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Abstract— This paper focuses on the anti-windup design for
saturated one-dimensional linear reaction-diffusion equation.
The considered open-loop system admits a finite number of
unstable poles. We consider a scenario in which the system is
controlled via a dynamic output feedback controller ensuring
closed-loop exponential stability. Within this setting, a method
is proposed to design a dynamic anti-windup compensator to
maximize the region of attraction and minimize the effect of
external perturbations. More precisely, the sufficient conditions
for the local exponential stability of the closed-loop system are
derived and expressed in terms of a set of matrix inequalities.
Using generalized sector conditions and proper change of vari-
ables, the conditions are then recast as an optimization problem
solving linear matrix inequalities. A numerical example is
provided to showcase the proposed method and highlight its
effectiveness on the system performance.

I. INTRODUCTION

In various control engineering problems, the linearity of
the modeled system is hindered by a nonlinear saturated
control input. This constraint on the control input generates
an inconsistency (also called a windup) described by an
offset between the plant input and the unconstrained con-
trol signal. The main goal for introducing an anti-windup
compensator is to compensate for this offset and therefore
restore consistency within the closed-loop system. The early
anti-windup technique was presented in [6] and then later
extended to observer-based approaches in [1], [24]. There
have been several advancements in different anti-windup
schemes in the general context of finite-dimensional systems
(see [5], [11], [23] for some literature on this topic).

A popular approach is LMI-based, in which the saturation
is treated as a sector nonlinearity and Lyapunov methods are
used to derive linear matrix inequalities (LMIs) conditions
that can guarantee the desired regions of attraction for
the system origin and performance levels. The method can
be briefly described as measuring the difference between
the control signal before and after saturation and injecting
it into the compensator system which then recovers the
discrepancy, in a manner that satisfies the LMI conditions,
and emits a signal into the controller state equation. In some
applications, the compensator emits a second signal into
the saturated control input directly. In the general context
of infinite-dimensional systems, the notion of anti-windup
compensation is yet to be explored.

Infinite-dimensional systems emerge to be of utmost rel-
evance when studying physical systems throughout all engi-
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neering domains such as quantum systems, fluid mechanical
systems, wave propagation, diffusion phenomena. Further-
more, practical applications are subjected to delays, reaction-
diffusion dynamics, thermodynamics, etc. Therefore, the
control theory of infinite-dimensional systems remains a
necessary area of research and its motivation has been well
established (see more in [4], [14], [15]). The problem of
output feedback control by means of an observer-based
control, adaptive control or model predictive control has been
previously presented in (see [3], [25]) and output-feedback
control extensions to PDEs (see e.g., [2], [26]).

In this work, we focus on the output feedback stabilization
of a specific type of partial differential equation called the
reaction-diffusion equation. The global stability of a reaction-
diffusion equation has been investigated in previous papers
[7]–[9], [12], [19] and the extension to local stability in the
case of saturated actuator was studied in [13]. We will use
the regional, LMI-based anti-windup scheme presented in
[21], [22] to achieve local exponential input-output stability
for a class of distributed parameter systems. More precisely,
a dynamic anti-windup compensator will be introduced to a
stable closed-loop system consisting of a reaction-diffusion
plant in feedback with a saturated dynamic controller. The
control input acts on the domain of the partial differential
equation. Using Lyapunov methods, dead-zone nonlinearities
and associated sector conditions, we tackle two main issues.
The first is estimating the region of attraction for the closed-
loop system given in terms of linear matrix inequalities when
the in-domain exogenous signal is considered to be null. The
second is evaluating the performance level of each system
by estimating the input-output stability (IOS) gain when the
in-domain exogenous signal is different than zero and is
energy-bounded. In the process of achieving these two goals,
an optimization problem for the anti-windup design problem
is presented which allows the optimization of the region of
attraction and the stability gain. Finally, the efficiency of the
proposed method is illustrated using numerical simulations
which clearly demonstrate the benefits of the anti-windup
compensator in a saturated control problem.

