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SUMMARY

This paper proposes an anti-windup strategy to deal with stability and performance requirements for a
class of hybrid systems, such as those including a reset controller and subject to input saturation. The
computation of the anti-windup compensator aiming at ensuring both L2 input-to-state stability and
internal stability of the closed-loop system is carried out from the solution of matrix inequalities. Depending
on the way chosen to describe reset rules, the conditions for designing the anti-windup compensator are
expressed through nonlinear matrix inequalities or linear matrix inequalities. Some optimization criteria
in both cases are considered for the synthesis purpose: maximization of the L2-norm upper bound on
the admissible disturbances for which the trajectories are assured to be bounded; minimization of the
L2-gain of the disturbance to the system-to-be-controlled output; and the maximization of an estimate of
the domain of attraction of the origin. Copyright ! 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The anti-windup strategy is a well-known and efficient technique to cope with undesirable effects
(on both performance and stability) induced by actuator saturation in control loops. The design
of anti-windup compensators were first motivated by dealing with the degradation of the transient
performance induced by saturation in feedback control systems containing integral actions [1]. More
recently, the anti-windup compensators design through formal and systematic methods has emerged
(see, for example, [2–6], for a large recent overview). In particular, these works present approaches
based on LMI conditions (or quasi-linear matrix equality (LMI), i.e. non-convex condition but with
simple nonlinearity). The advantage of the LMI-based methods lies on the fact that the anti-windup
design can be carried out through convex optimization problems, allowing to address different
optimal synthesis criteria (such as L2-gain attenuation or enlargement of the basin of attraction)
in an optimal way.

Moreover, in the quest for providing more flexible stabilizing tools, research efforts have focused
on developing control algorithms, and using controllers that involve switching, or on-line adaptation.
Adding some hybrid loops may be fruitful in comparison with linear controllers. See e.g. [7, 8]
for some academic examples, and consider [9–12] for specific control applications where hybrid
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controllers are used. Even if the analysis of the stability may become complicated, the performance
improvement of hybrid strategies with respect to more classical controllers (i.e. regular linear or
nonlinear controllers) is now proved (see, e.g. [13–18], for different use of hybrid controllers).
However, such a class of feedback laws may introduce—possibly unrealistic—large transition input
values. Indeed, many physical control systems are subject to magnitude-limitation in the input.
A first work studying the stability issue of a nonlinear systems resulting from a FORE and a
saturation in the input is proposed in [19].

In this paper, a single input single output (SISO) linear system controlled by a reset controller
and subject to saturation is considered. The considered hybrid controller is that one that combines
a continuous linear-based dynamic (represented by differential equations) with a reset dynamic
(instantaneous jumps to zero of variables). Continuous trajectories are active in a subset of the state
space, called the flow set. Resets of whole or part of system states correspond to an instantaneous
jump and are only active in the subset of the state space, called jump set. The current paper proposes
some extensions of previous works (in particular [7, 14]) to synthesize a dynamic anti-windup
compensator. This paper proposes in particular an anti-windup strategy to deal with stability and
performance requirements for a class of hybrid systems, such as those including a reset controller
and subject to input saturation. At this aim, different types of reset rule and therefore different flow
and jump sets are considered. In both cases, constructive conditions leading to quasi-LMIs or LMIs,
based on the use of suitable Lyapunov functions, modified sector condition and the application
of adequate congruence transformations, are proposed to compute anti-windup compensators. The
computation of the anti-windup compensator aiming at ensuring both L2 input-to-state stability
and internal stability of the closed-loop system is then carried out from the solution of convex
optimization problems, including the maximization of the L2-norm upper bound on the admissible
disturbances for which the trajectories are bounded; the minimization of the L2-gain of the
disturbance to the system regulated output; and the maximization of an estimate of the domain of
attraction of the origin.

This paper is organized as follows. The problem to be treated is formally stated in Section 2. In
Section 3, theoretical results on the anti-windup synthesis are developed. Two reset conditions are
considered. Section 4 addresses the computational and numerical issues regarding the theoretical
conditions previously developed. Convex optimization schemes and an illustrative example are also
presented. Finally, Section 5 contains some concluding remarks and presents forthcoming issues.

Notation
For two vectors x , y of Rn , the notation x " y means that x(i) − y(i)!0, i =1, . . . ,n. For any
vector x ∈Rn , |x | is its absolute value (i.e. |x |(i) =|x(i)|, i =1, ...,m) and ‖x‖ is its Euclidian
norm. The identity matrix of order n is denoted In . The null m×n matrix is denoted 0m×n . When
no confusion is possible, identity and null matrices are simply denoted as I and 0, respectively.
For two symmetric matrices, A and B, A>B (respectively A!B) means that A− B is positive
definite (respectively positive semi-definite). A′ denotes the transpose of A. diag(A, B) denotes the
diagonal matrix obtained from matrices A and B. Furthermore, in the case of partitioned symmetric
matrices, the symbol ! denotes symmetric blocks. The convex hull defined by the vertices vi ∈Rn

are denoted as Co{vi , i =1, . . . ,r}.

2. PROBLEM STATEMENT

Consider the following SISO plant:

ẋ p = Apx p + Bpu+ Bww

y = C px p

z = Cz x p + Dzu

(1)

where x p ∈Rn p is the state vector, y ∈R is the measured output of the plant, u ∈R is the input of
the plant, w∈Rnw is the disturbance vector and z ∈Rnz is the regulated output for performance
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ANTI-WINDUP STRATEGY FOR RESET CONTROL SYSTEMS 1161

purpose. In (1), Ap, Bp, C p, Cz and Dz are constant matrices of appropriate dimensions. Pairs
(Ap, Bp) and (C p, Ap) are assumed to be controllable and observable, respectively. Furthermore,
the disturbance vector w is assumed to be limited in energy, i.e. given a finite positive scalar !:

‖w‖2
2 =

∫ ∞

0
w(")′w(")d""1

!
(2)

The input of the plant is supposed to be bounded in magnitude by u0>0, i.e. −u0"u"u0. In
consequence, the control signal to be effectively injected in the system considering the controller
output yc is

u =sat(yc) (3)

The saturation map is the classical function defined as sat(yc)=sign(yc)min(|yc|,u0), where u0>0
denotes the level of saturation.

