), then for every o > O there exist positive
constants 8, ¢, and b such that, for any d in C2([0, 00); RN) Zo e H2([0, L; ]RZN)
and Xo € R?N satisfying, for all t = 0, [R(®)|l g2 + IRl g2 + Idllc2 + 1Xol +
||Zo||H2 < 8 and compatibility conditions (3.24)—(3.25), the H?-solution to Cauchy
problems (3.19)—(3.23) satisfies, for all t € [0, 00),

1ZC D320, psmemy +1XOF

t
< e (120l oo, + 150P) + 6 [ QdOP + 0P s, 632

Proof The following Lyapunov function candidate is introduced for the stability
analysis of systems (3.19)—(3.25), for all x € [0, L],

V(Z(x, ), X(C), 8 Z(x, ), 0 Z(x, ) = Vi + Va + V3,
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where

L, - ~ ~
Vi= /0 (ZT(x, YPHE)Z(x, ) + X T () PuX()

+ 7T, Y PL0X ) + XTOPL®Z(x, .)) dx, (3.33)
L
V, = f &Z " (x, YP3(x)3, Z(x, ) dx, (3.34)
0
L
V3 = f 3 Z ' (x, YPa(x)d Z(x, ) dx, (3.35)
0

with Py (x)=P diag {e ¥ Iy,e"* )y }, P12(x) = Pjpdiag {e_%xlm, e Ly }

P3(x) = Pydiag{e "Ly, " Iy _n}, Pa(x) = Pydiag{e "Iy, e Ly _p}.
Under the definition of V and straightforward observations, there exists a positive real
constant B such that, for every Z, we obtain the following inequality,

1 L 5 2 02 5 2 5 2
Bf 1Z(x, )72 +1XOI + 110 Z(x, )72 + |I3xe(x,~)I|Lz> dx

<V< ﬂf 1ZCe D20 + IXOP + 10 Z(x, )2, + 185 Z(x, ~)||iz) dx
(3.36)

Taking time derivative of V; along the solutions to (3.19)—(3.25), using integration by
parts, and defining V1 = ViL + VinL, Where V1 1, is the time derivative of V7 along
the linear part of quasilinear target systems (3.19)—(3.25), for all ¢t € [0, c0), with
positive constants k1, k2,

Ve <Z3u0) (KR EPKp —e M Ex Py ) Zow() + 220K p Er PR ()
~ v ~ L ~ ~
+XTOE PuX0) +/0 ZT (. ) (A @P1 () = wl APy () Z(x, ) dx
L L
+2/ ZT(x, )P )0 (0) Z(x, -)dx—|—q1Le2“Lv12/ ZT(x, ) Z(x, ) dx
0 0
L ~ ~
+ (5 + £) / (D1(L, 0)Z(x,)) " (D1(L, x)Z(x,")) dx
q1 92/ Jo
~ v ~ L ~ ~
+2XT X +2 /0 ZT ) (A @PLe = SIA@IPR0) R dx
~ 2 ~ L ~ ~
2200 (KF A+ 012) R0 2 [ 27 Prao) K Zow ) di
L - T L L . .
it [ 2P0 (27600 Pw) (— + —) (Fod(-) " Tod()
0 K1 K2

L
+2/ XTOPL@)Z2(0)Z(x, ) dx + gaLelE %/ XT(HX()dx
0
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-
+2LZ0 O] PR + LaX T O Pn (R0 P) (337)

where E; = diag {A1(0), e"E AT (L)}, E» = diag {AT(L), e A7 (0)},

o — AT PLT AT )P
T e ShAT (PRt —eTh AT ()P

My = [—e*z‘LA+(L)P1+2+ —egLA+(L)P1J5}
A=(0)P;," A= (0P~ ’

and where Vi satisfies the following inequality,

L
ViNL < — 2/ oNe [Z, R, 0, Z, axR] (Prix)Z(x, ) + Pra(x)X () dx
0

L L . Lo R L - T
+ (— + —) <F0d(~) _GrLIZ(0, ), RO, )] - / k®)aZ(E, ~)d$>
K1 K2 0
~ A L ~
< (rod(-> — GLIZ0, ), RO, ] — /O K ©)aZ(E, -)d§>
L L\ . .
- (— + —) (Tod (1) TTod (2, (338)
K1 K2

with Gy, the time derivative of Gy, along the solutions to (3.1)—(3.5) and (3.19)—
(3.25). ~