The remainder of this paper is organized as follows.
Section II presents preliminary definitions and results and
states the problem that we solve. Section IV presents the
main results pertaining to stability analysis and anti-windup
design. Section VI showcases the effectiveness of the pro-
posed method through a numerical example. Finally, Section
VII concludes the paper and offer some future insight.

Notation and basic notions: The symbol Snp denotes
the set of real n × n symmetric positive definite matri-
ces. We use the notation He(A) = A + A> for square



matrices. For a symmetric matrix A, positive definiteness
and positive semidefiniteness are denoted, respectively, by
A > 0 and A ≥ 0. Also, λmin(A) (respectively λmax(A))
denotes its smallest (respectively largest) eigenvalue. The
following shorthand notation is used M>AM = (•)>AM .
We use the equivalent notation for Euclidean vectors (x, y) =[
x> y>

]>
. In partitioned symmetric matrices, the symbol

? stands for symmetric blocks. For a vector z ∈ Rn, ‖z‖
denotes its Euclidean norm. For U ⊂ R, f : U ⊂ R −→ V ,
we denote by ‖f‖L2 = (

∫
U
‖f(z)‖2 dz) 1

2 , the L2-norm of1f
and the Fréchet derivative of f at z and is denoted by
Df(z). Given f : U ⊂ R −→ V , we say that f ∈ L2 if
f is measurable and ‖f‖L2 is finite. The symbol Ck(U, V )
denotes the set of functions f : U → V that are k-times
continuously differentiable. Let p a positive integer, the
symbol Hp(0, 1), denotes the set of functions f : [0, 1]→ R
such that f, ddz f, . . . ,

dp−1

dzp−1 f are absolutely continuous on
(0, 1) and dp

dzp f ∈ L
2.

Let p ∈ C1([0, 1];R) and q ∈ C0([0, 1];R) with p, q > 0.
Let the Sturm-Liouville operator A : D(A) ⊂ L2(0, 1;R) −→
L2(0, 1;R) be defined by

Af := −(pf ′)′ + qf (1)

on the domain D(A) ⊂ L2(0, 1;R) given by D(A) :=
{f ∈ H2(0, 1) : f ′(0) = f(1) = 0}. The eigenvalues
λn, n ≥ 1 of A are simple, non-negative, and form an
increasing sequence with λn −→ +∞ as n −→ +∞. Moreover
the associated unit eigenvectors φn ∈ L2(0, 1;Rn) form
an orthonormal basis and we also have D(A) = {f ∈
H2(0, 1;R) :

∑
n≥1 |λn|2|〈f, φn〉|2 < +∞} and Af =∑

n≥1 λn〈f, φn〉φn. Let p?, p?, q?, q? ∈ R be such that
0 < p? ≤ p(x) ≤ p? and 0 < q? ≤ q(x) ≤ q? for all
x ∈ [0, 1], then it holds (see e.g., [16]), for all n ≥ 1,

0 ≤ π2(n− 1)2p? + q? ≤ λn ≤ π2n2p? + q?. (2)

II. PROBLEM STATEMENT

We consider the stabilizability problem of a one-
dimensional linear reaction-diffusion equation by means of
a distributed control input u. The system model is given for
all t ≥ 0 and for z ∈ (0, 1):

wt(t, z) =(p(z)wz(t, z))z + (qc − q(z))w(t, z)

+ b(z)u(t) +m(z)d(t)

wz(t, 0) = w(t, 1) = 0

y(t) = w(t, 0).

(3)

The state-space of this system is L2(0, 1;R), and we
assume that qc ∈ R and b,m ∈ L2(0, 1;R). We suppose
that the control input is subject to a symmetric magnitude
limitation ūl such that u := σ(v) = min(|v|, ūl)sign(v)
where the input signal v is given by the output of the control
system dynamics specified later. The dynamics are written in
abstract form, and given an initial condition w0, the Cauchy

1In this paper, we only consider Lebesgue measurable functions.

problem is written as:

ẇ = −Aw + qcw + bu+md
w(0) = w0.