Associated with system (1), we consider a reset controller that leads to mixed discrete/continuous
dynamics. This kind of systems is in the class of hybrid systems. Hence, by using the hybrid
framework introduced in [20], the reset controller is described by

ẋc = Acxc + Bc y

yc = Ccxc + Dc y

"̇ = 1





if (x p, xc)∈F0 or ""#

x+
c = 0

"+ = 0

}

if (x p, xc)∈J0 and "!#

(4)

where xc ∈Rnc is the state of the controller, xc is the state value before a jump and x+
c after

a jump. In (4), Ac, Bc, Cc, Dc are constant matrices of appropriate dimensions, and constitute
the so-called linear-based data of the hybrid controller. The variables y and yc are the controller
input and output, respectively. F0 and J0 correspond to the flow and jump sets. The variable "
corresponds to the so-called ‘temporal regularization’. It allows to guarantee a lower bound of the
time in between resets, called #. The objective to add this positive scalar # is to avoid an infinite
number of switches, i.e. to avoid Zeno solutions [20].

It is supposed that the controller (4) was computed to stabilize system (1), without taking into
account the saturation of the input of the plant: u = yc. In order to cope with such a disregarding,
an anti-windup loop is then considered to minimize the effect of the saturation on the closed-loop
performance and stability. At this aim, the following anti-windup compensator is considered:

ẋa = Aa xa + Ba(sat(yc)− yc)

ya = Ca xa + Da(sat(yc)− yc)
(5)

leading to the modified controller:

ẋc = Acxc + Bc y+ ya

yc = Ccxc + Dc y

"̇ = 1





if (x p, xc, xa)∈F or ""#

x+
c = 0

"+ = 0

}

if (x p, xc, xa)∈J and "!#

(6)

where xa ∈Rna , (sat(yc)− yc)∈R, ya ∈Rnc are the state, the input and the output vectors of the
anti-windup compensator. We recall some basic ingredients on hybrid system theory, and the notion
of solutions of (1) in closed loop with (5) and (6) (see [15, 20, 21] and references therein). Owing
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to mixed discrete/continuous dynamics, a solution of (1), (5) and (6) will be defined on a mixed
discrete/continuous time domain. More precisely:

Definition 1
A set D is a hybrid time domain if for all (T, J )∈D, D ∩([0,T ]×{0,1, . . . J }) is a compact hybrid
time domain, i.e. it can be written as

J−1⋃
j=0

([t j , t j+1], j)

for some finite sequence of times 0= t0"t1 . . ."tJ . A solution to (1), (5) and (6) consists of a hybrid
time domain D and functions (x p, xc, xa,") :D→Rn p ×Rnc ×Rna ×R such that (x p, xc, xa,")(t, j)
is absolutely continuous in t for a fixed j and (t, j)∈D satisfying

(S1) for all j ∈N and almost all t such that (t, j)∈D, we have

(x p, xc, xa)(t, j)∈F or "(t, j)"#

and

ẋ p(t, j) = Apx p(t, j)+ Bpu(t, j)+ Bww(t)

ẋc(t, j) = Acxc(t, j)+ Bc y(t, j)+ ya(t, j)

ẋa(t, j) = Aa xa(t, j)+ Ba(sat(yc(t, j))− yc(t, j))

"̇(t, j) = 1.

(S2) For all (t, j)∈D such that (t, j +1)∈D, we have

(x p, xc, xa)(t, j)∈J and "(t, j)!#

and

x p(t, j +1) = x p(t, j)

xc(t, j +1) = 0

xa(t, j +1) = xa(t, j)

"(t, j +1) = 0

This definition implies in particular that the state solution (x p, xc, xa,") is parameterized by (t, j)
where t is the ordinary time and j is an independent variable that corresponds to the number of
jumps of the solution. When the state belongs to the intersection of the flow set and of the jump set,
then the solution can either flow or jump. Throughout this paper, we will always use the notation
ẋ p for ẋ p(t, j) and x+

p for x p(t j+1, j +1) (and similarly for the other components of the state).
This paper is devoted to the following problem.

Problem 1
Given flow and jump sets F and J.

1. When w=0, determine the anti-windup compensator, i.e. matrices Aa , Ba , Ca and Da , and
a region E, as large as possible, in which the asymptotic stability of the closed-loop system
(1), (5) and (6) is guaranteed, i.e. E is included in the basin of attraction of the origin of
closed-loop system.

2. When w +=0, the L2-gain from w to z, in the case of null initial condition, for all disturbances
w satisfying (2) is such that: ‖z‖2

2"$‖w‖2
2.
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The implicit objective in the first item of Problem 1 is to maximize the size of the basin of
attraction for the closed-loop system (1), (5) and (6) (with w=0) over the choice of matrices Aa ,
Ba , Ca and Da . Such an objective can be accomplished indirectly by searching for an anti-windup
compensator defined from Aa , Ba , Ca and Da that leads to a region of stability E for the closed-
loop system as large as possible, in particular in the x p or (x p, xc) directions. On the other hand,
when the open-loop system is asymptotically stable, it can be possible to search for the controller
matrices in order to ensure the global asymptotic stability of the origin of the closed-loop system.

Moreover, Problem 1 will be addressed by considering different types of reset rule and therefore
different flow and jump sets. Hence, we will study what is the influence of the reset rule in the
solution of Problem 1.

3. THEORETICAL ANTI-WINDUP DESIGN CONDITIONS

3.1. Preliminary results

Let us define the augmented state vector

x =





x p

xc

xa



∈Rn (7)

with n =n p +nc +na and the following deadzone nonlinearity:

%(K x)=sat(K x)−K x, K = [DcC p Cc|0]= [K1|0]∈R1×n (8)

Hence, by combining (1), (5), (6), (7) and (8), the closed-loop system reads:

ẋ = AF x + BF%(K x)+ B2w

yc = K x

y = Cx

z = C2x + Dz%(K x)

"̇ = 1






if x ∈F or ""#

x+ = AJ x

"+ = 0

}

if x ∈J and "!#

(9)

with

AF =





Ap + Bp DcC p BpCc 0

BcC p Ac Ca

0 0 Aa



=
[

A RCa

0 Aa

]

, BF =





Bp

Da

Ba



=
[

B + RDa

Ba

]

B2 =





Bw

0

0



=
[

Bw

0

]

, B =
[

Bp

0

]

, R =
[

0

Inc

]

, C = [C p 0|0]= [C1|0]

C2 = [Cz + Dz DcC p DzCc|0]= [Cz|0]

(10)

Matrix AJ , the flow and jump sets F and J will be precisely defined from several ways in the
sequel. System (9) clearly lies in the set of hybrid and nonlinear control systems. To ensure that the
solutions are in the flow set after a jump (see [20]), we adopt the following assumption (see [14]).
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Assumption 1
For system (9), the reset matrix AJ is such that x ∈J,⇒ x+ ∈F.