By time differentiation of (3.19), 9;Z is shown to satisfy the following equations,
forall x € [0, L], t € [0, 00),

0uZ(x, ) = —AWBZ(x, ) + D208, Z(x, ) + /O Di(x, ) Z(E, ) dé
— One [Z R, 3.Z, axﬁ] : (3.39)
Zin() = Kp Zow() + X (), (3.40)
X() = K1 Zow() - /0 : k2 (8),Z (&, -) d& + Tod () — G LIZ(0, ), R(0, )],

(3.41)

where Q NI is the time derivative of Quy; along the solutions to (3.1)—(3.5) and
(3.19)—(3.25).

Taking time derivative of V along the solutions to (3.19)-(3.25), using integration
by parts, and defining V2 = V2 L+ Vz NL,Where V2 L is the time derivative of V, along
the linear part of quasilinear target systems (3.19)—(3.25), with positive constants «3
and x4,

. ~T v v ~ AT v ~
Var <Zou) (KFEVPsKp = ¢ E2P3) Zou() +2Zou (VK P3EVK L Zout ()
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=T T~ ~ ~T T~ T X T
+ ZowOK] EvPsK1 Zow() + 3 Zou OKF Er Py (KEEP) - Zou)
~ . . T ~
+ k1 Zou K] EvPs (KTELP) Zow()
L
+ / 3 Z7(x, ) (N @)P3(x) — I A@)[P3(x)) & Z(x, ) dx
0
L ~ ~
+2 f 8,77 (xr, YPA ) T2 Z (x, ) dx
0

(1 1 . .
+d() Ty K—3+— DLy + E1P3 ) Tod()

K4

L
+ qzLe* 3 / »Z " (x, )9 Z(x,-)dx
0

L

L ~ T ~
(P08 Z ) (D10 2, ) . (3.42)
3J0

and where Va1, satisfies the following inequality,

T

L
Vanr < (rod(-) — GNLIZ(0, ), R(0, )] — /0 k2 (§)3, Z (&, -) df§>
1 1 .
X <<— + —) Dby + E1P3>
K3 K4
L
X (rodm — GNLIZ(0, ), R0, )] — /0 kz(é)a,Z@,-)ds)
L . ~ A ~ A ~
—2/ 0%, 2. R 0.7, 0. R Psod Z(x, ) de
0
0T (3, ) ot B rod
—d)'ry ([ =+ — ) by + E1 P ) Tod (). (3.43)
K3 K4

By second time differentiation of (3.19), 8,,2 is shown to satisfy the following
equations, for all x € [0, L], ¢ € [0, 00),

it Z(x, ) = —AX)rx Z(x, ) + T2 (x)d Z(x, ) + fo Di(x, &), Z(€, ) d&
—One [2 R.3.7. axié], (3.44)
Zin() = KpZow() + X (., (3.45)

~ ~ L ~ .. .. ~ A
X()=KiZow() — /0 k2(§)9: Z(§, ) d§ + Tod(-) — GnLIZ(0, ), R(O, )],
(3.46)

where Q ~L and G N L are, respectively, the second-order time derivative of Qyy, and
Gy, along the solutions to (3.1)—(3.5) and (3.19)—(3.25).
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Taking time derivative of V3 along the solutions to (3.19)-(3.25), using integration
by parts, and defining V3 = V31 + Vayz, where V3 7 is the time derivative of V3 along
the linear part of quasilinear target systems (3.19)—(3.25), with positive constants x5
and g,

Vst <Zou) (KFE P p — e EaPy) Fou () + 220 OKE PAEK) Zou()
2o OKT Ev P Zou) + s 2o OKFE P (KFELP) ' Zou)
AT T % T % T A~
+ K6Zout(')K1 El P4 (KI El P4> Zout(')
L
+ /O 0077 (. ) (A (O)Ps(x) — uAG)IPs(x)) s Z(x, ) dx
L ~ ~
+2 f 00 ZT (x. P4 (X) E2(0)3 Z (x, ) dx
0
L ~ ~ .o
+ gLy / 00 ZT (x, YouZ(x, ) dx +dT (TG
0
1 1 . ..
X ((— + —) Ly + P4E1> Lod(-)
K5 K6