(4)

for the Sturm-Liouvile operator defined by (1).

A. Partition of the System into Stable and Unstable parts

The Sturm-Liouville operator A consists of positive single
eigenvalues (λn)n≥0 such that λn → ∞, as n → ∞. Now,
introduce the coefficients of projection wn = 〈w(·),Φn〉,
bn = 〈b,Φn〉 and mn = 〈m,Φn〉 for n ∈ N?. We have for
all w(t, ·) ∈ D(A) and for all t ≥ 0 and for n ∈ N?:

ẇn = (−λn + qc)wn + bnu+mnd,

y =
∑
i≥1

Φi(0)wi. (5)

Let N0 ≥ 1 and δ > 0 be given such that −λn+qc < −δ < 0
for all n ≥ N0 + 1. We now introduce an arbitrary integer
N ≥ N0 which will be further constrained later. We design
an output feedback controller that will act on and modify the
first N modes of the plant. First, we introduce the following
vectors:

WN :=
[
w1 w2 . . . wN

]>
, B1 :=

[
b1 b2 . . . bN

]>
,

B2 :=
[
m1 m2 . . .mN

]>
, A0 = Diag(−λ1 + qc, . . . ,−λN + qc)

and we focus on the following finite-dimensional truncation
of (5):

ẆN = A0W
N +B1u+B2d. (6)

When d = 0, if qc > λ1, then system (6) is unstable. The
following assumptions are enforced henceforth.

Assumption 1: The pair (A0, B1) is controllable.

Assumption 2: Let ξ > 0. We suppose that the Lipschitz
continuous exogenous disturbance d belongs to the following
set of functions S :=

{
d : R≥0 → R : d2(t) ≤ ξ−1, ∀t ≥ 0

}
.

Given N ≥ N0, consider the following state space
representation for the continuous-time linear plant P:

ẆN = A0W
N +B1σ(v) +B2d,

ẇn = (−λn + qc)wn + bnσ(v) +mnd n ≥ N + 1,

y =
∑
i≥1

Φi(0)wi.
(7)

The closed-loop system is composed of the plant P with a
linear time-invariant dynamic output feedback controller Kc
given by:

Ẋc = AcXc +Bcy + vx

v = Yc = CcXc

(8)

where Xc ∈ RN is the state of the controller and Ac ∈
RN×N , Bc ∈ RN and Cc ∈ R1×N and the term vx, related
to the anti-windup setting, is considered to be null at this
point. We assume that the control parameters Ac, Bc, Cc, Dc

are given such that, for no saturation limitation and without
disturbances, the origin of the closed-loop system (7) is
globally exponentially stable (the design of such matrices
is done in e.g., [7]).



The main objective of this work is to introduce and design
an anti-windup compensator such that we meet the desired
system performance levels in terms of stability gain and
region of attraction. The general framework of the anti-
windup compensator is presented in the next section.

III. GENERAL SET-UP FOR THE ANTI-WINDUP

We introduce an anti-windup compensator to the overall
system such that the output of the anti-windup plant is
plugged into the dynamics of the control state Xc. The extra
input vx is given in the following simplified direct anti-
windup system Ka presented in [20, Chapter 7] called the
direct linear anti-windup design:

Ẋaw = AawXaw +Baw(σ(Yc)− Yc)
vx = CawXaw +Daw(σ(Yc)− Yc),

(9)

where Xaw ∈ R2N is the anti-windup state such that
the dimension of the anti-windup state is the sum of the
dimensions of WN and Xc and the output of the anti-windup
plant Yaw is injected into the dynamics of the controller
state (Yaw = vx). The goal is to design suitable anti-windup
parameters Aaw ∈ R2N×2N , Baw ∈ R2N , Caw ∈ RN×2N

and Daw ∈ RN so that the origin of system (3) in closed
loop with (8), (9) achieves input-output stability with smaller
IOS gain and larger region of attraction.