3.2. Flow and jump sets case 1

We consider the case where the flow and jump sets are defined from the classical reset rule
depending on the sign of the product between y (output of the plant) and yc (output of the
controller) (see, for example, [18, 19]). Hence, the sets F and J are defined by:

F = {x ∈Rn; x ′Mx!0}
J = {x ∈Rn; x ′Mx"0}

(11)

In (11), matrix M is a reset matrix of appropriate dimensions satisfying M = Q′MQ with:

M =
[

0 −1

−1 0

]

∈R2×2

Q =
[

C p 0 0

DcC p Cc 0

]

=
[

C

K

]

=
[

C1 0

K1 0

]

= [Q1 0]∈R2×n

(12)

In the current case, two possible structures for the desired matrix AJ ∈Rn×n satisfying Assump-
tion 1 can be considered:

AJ =





In p 0 0

0 0 0

0 0 0



=
[

AJ0 0

0 0

]

or AJ =





In p 0 0

0 0 0

0 0 Ina



=
[

AJ0 0

0 Ina

]

(13)

This means that both the state of the controller and of the anti-windup compensator are reset (first
structure) or only the state of the controller is reset (second structure).

Let us first suppose that the anti-windup compensator (5) is given (that is matrices Aa , Ba , Ca ,
Da are known). The following general result can be stated in the regional (local) context.

Proposition 2
If there exist two symmetric positive-definite matrices W ∈Rn×n , M1 ∈R2×2, a matrix Z ∈R1×n

and positive scalars S, !, $, "F , "R satisfying





W A′
F + AF W BF S− Z ′ B2 WC ′

2 "F W Q′

! −2S 0 SD′
z 0

! ! −I 0 0

! ! ! −$I 0

! ! ! ! −"F M−1
1





< 0 (14)

[
W W K ′− Z ′

! !u2
0

]

! 0 (15)





−W W A′
J "R W Q′

! −W 0

! ! −"R M−1
1



 " 0 (16)

−M1"M" M1 (17)
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ANTI-WINDUP STRATEGY FOR RESET CONTROL SYSTEMS 1165

then:

1. When w=0, the nonlinear closed-loop system (9), with AJ as in (13), remains stable for
any initial condition belonging to E(P,!), with

E(P,!)={x ∈Rn; x ′ Px"!−1}, P =W −1 (18)

2. When w +=0, for x(0)=0,

• the closed-loop trajectories remain bounded in E(P,!),
• the map from z to w is finite gain L2 stable with

∫ T

0
z(t)′z(t)dt"!

∫ T

0
w(t)′w(t)dt ∀T !0 (19)

Proof
Consider the quadratic Lyapunov function V (x)= x ′ Px , with P = P ′ =W −1>0 and the following
change of variables: GW = Z . The satisfaction of relation (15) guarantees that the ellipsoid
E(P,!) is included in the polyhedral set S(u0)={x ∈Rn;−u0"(K −G)x"u0}. By using Lemma
1 in [22], we can verify that −%(K x)S−1(%(K x)+Gx)!0, with S a positive scalar, provided
that x ∈ S(u0). Thus, for any x ∈E(P,!) one gets: V̇ (x)+(1/$)z′z−w′w"V̇ (x)+(1/$)z′z−w′w−
2%(K x)S−1(%(K x)+Gx).

By developing the right-hand term of this inequality one obtains:





W −1x

S−1%(K x)

w





′ 







W A′
F + AF W BF S− Z ′ B2

! −2S 0

! ! −I



+ 1
$





WC ′
2

SD′
z

0



 [C2W Dz S 0]






×





W −1x

S−1%(K x)

w





By using the Schur complement it follows:

L=





W A′
F + AF W BF S− Z ′ B2 WC ′

2

! −2S 0 SD′
z

! ! −I 0

! ! ! −$I




(20)

Let us check that L<0 when the system (9) is flowing. Let t̃ be a time of flow. Two cases may
occur: x(t̃)∈F or ""#.

Case 1. If x(t̃)∈F then V̇ (x)+(1/$)z′z−w′w<0 as soon as L<0 for all x ∈F. Hence, by
using the S-procedure, this is equivalent to satisfy:

L0 =





W A′
F + AF W +"F W Q′MQW BF S− Z ′ B2 WC ′

2

! −2S 0 SD′
z

! ! −I 0

! ! ! −$I




<0
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Hence, from relation (17), matrix L0 can be over-bounded as follows:

L0"





W A′
F + AF W +"F W Q′M1 QW BF S− Z ′ B2 WC ′

2

! −2S 0 SD′
z

! ! −I 0

! ! ! −$I





By using the Schur complement, the right-hand term of this inequality reads:

L1 =





W A′
F + AF W BF S− Z ′ B2 WC ′

2 "F W Q′

! −2S 0 SD′
z 0

! ! −I 0 0

! ! ! −$I 0

! ! ! ! −"F M−1
1





If one ensures L1<0, which holds whether (14) is verified, then it follows that V̇ (x)+(1/$)z′z−
w′w<0.

Case 2. Suppose that one gets ""#. Consider t"t̃ the smallest time where we are flowing in
[t, t̃]. We have x(t)∈F since either t =0, or we have a jump at t (and due to Assumption 1 for
all x ∈J, we have AJ x ∈F). Then, there exists a positive scalar & such that, for all t ∈ [t, #), we
have x(t)∈F& with F& ={x ∈Rn; x ′Mx +&x ′x!0}. Thus, we remain in E(P,!) and we have
V̇ (x(t))+(1/$)z′z−w′w<0 for all t ∈ [t, #) as soon as L<0 (with L defined in (20)) for all
x ∈F&, which is equivalent to verify:





W A′
F + AF W +"F W (Q′MQ+&In)W BF S− Z ′ B2 WC ′

2

! −2S 0 SD′
z

! ! −I 0

! ! ! −$I




<0 (21)

Moreover, note that &→0 as #→0. Therefore, by considering a small enough value for #, we
can consider small enough & to be neglected and it follows that the satisfaction of relation (14)
guarantees that inequality (21) holds.