L L = T ~
+ q—4/0 (DI(L, X)0s Z(x, )) (Dl(L, x)0 Z(x, )) dx, (3.47)

and where Va3 satisfies the following inequality,

T

L
Vine < (roa‘(-) —GNLIZ(0, ), RO, )] — /0 ko (£)d Z (&, -)dé>
1 1 .
<<— + —) DLy + P4E1>
K5 K6
L
X (roc'i<~> — GNLIZ(0, ), R(0, )] — /0 ko (£)3: Z (£, -) d&)
L . ~ A~ ~ A~ ~
—2/ OF, 7. k0.7 0 R oo Z(x, ) dx
0

—dTorg LYY byt Py ) rodc
0 oN + P4E1 | Tod (). (3.48)
K5 K¢

For the linear term VlL + VzL + V3L, by using (3.37), (3.42), and (3.47), there exists
a constant & > 0 such that

VlL + VzL + V3L
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T

Z(x,) Z(x.")
L Zgut(') Zgut(')
<—av— [| XO | aw| X0 |a
0 ?out(') gout(')
2Jout(') 2out(')

L L
—/ atzT(x,oM(x)atZ(x,-)dx—f I Z ' (x, VK ()8 Z (x, -) dx
0 0

e f(L L 1 1 S\
+d (OTy (| —+—+—+ — |~y + P3E1 | T0od(")
K1 ky K3 K4

.. 1 1 v .
+dT(ry ((K—S + K—ﬁ) Ly + P4E1> Cod (), (3.49)

Q11(x) Qi2(x) Q13(x) Q4 s

5 * 1955) 5:223 5:224 5:225

where, for x € [0, L], Q(x) = * * Q33 Q34 Q35 |, with
* * * Sv?44 5245
* * * * SVZ55

Q1) = WA®IP1 () = AP () — aPr1 () — k1 Prax) (PraG) "
- (2;()6)7’11(96) + P T2 (x) + g L Ly

L L\ 7
+(=+=) D] (L,x)Dl(L,x)),
Q@

Q2(x) = —=Pra()K;.
Q) = %|A(x)|7)12(x) — N (@)Pr2(x) —aPra(x) — EZT(X)PQ(X),

Q14 = Q5 = Qo5 = Q34 = 35 = Oy 2.

v e HL 1 . 1 - K4 . . T
Qo = EyPi| — ZK}T,ElP]]KP - ZK,TE] P3K; — ZKITEng (K,TE1P3) ,
. 1 T+ 1 U

Q3 = —ZK;Elp]l — Z (K}T)Ml +M2) — K;Pzz,

. 1 1
Qo = _ZKI E|P3Kp,

. 1. 1. .
Q33 = I 1P — I (Ml + M?) — 2Py (Py) | —aPy — QZLeMLV%QN»

. e ML 1 . K3 v v T 1 v

g = —ExPy - ZK;EngKp - fKIIEI P (K,IE1P3) - ZKITE1P4K1

K6 . . T
- fKITEl Py (KITEI P4) ,

o1
S5 = - K E1P4Kp,

e ML | 1 . K5 . . T
{55 = “—EaPy - ZK;EIPMP - fI(IT,EI Py (K;E1P4>
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M(x) = (=A'(¥) + wlA )| — alay) P3(x)
L
= (3] @Ps) + P30 Za) + g3l MGy + DI (L 0D, D).
K(x) = (=A'(0) + plA@)| — alyy) Palx)

L
= (=] @Ps@) + P40 D2 () + qaLe¥ Gy + aDIT(L, DDI(L, ).