For all ζa ∈ H1(0, 1) × RN × R2N , we define the

following norm: ‖ζa‖H1
a

:=
√
‖w‖2H1 +X>c Xc +X>awXaw.

The deadzone nonlinearity is defined by φ(v) := σ(v) −
v. Denoting C := (Φ1(0),Φ2(0), . . .ΦN (0)) and ỹ :=∑
i≥N+1 Φi(0)wi, the interconnection of (7), (8), and (9)

can be formerly written as (P,Kc,Ka):

Ẋf = A11Xf +B11φ(Yc) +B12d+B13ỹ

ẇn =(−λn + qc)wn + bnCcXc + bnφ(Yc) +mnd

n ≥ N + 1

Yc = KXf

y = CWN + ỹ.
(10)

where Xf :=
[
WN Xc Xaw

]>
and

A11 :=

 A0 B1Cc 0
BcC Ac Caw

0 0 Aaw

 =:

[
A B
0 Aaw

]

B11 :=

 B1

Daw
Baw

 , B12 :=

B2

0
0

 , B13 :=

 0
Bc
0

 ,K :=

 0
Cc
0

> .
(11)

A wellposedness result follows from [17, Theorem 1.6,
Chapter 6, Page 189].

Proposition 1: [17] Let d Lipschitz continuous in
L1(domd;R) and w0 ∈ D(A). Then, the closed-loop sys-
tem consisting of (4), (8) and (9) has a unique strong
solution pair2 ((w,Xc, Xa), d) ∈ C1(domw;L2(0, 1;R)) ×
C1(domXc,RN ) × C1(domXc,R2N ) × C1,1(domd;R) where

2A pair ((w,Xc, Xa), d) is a strong solution pair to (10) if (w,Xc, Xa)
is differentiable almost everywhere and it satisfies its dynamics for a.e. t.

domd = domw = domXc = domXa is an interval of R≥0

including zero. �
There are two main issues to tackle in system (10). The

first issue is in the case when d = 0, where the goal is
to optimize the region of attraction. The second issue is in
the case when the energy bounded exogenous signal d 6= 0,
where the goal is to minimize the effect of the disturbance
signal on the input-output stability property. We are now able
to formally state the problem we solve in this paper.

Problem 1: Given p ∈ C2([0, 1];R), q ∈ C0([0, 1];R)
with p, q > 0 and qc ∈ R. Given the control pa-

rameters
[
Ac Bc
Cc 0

]
. Design the anti-windup parameters

Aaw, Baw, Caw, Daw such that the following properties hold
for system (3) in closed loop with (8) and (9):
• the origin of the closed-loop system is zero-input locally

exponentially stable with region of attraction Ra,
• for some (solution independent) ψa, υa, ρa > 0, for each

strong solution pair (ζa, d) ∈ Ra×S to the closed-loop
system, the bound:

|y(t)| ≤ ψae−υat ‖ζa(0)‖H1
a

+ ρa

√∫ t

0

d(θ)
2dθ (12)

holds for all t ∈ R≥0.
Inequality (12) corresponds to an input-output stability

(IOS) bound for the closed-loop system. The main contri-
bution of this paper is to design an anti-windup system Ka
in order to further minimize the effect of the gain ρa for
d 6= 0 and further maximize the region of attraction Ra for
d = 0. In the next section, we provide an explicit estimate
of the IOS gain ρa and the region of attraction Ra.

IV. INPUT-OUTPUT LYAPUNOV STABILITY ANALYSIS

A. Sufficient Conditions

The following section presents sufficient conditions for the
solution to Problem 1. The result relies on an exponential
dissipation inequality. This is done by proving the following
proposition:

Proposition 2: Assume there exist a Fréchet differen-
tiable functional V : H1(0, 1;R) × RN × R2N −→ R≥0 and
c1, c2, c3, c4, χ ∈ R>0 such that

χ2 < ξc3c4, (13)

and such that for each d ∈ S and ζa satisfying V(ζa) ≤ c4,
the following hold:

c1 ‖ζa‖2H1
a
≤ V(ζa) ≤ c2 ‖ζa‖2H1

a
, (14)