Moreover, we want also to prove that V (x+)−V (x)"0 for x ∈J. This condition holds if the
following relation is satisfied:

x ′(A′
J P AJ − P)x −"R x ′Mx = x ′(A′

J P AJ − P)x −"R x ′Q′MQx"0 (22)

which reads, by using the Schur complement upon pre- and post-multiplying (22) by W :
[

−W −"R W Q′MQW W A′
J

! −W

]

"0 (23)

From relation (17) one can over-bound the term −"R W Q′MQW by "R W Q′M1 QW . Thus, by
using the Schur complement, condition (23) can be rewritten as:





−W W A′
J "R W Q′

! −W 0

! ! −"R M−1
1



"0 (24)
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Hence, the satisfaction of relations (14), (15), (16) and (17) ensures that along the trajectories
of the hybrid system (9) the Lyapunov function satisfies

V̇ (x(t))+ 1
$

z′z−w′w < 0 if x ∈F

"V (x) " 0 if x ∈J

for all w satisfying (2). Note that since the flow set F and the jump set J are closed (see (11)), and
with the regularity on the data of (9) we get, with [20, Theorem S3], that each maximal solution
is either complete (i.e. with a unbounded time domain) or blows up in finite time. But with the
previous estimation on the time-evolution of V , the solutions cannot blow up in finite time and
thus the solutions of (9) are defined for all time. Moreover, it follows that:

• for x(0)=0, one gets V (0)=0 and V (T )= x(T )′ Px(T )"
∫ T

0 w(t)′w(t)dt"#−1, ∀T !0. In
other words, the trajectories of the closed-loop system (9) do not leave the set E(P,!).

• When T →∞, one gets
∫ ∞

0 z(t)′z(t)dt"!
∫ ∞

0 w(t)′w(t)dt , therefore, the L2-gain of the
system is less than $.

• If w=0 then one obtains V̇ (x)<−(1/$)x ′ Px<0. The nonlinear closed-loop system (9) with
AJ defined from (13) remains stable for any initial condition belonging to E(P,!).

This completes the proof of Proposition 2. #

Let us focus on the synthesis issue as stated in Problem 1. It is clear that it is not possible to
determine simultaneously the analysis variable W and the anti-windup matrices Aa , Ba , Ca and Da
from the conditions of Proposition 2. By considering the case where na =n p +nc, these conditions
can be simplified. In particular, different frameworks can be adapted in order to obtain quasi-convex
or convex conditions in the case na =n p +nc: one can, for example, cite the framework used in
[2, 23], based on the projection lemma, or that one based on some change of variables [24, 25].
For the ease of the presentation, we choose the above-mentioned second framework.

The following theorem exhibits solution in the sense to design the anti-windup compensator
satisfying Proposition 2.

Theorem 3
If there exist three symmetric positive-definite matrices X ∈R(n p+nc)×(n p+nc), Y ∈R(n p+nc)×(n p+nc),
M1 ∈R2×2, matrices Z1 ∈R1×(n p+nc), Z∈R1×(n p+nc), $1 ∈R(n p+nc)×(n p+nc), $2 ∈R(n p+nc)×1,
$3 ∈Rnc×(n p+nc), $4 ∈Rnc×1, positive scalars S, "F , "R , !, $ such that relation (17) and the
following conditions hold:





X A′+ AX X A′+ AY + R$3 +$1 BS+ R$4 +$2 −Z′ Bw XC′
z "F X Q′

1

! AY +Y A′+ R$3 +$′
3 R′ BS+ R$4 − Z ′

1 Bw Y C′
z "F Y Q′

1

! ! −2S 0 SD′
z 0

! ! ! −I 0 0

! ! ! ! −$I 0

! ! ! ! ! −"F M−1
1





< 0 (25)




X X X K ′

1 −Z′

! Y Y K ′
1 − Z ′

1

! ! !u2
0



 ! 0 (26)





−X −X X A′
J0 X A′

J0 "R X Q′
1

! −Y Y A′
J0 Y A′

J0 "RY Q′
1

! ! −X −X 0

! ! ! −Y 0

! ! ! ! −"R M−1
1





" 0 (27)
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then the anti-windup controller defined by

Aa = (U′)−1 X−1$1 N−1

Ba = (U′)−1 X−1$2S−1

Ca = $3 N−1

Da = $4S−1

(28)

where matrices U, N verify N ′U= I −Y X−1, is solution to Problem 1, that is,

1. When w=0, the nonlinear closed-loop system (9), with AJ defined as the first structure in
(13), remains stable for any initial condition belonging to the set E(P,!), defined as in (18)
with

P =W −1 =
[

X−1 U′

! F

]

, W =
[

Y N ′

! H

]

(29)

2. When w +=0, for x(0)=0,

• the closed-loop trajectories remain bounded in E(P,!),
• the map from z to w is finite gain L2 stable and satisfies (19).

Proof
Let us define:

W =
[

Y N ′

! H

]

and P =W −1 =
[

X−1 U′

! F

]

where X , Y , N , U, F and H are decision variables of appropriate dimensions. Then, it follows:
Y X−1 + N ′U= I , YU′+ N ′F =0, N X−1 + HU=0 and NU′+ H F = I . Similarly to [25], we use
the matrix

%=
[

I I

UX 0

]

.

From this, one obtains:

%′W =
[

X 0

Y N ′

]

, %′W%=
[

X X

X Y

]

%′W A′
F% =

[
X A′ X A′

Y A′+ N ′C ′
a R′+ N ′ A′

aUX Y A′+ N ′C ′
a R′

]

%′(BF S− Z ′) =
[

BS+ RDa S+ XU′Ba S−(Z ′
1 + XU′Z ′

2)

BS+ RDa S− Z ′
1

]

%′B2 =
[

Bw

Bw

]

, %′WC ′
2 =

[
XC′

z

Y C′
z

]

, %′W Q′ =
[

X Q′
1

Y Q′
1

]

where the variable Z can be partitioned as Z = [Z1 Z2]∈R1×n , with Z1 ∈R1×(n p+nc) and Z2 ∈
R1×(n p+nc) (since na =n p +nc).