Under conditions (3.29), (3 30), (3.31), there exist constants w,k1, k2, K3, K4, K5, K6 >
0 small enough, such that >0and M,K > 0; thus there exist positive constants

o1, ap such that, with o] = max{ (F(—)'— ((E + E + E + H) Dby + P3E1) F())}

and
T 1 1 .
ap =max A | [y — 4+ — )by +PsE1 )0 ) ¢
Ks K6
the linear term VlL + VzL + V3L satisfies the following inequality,

ViL+ Var + V3 < —aV +a1d'd +ard ' d. (3.50)

Now we analyze the nonlinear term V1 NL + VzN L+ V3 ~L- From (3.38), (3.43), and
(3.48), there exist positive constants hy, ho, h3, h4, hs, and he such that

Vine 52h1/ |08 [Z &0 Z.0R]| (1P| Zx, 0] + 1P [R0)]) dx

L L . . 2 . .
+hy (H - g) (2 |GNLIZ©, ), RO, 91| +2v5 +dT O] rod<~)) ,
(3.51)

. 1 1 . . ~ A~ 2 T Ta o
Vawe <hs o+ oo+ |Erms| ) (26wl Z0,0 ko +2v2 +dTORg Tod o)
L ~ ~ ~ ~ ~
+2h4/ ‘Q;L 7. R 0.2, 0.R]|1Ps o)1 o Zx, 0 dx, (3.52)
1 .. ~ o 2 . .
Vive <hs ( bt \P4E1)> (2 |GNLIZ, ), RO +2vs +dTOr] rod(-)>

+2h6/0 ’Q;L [Z R o7, axlé]‘ Py |0 Z (x, )| dx. (3.53)

As derived in paper [9], since Ay (2 -) is twice differentiable with respect to Z
and x, and Anr (0, ) = Oy, 2N there exist positive constants 6 and s1, 52, s3 such
that for any wy, v; € R2V | if || Z||sc < 84, it holds that

|ANL(Z. )| < 5111 Z]cos (3.54)

lozANL(Z, ywi] o + |0:ANL(Z. )], < 2wt loc. (3.55)

[2aneZ om | = ssivilee. (3.56)
o0
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Similarly, since Sni(Z, ) is twice differentiable with respect to Z and x, and
2nr(0,) = Ov.2n, there exist positive constants §y and sg4, S5, Se¢ such that for
any wo, v» € R2Vif | Z||oe < 83, it holds that

|=8L(Z, )]y, < 54l Z oo (3.57)
|02 ZNL(Z, Ywa | + [0 BNL(Z. )] o, < ssllwz oo (3.58)
|o2zneZ. 02| < sollvalie. (3.59)

Because Iy, is once differentiable with respect to 2, and Iy (0) = Oy 1, there
exist positive constants 817 and s7, sg such that for any ws € RV if || Z oo < 811,

oMy L(Z(0, )| < 5711 Z(0, )llso, (3.60)
[Todz TN (Z(0, )ws| < sgllwslloc. (3.61)

Note that the nonhnearterms 0 NL and Gy, in (3.26)—(3.27) are dependent on the vari-
ables Z BXZ R and BXR ForR € H2([0 L]x [0 00); ]RZN) recall the Well known
inequalities: IIRIILI < C1||RI|L2 < C2|R]loos 11Rl]o0 < C3(||R||L2 + 1185 Rl|2) <
Call Rl g1, 110 Rlloo < Cs(13:RII 12 + 11352 RI12) < ColIRI| 72 with the positive
constants C1, Ca, C3, C4, Cs, Cs. By using these inequalities with inequalities (3.54)—
(3.61), relations (3.11) and (3.26)—(3.27), recalling assumptions on R(), Ié(t), and
d(t) in Theorem 3.1, with (3 26)—(3.27), there exist positive constants 81, h7, hg, ho,
hio, h11 such that for all Zo satlsfymg ||Z()||oo < 81 < min{§,, 8y, 611}, it holds
| FIZ1 > < W Z 12 N Z15, + 1X P < hsVi, 1: 217, < hoVa, and

on[Z. R 0. Z,0R]| < o (10.21% +171%) .

(GNLIZ, ), RO, 91| = h21 20, ).

For all Z satisfying || 4 lloo < 61, the following inequality is deduced from (3.51),

Vine <2hihio (18 Z oo + 81) (Vi + V2)

L L 5 T
e (= 2) (@10 21 + 22 +dTOR T 0) . G

From (3.26)—(3.27) and inequalities (3.54)—(3.61), there exist positive constants
82 < 81, hia such that for all Z satistfying ||Z|lco + |10:Z]lcc < &2, it holds

(One[Z R 0.7 00R]| < hiz (100 Z 12 + 10,213 + 1 Z1Z). so from (3.52),

Vane <hs (K—Z + K—14 + max [x (P3E1)}> (2h%132V2 +2V, + dT(.)roTrod(.))