DV(ζa)ζ̇a ≤ −c3V(ζa) + χ2d2. (15)

Then, the origin of the closed-loop system (10) is zero-input
exponentially stable with region of attraction containing
{ζ, V(ζ) ≤ c4}. In particular, (12) holds with:

ψa =

√
2c2
c1
, υa =

c3
2
, ρa =

√
2
χ
√
c1
. (16)

Proof: Define Ra = {ζa, V(ζa) ≤ c4}. First we
consider a strong solution pair (ζa(t), d(t)); i.e, ζa ∈ Ra



and d ∈ S ∩C1,1(domd;R) for all t ∈ domζa where domζa is
an interval of R≥0 including zero. Now, consider the function
W : dom ζa −→ R defined by W(t) = (V ◦ ζa)(t) Then, since
V : H1(0, 1;R)×RN −→ R≥0 is Fréchet differentiable every-
where and ζa : domζa −→ H1(0, 1;R)× RN is differentiable
almost everywhere, it follows that Ẇ(t) = DV(ζa)ζ̇a(t).
Thus we have for almost all t ∈ domζa

Ẇ(t) = DV(ζa)

−Aw(t) + qcw(t) + bu(t) +md(t)
AcXc(t) +Bcy(t) + vx

AawXaw(t) +Baw(t)φ(Yc(t))


Using (15), one gets, for all t ∈ domζa, Ẇ(t) ≤ −c3W(t) +
χ2d(t)

2. With (13), using a similar argument as [10, Lemma
9.2, page 347], one has that ζa cannot leave the set Ra.
Therefore, since W is continuous on dom ζa, from compari-
son lemma [10, Page 102], we have:

W(t) ≤ e−c3tW(0)+χ2

∫ t

0

e−c3(t−θ)d(θ)
2
dθ, ∀t ∈ domζa.

The latter, thanks to (14), ensures that the origin of the
closed-loop system is locally exponentially stable with re-
spect to the H1

a-norm and with a region of attraction Ra
when d = 0. The rest of the proof follows the proof done in
[19, Proposition 2].
The result given next provides the sufficient conditions for
local exponential stability under the form of quadratic matrix
inequalities.

Theorem 1: Suppose there exist P ∈ S4N
p , T ∈ R>0, G ∈

R1×4N , Aaw ∈ R2N×2N , Baw ∈ R2N , Caw ∈ R1×2N and
α, β, , γ, τ1, τ2 ∈ R>0 such that:

Θa :=


A1 PB11 −G>T PB12 PB13

? α′ ‖b‖2L2 − 2T 0 0
? ? α′ ‖m‖2L2 − τ2 0
? ? ? −β

 ≤ 0

(17)[
P K> −G>
? ū2

l

]
≥ 0 (18)

τ2ξ
−1 − τ1 < 0 (19)

Γn := λn

(
−λn + qc + τ1 +

3

α
+

β

2γ
Mφ

)
≤ 0,

∀n ≥ N + 1
(20)

where A1 := He(PA11) + τ1P + A22, A22 :=[
0 0 0
0 α′‖b‖2C>c Cc 0
0 0 0

]
and MΦ :=

∑
i≥N+1

Φi(0)2

λi
. Then, the

parameters Aaw, Baw, Caw, Daw solve Problem 1. In par-
ticular, (12) holds with:

ρa =
√

2τ2√
min{λmin(P ),γp?,γq?}

, va = τ1
2

ψa =
√

2 max{λmax(P ),γp?,γq?}
min{λmin(P ),γp?,γq?} .