Hence, relation (25) is obtained by pre- and post-multiplying relation (14) by diag(%′, I, I, I, I )
and by diag(%, I, I, I, I ), respectively and by using the following change of variables:

$1 = XU′ Aa N , $2 = XU′Ba S, $3 =Ca N , $4 = Da S, Z= Z1 + Z2UX (30)

Copyright ! 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:1159–1177
DOI: 10.1002/rnc



ANTI-WINDUP STRATEGY FOR RESET CONTROL SYSTEMS 1169

By the same way, relation (26) is obtained by pre- and post-multiplying relation (15) by diag(%′, I )
and by diag(%, I ) and by using the change of variables (30).

Finally, relation (27) is obtained by pre- and post-multiplying relation (16) by diag(%′, I, I ) and
by diag(%, I, I ) and by considering the first structure of matrix AJ given in (13). Then, it follows:

%′W A′
J %=

[
X A′

J0 X A′
J0

Y A′
J0 Y A′

J0

]

Similar arguments regarding flow and jump sets are used as in the proof of Proposition 2. #

Remark 4
If the second structure for matrix AJ given in (13) is used, relation (27) in Theorem 3 is slightly
modified: the block (2,3) is changed as Y A′

J0 + X −Y .

Remark 5
When the plant is asymptotically stable (i.e. matrix Ap is Hurwitz), it is possible to seek the
assurance of the global stability of the closed-loop system. The closed-loop system is finite gain
L2 stable for any admissible w satisfying (2) and any initial condition x0 ∈Rn , i.e. the origin of
the system is globally asymptotically stable and one obtains:

∫ T

0
z(t)′z(t)dt"!

∫ T

0
w(t)′w(t)dt +!x ′

0 Px0 ∀T !0 ∀x0 ∈Rn (31)

Hence, the global asymptotic stability can be addressed by considering Z = K W in Proposition 2.
In this case, one chooses Z= Z1 = K1W and therefore one replaces condition (26) by Y − X>0
in Theorem 3.

3.3. Flow and jump sets case 2

We consider the case where the flow and jump sets are defined from the region of stability
E(P,!)={x ∈Rn; x ′ Px"!−1} with P = P ′>0, P ∈Rn×n . By using similar tools as in Theorem 3,
the following theorem provides convex conditions to exhibit both the suitable anti-windup matrices
Aa , Ba , Ca , Da and the reset matrix AJ .

Let us first define the structure of the desired matrix AJ :

AJ =
[

AJ0 0

0 0

]

+ Er&Fr (32)

with

AJ0 =
[

In p 0

0 0

]

, Er =





0 0

I 0

0 I



 , Fr =





C p 0 0

0 I 0

0 0 I



=





C1 0

R′ 0

0 I





& =
[

Ar1 Br1 Cr1

Ar2 Br2 Cr2

]

= [Ar Br Cr ]

(33)

In the proposed structure (33), matrices Ar ∈R(n p+2nc)×1, Br ∈R(n p+2nc)×nc , Cr ∈R(n p+2nc)×(n p+nc)

are decision variables, which correspond to the jump equations:

x+
p = x p

x+
c = Ar1C px p + Br1xc +Cr1xa

x+
a = Ar2C px p + Br1xc +Cr1xa

(34)
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Furthermore, the flow and jump sets are defined as

F = E(P,!)

J = clos(Rn \E(P,!))
(35)

where clos(.) stands for the closure.

Theorem 6
If there exist four symmetric positive-definite matrices X ∈R(n p+nc)×(n p+nc), Y ∈R(n p+nc)×(n p+nc),
P11 ∈R(n p+nc)×(n p+nc), P13 ∈R(n p+nc)×(n p+nc), matrices Z1 ∈R1×(n p+nc), Z∈R1×(n p+nc), P12 ∈
R(n p+nc)×(n p+nc), $1 ∈R(n p+nc)×(n p+nc), $2 ∈R(n p+nc)×1, $3 ∈Rnc×(n p+nc), $4 ∈Rnc×1, $5 ∈
R(2nc+n p)×1, $6 ∈R(2nc+n p)×nc , $7 ∈R(2nc+n p)×(nc+n p), positive scalars S, !, $ satisfying





X A′+ AX X A′+ AY + R$3 +$1 BS+ R$4 +$2 −Z′ Bw XC′
z

! AY +Y A′+ R$3 +$′
3 R′ BS+ R$4 − Z ′

1 Bw Y C′
z

! ! −2S 0 SD′
z

! ! ! −I 0

! ! ! ! −$I





< 0 (36)





X X X K ′
1 −Z′

! Y Y K ′
1 − Z ′

1

! ! !u2
0



 ! 0 (37)





P11 P12 A′
J0 +C ′

1$
′
5 + R$′

6 A′
J0

! P13 $′
7 0

! ! X X

! ! ! Y




! 0 (38)

then the anti-windup controller defined by

Aa = (U′)−1 X−1$1 N−1

Ba = (U′)−1 X−1$2S−1

Ca = $3 N−1

Da = $4S−1

(39)

is solution to Problem 1 with AJ defined from (32) with

Ar = (U′)−1 X−1$5

Br = (U′)−1 X−1$6

Cr = (U′)−1 X−1$7

(40)

where matrices U, N verify N ′U= I −Y X−1. In other words:

1. When w=0, the nonlinear closed-loop system (9) remains stable for any initial condition
belonging to the set E(P,!)∪E(P1,!), where E(P,!) is defined as in (18) and E(P1,!)=
{x ∈Rn; x ′ P1x"!−1} with

P =W −1 =
[

X−1 U′

! F

]

, W =
[

Y N ′

! H

]

, P1 =
[

P11 P12

! P13

]

(41)
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2. When w +=0, for x(0)=0,

• the closed-loop trajectories remain bounded in E(P,!),
• the map from z to w is finite gain L2 stable and satisfies (19).