+ 2h4h1282(Vy + Vo + V3). (3.63)
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From (3.26)—(3.27) and inequalities (3.54)—(3.61), there exist positive constants
83 < 87, h13, hi4 such that for all Z satisfying ||Z||Oo + ||8,Z||Oo + ||8t,Z||Oo <

S5, it bholds Oy [Z.R0Z.0R]| = ms(10aZ1% + 10 Z0% + 121%),
‘c’iNL[Z(o, 9, RO, -)]‘ < 1141191 Z(0, )lleo and we deduce from (3.53),

: 11 } ) .
Vsviz <hs (— + — + max {A (P4E1)}) (2h%452V2 F2Vs 4+ dT(.)roTrod(.))
K5  Kg

+ 2heh1383(V1 + V2 + V3). (3.64)

Therefore, the nonlinear term Vl NL+ Vz NL+ V3 NL,byusing (3.62), (3.63), and (3.64)
with 3 = max {)» <FT (/’l (Kl + ,5‘—2) DLy + h3 (%121\/ + élzN + P3E1>) F())}

and
- 1 1 .
ag=max ATy (s | —DLn+—Dhn+PsEr) ) To )¢,
K5 K¢

satisfies, for | Zloo + 110, Zlloo + 19:1 Z o < 83,

VinL + Vanr + Vane
<2h1h19(82 +31) (V1 + V2) + Qhah1282 + 2heh1363) (V1 + Vo + V3)

L L 1 1 . 2
(L4 L) s +f+max{ (PsE1)})) @rdyava +2v2)
K1 K2

ths ( L, L + max [x (P4El)}) (2h2,8,V3 +2V3) + a3d T (Yd() + aad T ().
(3.65)

Thus combining inequalities (3.50) with (3.65), along the solutions to systems (3.19)—
(3.25), for all # € [0, 00), we get the existence of a positive constant 84 < &3 such
that, for all Z satisfying ||Z||OO + ||8,Z||0o + ||8nZ||Oo < &4,

t
V< VO™t ase/2 / (d(s)> +1d(s)1)e™/? ds
0
t
< V(0)e /4 oz:-,/ (d()I* + |d(s)|*) ds, (3.66)
0

with a5 = max{«; + o3, oy + a4} and such that

4h1h1064 + 2hah1264 + 2heh1364
L L 11 . R
F(h(=+=)+n —+—+max[A(P3E1)} (2h3,84 +2)
K1 K2 K3 K4

11 )
+ hs <— + — + max {)\ <P4E1)}> (Qh3,84+2) < a/2.
K5 K¢
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Combining this relation with (3.36), there exist positive constants
— B2 —
¢ = ﬁ ’ b - ﬂ(XSa

such that, for all ¢+ > 0,

L
[ (126 0P 418008 + 10,2000 + 1002 P
0
<BV(®)
t
<B <V<0)e—°”/2 +as / (d(s)1> + |él'<s)|2)ds>
0

< pre? (/OL(|Zo<x)|2 + X0l + 10 Z(x, 0)]* + [dex Z(x, 0) ) dx)
8 (as fo 6P +1d 6D ds)

= ce”/? (/0L<|Zo<x>|2 + 1 Xol? + 10: Z(x, 0)]* + 02 Z (x, 0)|2>dx>
+b /O 1R + R ds. (3.67)

completing the proof of Theorem 3.1. O

Remark 3.1 Based on the reversibility of backstepping transformation, it is straight-
forward to deduce the iISS of error systems (3.6)—(3.10) in the H? sense by studying
the stability of target systems (3.19)—(3.25) under the assumptions of Theorem 3.1.
The iISS of error systems (3.6)—(3.10) implies that the state observation goes to the
real values as time goes on. This observer-based input is obtained by applying (for-
mally) the separation principle between the control in [9] and observation problems
(3.1)-(3.5).

4 Numerical computation

In order to validate the observer design for the heterogeneous congested traffic with
high traffic demand and a velocity drop, respectively, at the inlet and outlet boundaries
of the considered road segment, the traffic parameters of two vehicle classes on a road
section of 1 km length and 6.5m width are chosen as in papers [10] and [9], see Table 1.