(21)

Proof: The proof of the result hinges upon Proposi-
tion 2 with the following selection of the Lyapunov func-
tional:
V : H1(0, 1;R)× RN × R2N −→ R w

Xc

Xaw

 7→ X>f PXf + γ
∑

n≥N+1

λn〈w,Φn〉2.
(22)

Condition (14) holds for c1 := min{λmin(P ), γp?, γq?} and
c2 := max{λmax(P ), γp?, γq?} which are strictly positive.
Now we show that under the assumptions of the result, (15)
holds. In particular, let:

V̇(w,Xc, Xaw, d) := DV(w,Xc, Xaw)

 ẇ

Ẋc

Ẋaw

 (23)

To this end, let V1(Xf ) := Xf
>PXf . Then, one gets:

DV1(Xf )Ẋf =

[
Xf

d
ỹ
φ

]> [
He(PA11) PB12 PB22 PB23

‘? 0 0 0
? ? 0 0
? ? ? 0

][Xf

d
ỹ
φ

]
.

Let G :=
[
G1 G2

]
∈ R1×2N × R1×2N . Note that, due

to condition (18), for any Xf satisfying X>f PXf ≤ 1, it
holds Xf ∈ {Xf ∈ R4N ; |KXf − GXf | ≤ ūl}. Therefore,
by using [20, Lemma 1.6, Page 43] with v1 = KXf and
v2 = GXf , it holds

φ(KXf )>T (φ(KXf ) +GXf ) ≤ 0 (24)

for all Xf satisfying X>f PXf ≤ 1. In particular
(w,Xc, Xaw) ∈ Ra, then we have that X>f PXf ≤ 1 and so
(24) holds, and we get the following inequality

DV1(Xf )Ẋf − τ2d>d ≤
DV1(Xf )Ẋf − τ2d>d− 2φT (φ(KaXf ) +GXf ).

(25)

Now, let V2(w) := γ
∑
n≥N+1 λn〈w,Φn〉 with γ > 0. Then

DV2(w)ẇ = 2γ
∑

n≥N+1

λn((−λn + qc)w
2
n + bnσ(Yc)wn

+mndwn).

Thus, bearing in mind that V = V1 + V2, using (25) for all
(w,Xc, Xaw) ∈ Ra, one gets:

V̇(w,Xc, Xaw, d) + τ1V(w,Xc, Xaw)− τ2d2 ≤

π>

He(PA11) + τ1P PB11 −G>T PB12 PB13

? −2T 0 0
? ? −τ2 0
? ? ? 0


Xfφd
ỹ


︸ ︷︷ ︸

π

+ 2γ
∑

n≥N+1

λn[(−λn + qc + τ1)w2
n + bnKXfwn + bnφwn

+mndwn]
(26)

The rest of the proof follows the proof done in [19, Theorem
4]. Thus, for all (w,Xc, Xaw) ∈ Ra and d ∈ R,

V̇(w,Xc, Xaw, d) + τ1V(w,Xc, Xaw)− τ2d2 ≤

π>Θaπ + 2γ
∑

n≥N+1

λn

(
−λn + qc + τ1 +

3

α
+

β

2γ
MΦ

)
w2
n

where Θa is defined in (17). Therefore, due to the satisfaction
of (17), (18), and (20), one gets, for all ∀ζa ∈ Ra, d ∈ R:

V̇(w,Xc, Xaw, d) + τ1V(w,Xc, Xaw)− τ2d2 ≤ 0

which corresponds to (15) with χ = τ2, c3 = τ1, and c4 = 1.
To conclude, observe that with the above selection of the
parameters in Proposition 2, (19) matches (13). Hence, the
result is established.



V. COMPENSATOR DESIGN AND OPTIMIZATION ISSUES

Theorem 1 provides sufficient conditions for the solution
to Problem 1. However, it turns out that the matrix Θa in (17)
is nonlinear in the decision variables P,Aaw, Baw, Caw, G,
and T . Thus, we transform the quadratic conditions found
in Theorem 1 into linear matrix inequalities that can be
exploited numerically in order to calculate the anti-windup
parameters.

A. LMI-based Compensator Design
Using Theorem 1 and getting inspiration from [18], we can

use a change of variables and derive a sufficient condition,
so that Problem 1 is numerically tractable, as stated in the
following proposition.