Proof
This proof mimicks in part that ones of Proposition 2 and Theorem 3. Similar definitions and
changes of variables as in the proof of Theorem 3 are used to derive the conditions in the continuous
part (flow case).

Let us focus on the discrete part (jump case) of the proof. We want to verify that x+
0 ∈E(P,!)

if x0 ∈E(P1,!), that is,

x ′
0 A′

J P AJ x0"!−1 if x ′
0 P1x0"!−1

By using the S-procedure, it follows that this condition will be satisfied if one gets: !(P1 −
A′

J P AJ )!0, or equivalently, P1 − A′
J P AJ !0. From the definition of AJ given by (32)–(33) and

by applying the Schur complement one gets the following relation:
[

P1 (AJ + Er&Fr )′

! W

]

!0 (42)

Hence, relation (38) is obtained by pre- and post-multiplying relation (42) by diag(I,%′) and by
diag(I,%), respectively, and by using the following change of variables:

$5 = XU′ Ar , $6 = XU′Br , $7 = XU′Cr (43)

with

%=
[

I I

UX 0

]

.

Remark 7
The reset controller defined from (34) uses the measured output of the plant (y =C px p), and the
states xc and xa of the controller and of the anti-windup compensator. Moreover, the flow and jump
sets defining the reset rules in (35) depend on the complete state x = [x ′

p x ′
c x ′

a]′ along time. This
requires that all system states are measurable. States xc and xa can be easily obtained by taking
care during controller implementation. However, that is not the case for x p since by definition of
system (1) only C px p is actually measured. Hence, a next step could be, for example, to use an
observer and to redefine adequately the flow and jump sets from the observed state x̂ p.

Remark 8
It is important to note that Theorem 6 could easily apply to MIMO systems contrary to Theorem 3.
This is mainly due to the way chosen for describing the flow and jump sets.

4. COMPUTATIONAL AND NUMERICAL ISSUES

Theorem 3 presents non-convex conditions: one of the nonlinearities (or non-convexity) is due
to the presence of both M1 and M−1

1 in the conditions, M1 ∈R2×2 being a decision variable.
Nevertheless, a way to overcome such a problem consists in fixing M1 as a diagonal positive-
definite matrix. Then, a search for the optimal solution over a bi-dimensional grid (composed of the
two elements of M1) can be considered. A sub-case can be to choose M1 =m1 I implying to use an
iterative line search. An alternative solution consists in using a relaxation scheme, which translates
the problem into a sequence of iterative LMI problems fixing M1 or the other variables at each
step. In this case, the convergence of the procedure is always ensured, but not necessarily to the
global optimal value. Furthermore, the convergence value will depend on the initialization of M1
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in the iterative procedure. Then, a more adulterated approach based on a linearization algorithm,
as detailed in [26], could allow to tackle the presence of both M1 and M−1

1 in the conditions.
The two other nonlinearities are due to the products "F X , "F Y , "R X , "RY . Nevertheless, positive

parameters "F and "R related to the use of the S-procedure may be a priori fixed. Although their
numerical value may have an impact on the obtained solution, it remains limited and the a priori
choice does not prevent from obtaining an admissible solution.

At this stage, it is interesting to point out that Theorem 6 provides LMI conditions.
Based on Theorems 3 and 6, several LMI-based optimization problems can be proposed to

compute the anti-windup controller optimizing one of the following criteria: maximization of the
L2 bound on the admissible disturbances (disturbance tolerance maximization that corresponds
to minimize !); the minimization of the induced L2-gain between the disturbance w and the
regulated output z (disturbance rejection maximization that corresponds to minimize $ for a given
!) or the maximization of the region where the asymptotic stability of the closed-loop system is
ensured (maximization of the region of attraction).

Remark 9
Conditions of Theorem 3 (and Theorem 6) imply the satisfaction W A′

F + AF W<0. Owing to the
structure of matrix AF , this guarantees the asymptotic stability of the matrix Aa of the anti-windup
compensator. In the spirit of [27], it would then be possible to modify conditions of theorems in
order to force the poles of the anti-windup controller (i.e. the poles of matrix Aa) to be located in
a certain region.

4.1. Maximization of the L2 bound

In the case of Theorem 3, the following convex optimization problem can be considered: Fix M1
for which (17) holds; Choose small enough "F>0 and "R>0; Solve min!, subject to relations
(25), (26), (27), with respect to the decision variables X , Y , !, S, Z1, Z, $1, $2, $3, $4, $. In
the case of Theorem 6, we solve min!, subject to relations (36), (37), (38), with respect to the
decision variables X , Y , P11, P12, P13, !, S, Z1, Z, $1, $2, $3, $4, $5, $6, $7, $.

4.2. Minimization of the induced L2-gain

Given !, we want to solve the following optimization: min$ subject to relations of Theorem 3 or 6.

4.3. Maximization of the region of attraction

At this aim, we consider the disturbance-free case (i.e. w=0). Hence, a modified version of
Theorem 3 or 6 is considered: in relation (25) or (36), the two lines and columns related to the
disturbance and the output z are removed. Different linear optimization criteria J (.), associated
with the size of E(P,!), can be considered, like the volume, the size of the minor axis or the
maximization of a scaling factor allowing to include a given shape in the ellipsoid [28, 29]. In
particular, it is interesting to address this problem in the plant space. For the sake of simplicity,
in this case, we set !=1. Choose a set of interesting directions vi ∈Rn p , i =1, . . . ,q . Define
ṽi = Navi ∈Rn p+nc , with Na =

[
In p
0

]
, one considers the additional constraint '−[ṽ′

i 0]P
[

ṽi
0

]
!0,

i =1, . . . ,q , or equivalently from the definition of P:
[

' v′
i N ′

a

! X

]

!0, i =1, . . . ,q (44)

Thus, we want to solve the following optimization problem: min' subject to (44) and modified
relations of Theorems 3 or 6.