The relationships a1 < a2, 71 < 12,and p}(0) > p3(0), vi(0) > v5(0), class 1 rep-
resents small and fast vehicles, and class 2 describes big and slow vehicles. Given p;" 0)
on the domain [90, 120] with a step length 2 and ,03‘ (0) on the domain [60, 80] with a
step length 2, we search a discrete quantity of (o] (0), p3(0)) such that the linearized
system of (2.1)—(2.2) is stabilized, and the value of ||[Ao(p)|lL>0,L);R) 15 minimal.
The used function “optimize” is common for solving optimization problems on MAT-
LAB including the chosen solver “sdpt3” and the objective |Ao(p) | L= (o,L):R). We
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Table 1 Selected values of

parameters Name Symbol Value Unit
Relaxation time 71 30 S
1) 60 S
Pressure exponent Y1 2.5 1
72 2 1
Free-flow velocity v{"l 80 kTm
o} 60 km
Maximum Ao(p) Ao?’l 0.9
Aol 0.85 1
Occupied surface per vehicle ay 10 m?
ap 42 m?
equilibrium density at the inlet pi‘ 0) 110 Yanl:
P3(0) 70 jch
equilibrium velocity at the inlet vT(O) 50 kTm
v5(0) 25 km

obtain the optimal values of p}(0), p3(0) in Table 1 and see Fig.2as in papers [10]
and [9].

The values of parameters K p, K7, ['g, I'> derived from seeking the optimal tuning
known input U to minimize the likelihood of congested traffic in paper [8], and the
coefficient matrices ® of the known input U are given as in paper [9],

0 0 0 —7.85
B 0 0 0 10.47 _s
Ke=1"0 0 o -—aoa| 10"
| —5.685.08-7.16 0
(=20 30 30 60 0 0.0469
o |-24 -7 26 30 _s _ 0 —0.0625
Ki=1_10 20 —30 20> To=|p0332 02051 |’
L 0 0 0 0 0 0
_s 0.2 _s
I, =[-5.6775.085 =7.162] x 107>, © = 0.8 x 107>,

By solving the linear matrix inequalities (LMIs) conditions, we derive the values of
the variables Py, Pi», Py, P3, Py,

Py = diag {1.7179, 2.2212, 43163, 2.4493} x 10°,
—10.3574 —0.0253 —0.0142 —0.0073

p _ | 00289 —13.1242 —0.0041 —0.0853
1271 0.0284 0.0073 —25.1181 0.6772 |’
—0.0080 —0.0819 0.3714 14.1855
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140 T T T T T T T T T

120

100 T

40 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Position x (km)

Fig. 2 Relation between spacial variable x and the nonuniform equilibrium u =
(PF (), vF(x), p3 (), v5 () T

Py = diag {5.1230, 5.1231, 5.1236, 5.1231} x 10°,
P; = diag {2.4187, 2.8217, 4.4091, 2.8180} x 10°,
P, = diag {2.4187, 2.8217, 4.4091, 2.8180} x 10°,

for which the conditions of Theorem 3.1 are satisfied. Therefore, Theorem 3.1 applies
and the iISS of the quasilinear observer dynamics is proven. As a final remark, let
us explain how to simulate systems (3.1)—(3.5) in a closed loop with the control U
and these control gains. It asks in particular to discretize the piecewise continuously
differentiable kernel functions F! and F? by following the approach of [12]. See also
[5] where discontinuous kernel functions are numerically computed for a different
control problem. After computing these kernel functions, running simulations for the
observer dynamics and the closed-loop system could be done as in, e.g., [10].

5 Conclusion

This paper has developed a backstepping PDE method for the design of an observer for
a heterogeneous quasilinear traffic model. Some sufficient conditions are derived in
the main result for the computation of the injection gains and of the observer dynamics.
These conditions are checked on numerical simulations using a realistic scenario of
a congested traffic with high demand traffic flow and a velocity drop. It would be of
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interest to use the obtained results for the stability proof of the closed-loop system
when combining the derived observer with a state feedback-stabilizing controller. The
study of regulation problem is another open question.
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