4.4. Reduced-order anti-windup compensator

Let us now focus on a special case where the matrices Aa and Ca of the anti-windup compensator
are a priori fixed. This allows not only to control the order of the anti-windup compensator but

Copyright ! 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:1159–1177
DOI: 10.1002/rnc



ANTI-WINDUP STRATEGY FOR RESET CONTROL SYSTEMS 1173

also to reduce the computational efforts. For example, in relation (14) of Proposition 2 the main
nonlinearity involving W , Aa and Ca can be removed as soon as the matrices Aa and Ca of the
anti-windup controller are fixed. The main difficulty however resides in choosing the matrices Aa
and Ca adequately. According to the approach developed in [23], for instance, (see also [30, 31]),
this choice may be carried out by considering the poles of the anti-windup controller. These poles
can be chosen by selecting a part of poles obtained in the full order design case (na =n p +nc).
Typically, the slow and fast dynamics are eliminated. Alternatively, an iterative procedure starting
from the static case can be used. The list of poles is then progressively enriched until the gap
between the full and reduced order cases becomes small enough. Note then that the order of
the controller is now given by na =n1 +2n2, where n1 and n2 correspond, respectively, to real
and complex poles and have to be chosen sufficiently small, so that na<n p +nc. The algorithm
proposed in [31] is based on a different decomposition of the anti-windup controller using dyadic
forms and the associated procedure requires the user to specify output pole directions which may
not be trivial.

Another interesting way consists in imposing a particular architecture to the anti-windup compen-
sator, quite different from the anti-windup scheme (5) and copying in part the plant as follows
[2, 32, 33]:

ẋa = (Ap + Bp Fa)xa + Bp(sat(yc + ya1)−(yc + ya1))

ya1 = Fa xa

ya2 = C pxa

(45)

leading to the modified controller:

ẋc(t, j) = Acxc(t, j)+ Bc(y(t)+ ya2)

yc(t, j) = Ccxc(t, j)+ Dc(y(t)+ ya2)

"̇(t, j) = 1





if (x p, xc, xa)∈F or ""#

xc(t j+1, j +1) = 0

"(t j+1, j +1) = 0

}

if (x p, xc, xa)∈J and "!#

(46)

where xa ∈Rn p , sat(yc + ya1)−(yc + ya1), ya2 ∈R1, ya1 ∈R1 are the state, the input and the outputs
of the anti-windup compensator. Using the augmented state vector x , as defined in (7), a similar
closed-loop system as described in (9) can be obtained. The anti-windup design then consists in
synthesizing the gain Fa such that matrix Ap + Bp Fa is Hurwitz. From this, Proposition 2 can be
used. Similar to Section 3.3, we can adapt the conditions in the case where the flow and jump sets
are defined from the region of stability.

Remark 10
The static anti-windup case can be considered: by choosing na =0, Aa =0, Ba =0, Ca =0 and by
computing the gain Da .

4.5. Numerical examples

We consider the system proposed in [34] characterized by the linear open-loop unstable system:

ẋ p = 0.1x p +u

y = z = x
(47)

where u satisfies relation (3) with u0 =1 and the stabilizing PI controller

ẋc = −0.2y

yc = xc −2y
(48)
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Figure 1. Region of attraction of the reset system with anti-windup (50) (solid) and without (dotted).

4.5.1. Flow and jump set case 1. We first aim at applying Theorem 3 to solve the optimization
problem proposed in Section 4.3. System (47)–(48) is subject to a reset control law satisfying
(11)–(12). We define the set of interesting directions, denoted '0, as a square region in R2:

'0 =Co

{[
1

1

]

;
[

1

−1

]

;
[

−1

1

]

;
[

−1

−1

]}

(49)

To apply Theorem 3, we suppose scalars !, "F and "R a priori fixed (as !=1, "F =1.910−6 and
"R =1.25,10−8) and M1 =m1 I . The estimation of the stability domain is depicted in Figure 1,
where the dotted ellipsoid represents the estimation of the region of attraction without anti-windup.
By applying the numerical procedure proposed in Section 4.3, one obtains the following matrices:

Aa =
[

−0.0843 0.0130

−0.1549 −0.1907

]

, Ba =
[

−0.4e−3

0.17e−3

]

, Ca = [2.4 2.3], Da =0.11, (50)

The associated domain of stability is in solid line in Figure 1. Note that we obtain a better estimation
of the basin of attraction thanks to the anti-windup layer. Trajectories starting from several initial
states are also plotted in Figure 1. They illustrate that the set E(P,!) is a good approximation of
the basin of attraction of the origin. Note that some points of instability are outside of E(P,!) but
very close to its boundary.

Considering the performance analysis, i.e. solving the optimization problem proposed in Section
4.2 subject to relation of Theorem 3, we obtain, for the same stability region, the values of $
as follows: $=2.7 in the linear case, $=0.8 with reset and $=1.03 with reset and anti-windup
(see also temporal simulations in Figure 2). We emphasize that the anti-windup compensator is
designed to improve the performance. If the obtained L2 gain is actually better than the linear
case one, the system behavior is better with reset and without anti-windup. Indeed, in this case,
the anti-windup compensator acts to smooth the reset controller output yc to avoid saturation. As
a consequence, states of the closed-loop system remain in the flow set, and we do not benefit of
jump action to improve output convergence. For this example, anti-windup is efficient to enlarge
the stability region, but not really to minimize the L2-gain.

4.5.2. Flow and jump set case 2. We are now applying Theorem 6. The objective is to synthesize
a new reset control rule and new flow and jump sets in order to obtain a stability domain as large as
possible. We consider system (47)–(48) with the reset control law (34). Flow and jump sets satisfy
(35). We solve the optimization problem proposed in Section 4.3 subject to relations of Theorem
6 to obtain sets E(P,1) and E(P1,1) as large as possible. The anti-windup controller (39) leads to
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Figure 2. Output y(t) of system (47)–(48) in the linear case (dashed line, $=2.7), with reset (solid line
$=0.8) and with reset and anti-windup (dotted line, $=1.03).

Figure 3. Stability domain of system (47)–(48) with the reset control law (33).

E(P,1), the black continuous line ellipsoid in Figure 3. Note that this stability domain is close to
the one obtained with a static anti-windup in [34]. By computing the reset law (40), we obtain a
stability domain E(P1,1) quasi tangent to E(P,1), which allows to extend the region of stability
in the directions xc. The region of stability for the closed-loop system is the union of these two
sets, included in the red continuous line (the grey zone of Figure 3).

5. CONCLUSION

This paper dealt with the anti-windup design technique for a SISO linear system controlled by a
reset controller and subject to saturation. In this context, different types of reset rule and therefore
different flow and jump sets were considered. Constructive conditions leading to quasi-LMIs
or LMIs, based on the use of suitable Lyapunov functions, modified sector condition and the
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application of adequate congruence transformations, were proposed to exhibit the matrices defining
the anti-windup compensator. The computation of the anti-windup compensator aiming at ensuring
both finite gain L2 stability and internal stability of the closed-loop system was then carried out
from the solution of some convex optimization problems.

A natural extension of this work could be to consider MIMO reset systems, leading to revisit
the definition of reset rules, and to deal with more complex Lyapunov functions, as, for example,
piecewise Lyapunov functions.

ACKNOWLEDGEMENTS

This work is supported in part by the ANR project ArHyCo, ARPEGE, contract number ANR-2008 SEGI
004 01-30011459.

REFERENCES

1. Glattfelder AH, Schaufelberger W. Control Systems with Input and Output Constraints. Springer: Amsterdam,
2003.

2. Galeani S, Tarbouriech S, Turner MC, Zaccarian L. A tutorial on modern anti-windup design. European Journal
of Control 2009; 15(3–4):418–440.

3. Grimm G, Hatfield J, Postlethwaite I, Teel AR, Turner MC, Zaccarian L. Antiwindup for stable linear systems
with input saturation: an LMI-based synthesis. IEEE Transactions on Automatic Control 2003; 48(9):1509–1525.

4. Hu T, Teel AR, Zaccarian L. Anti-windup synthesis for linear control systems with input saturation: achieving
regional, nonlinear performance. Automatica 2008; 44(2):515–519.

5. Tarbouriech S, Garcia G, Glattfelder AH (eds). Advanced Strategies in Control Systems with Input and Output
Constraints, Lecture Notes in Control and Information Sciences, vol. 346. Springer: Berlin, 2007.

6. Tarbouriech S, Turner MC. Anti-windup design: an overview of some recent advances and open problems. IET
Control Theory and Application 2009; 3(1):1–19.

7. Beker O, Hollot CV, Chait Y. Plant with an integrator: an example of reset control overcoming limitations of
linear feedback. IEEE Transactions on Automatic Control 2001; 46:1797–1799.

8. Feuer A, Goodwin GC, Salgado M. Potential benefits of hybrid control for linear time invariant plants. American
Control Conference, New Mexico, U.S.A., vol. 5, June 1997; 2790–2794.

9. Bobrow JE, Jabbari F, Thai K. An active truss element and control law for vibration suppression. Smart Materials
and Structures 1995; 4(4):264–269.

10. Bupp RT, Bernstein DS, Chellaboina VS, Haddad WM. Resetting virtual absorbers for vibration control. American
Control Conference, New Mexico, U.S.A., vol. 5, June 1997; 2647–2651.

11. Haddad WM, Chellaboina VS, Kablar NA. Active control of combustion instabilities via hybrid resetting
controllers. American Control Conference, June 2000; 2378–2382.

12. Zheng Y, Chait Y, Hollot CV, Steinbuch M, Norg M. Experimental demonstration of reset control design. Control
Engineering Practice 2000; 8(2):113–120.

13. Clegg JC. A nonlinear integrator for servomechanisms. Transactions, A.I.E.E 1958; 77(Part II):41–42.
14. Nes̆ic̀ D, Zaccarian L, Teel AR. Stability properties of reset systems. Automatica 2008; 44(8):2019–2026.
15. Prieur C, Goebel R, Teel AR. Hybrid feedback control and robust stabilization of nonlinear systems. IEEE

Transactions on Automatic Control 2007; 52(11):2103–2117.
16. Prieur C, Teel AR. Uniting local and global output feedback controllers. IEEE Transactions on Automatic Control

2011; DOI: 10.1109/TAC.2010.2091436.
17. Goebel R, Prieur C, Teel AR. Smooth patchy control Lyapunov functions. Automatica 2009; 45(3):675–683.
18. Zaccarian L, Nes̆ic̀ D, Teel AR. First order reset elements and the Clegg integrator revisited. American Control

Conference, Portland, OR, U.S.A., June 2005; 563–568.
19. Loquen T, Tarbouriech S, Prieur C. Stability analysis for reset systems with input saturation. Conference on

Decision and Control, New Orleans, LA, U.S.A., 2007; 3272–3277.
20. Goebel R, Sanfelice RG, Teel AR. Hybrid dynamical systems. IEEE Control Systems Magazine 2009; 29(2):28–93.
21. Prieur C, Tarbouriech S, Zaccarian L. Guaranteed stability for nonlinear systems by means of a hybrid loop.

IFAC Symposium on Nonlinear Control Systems (NOLCOS), Bologna, Italy, September 2010; 72–77.
22. Tarbouriech S, Prieur C, Gomes da Silva Jr JM. Stability analysis and stabilization of systems presenting nested

saturations. IEEE Transactions on Automatic Control 2006; 51(8):1364–1371.
23. Biannic J-M, Tarbouriech S. Optimization and implementation of dynamic anti-windup compensators with multiple

saturations in flight control systems. Control Engineering Practice 2009; 17:703–713.
24. Bender FA, Gomes da Silva Jr JM, Tarbouriech S. A convex framework for the design of dynamic anti-windup

for state-delayed systems. American Control Conference, Baltimore, U.S.A., June 2010; 6763–6768.
25. Scherer C, Gahinet P, Chilali M. Multi-objective output-feedback control via LMI optimization. IEEE Transactions

on Automatic Control 1997; 42(7):896–911.

Copyright ! 2011 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control 2011; 21:1159–1177
DOI: 10.1002/rnc



ANTI-WINDUP STRATEGY FOR RESET CONTROL SYSTEMS 1177

26. El Ghaoui L, Oustry F, Ait Rami M. A cone complementarity linearization algorithm for static output-feedback
and related problems. IEEE Transactions on Automatic Control 1997; 42(8):1171–1176.

27. Roos C, Biannic J-M. A convex characterization of dynamically-constrained anti-windup controllers. Automatica
2008; 44(9):2449–2452.

28. Hu T, Lin Z. Control Systems with Actuator Saturation: Analysis and Design. Birkhäuser: Boston, MA, 2001.
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