Proposition 3: Assume there exist X,Y ∈ S2N
p ,K ∈

R2N×2N ,M ∈ RN×2N , Q1 ∈ RN×1, Q2 ∈ R2N×1,
Z1, Z2 ∈ R1×2N , S, β, α′, α′′ ∈ R>0 and τ1, τ2 ∈ R>0

satisfying (19) and:

Ξ :=


A2 B1 − Z B2 B3 ‖b‖L2 Π>C>c
? α′′ − 2S 0 0 0
? ? α′ ‖m‖2L2 − τ2 0 0
? ? ? −β 0
? ? ? ? − 1

α′

 ≤ 0

(27)Y I Y C>2 − Z>1
? X C>2 − Z>2
? ? ū2

l

 > 0 (28)

where A2 := He(A) + τ1 and the following matrices are
defined as:

A :=

[
AY + B̄M A

K XA

]
,X :=

[
Y I
I X

]
,Z :=

[
Z1

Z2

]
;

B1 :=

[
B′1S + B̄Q1

Q2

]
,B2 :=

[
B′2
XB′2

]
,B3 :=

[
B′3
XB′3

]
and C2 :=

[
0 Cc

]
, Π :=

[
Y B̄ B̄

]>
. Then, I − Y X is

nonsingular. Let U, V ∈ R2N×2N be nonsingular matrices
such that Y X+V U> = I and γ, α > 0 such that α′ = αγ.

Assume moreover that (20) holds. Then, the anti-windup
parameters defined by[
Aaw Baw
Caw Daw

]
=

[
U XB̄
0 I

]−1[
K L
M E

][
V −> 0

0 I

]
−
[
XAY 0

0 0

]
(29)

where B̄ :=
[
0 I

]>
, E := Q1S

−1, L := Q2S
−1 − XB′1,

solve Problem 1 with (21).
Proof: Let T = S−1. First note that, due to (28),

I − Y X is nonsingular. Let Y :=

[
Y I
V > 0

]
and P :=[

X U

U> X̂

]
, where X̂ := U>(X − Y −1)−1U . Since V is

nonsingular, it follows that Y is so. Simple manipulations
yield

Θ′a := Λ>Θa Diag(Y, S, I, I)︸ ︷︷ ︸
Λ

=


A3 Y>PB11S − Y>G> Y>PB12 Y>PB13

? α′ ‖b‖2L2 S
2 − 2S 0 0

? ? α′ ‖m‖2L2 − τ2 0
? ? ? −β



with G :=

[
Z1

Z2

]>
Y−1 ∈ R1×4N and A3 :=

Y>(He(PA11) +A22 + τ1P )Y . We may check that

Y>(He(PA11))Y = He(A); Y>PY = X;

Y>PB11S =

[
B′1 + B̄Daw

X(B′1 + B̄Daw) + UBaw

]
S = B1;

Y>PB12 = B2; Y>PB13 = B3; Y>G> = Z;

Y>A22Y = Π>α′ ‖b‖2L2 C
>
c CcΠ.

(30)
Thus, using Schur complement lemma, the following equiv-
alence holds Θ′a < 0 ⇐⇒ Ξ < 0. Therefore, under (27),
(17) holds. Moreover, notice that from (28), it holds X > 0.
Hence, thanks to the second relationship in (30) and Y being
nonsingular, it follows that P > 0.

In addition, again by relying on the nonsingularity of Y ,
multiplying the matrix in the left-hand side of (18) by Y>
and Y on the right-hand side, we obtain that (18) is implied
by (28). Therefore all the assumptions in Theorem 1 hold,
thereby concluding the proof.

Remark 1: Notice here also that the matrix in (27) is
nonlinear in the terms X,Y, τ1, α

′. The nonlinear terms
τ1X, τ1Y , 1

α′ , become linear if τ1, α′ are fixed by performing
a line search on τ1, α′ ∈ R≥0. By choosing γ = β, we can
deduce the value of α from α′. ◦

B. Optimal compensator design

The minimization problem of the effect of the external
perturbations on system (3) in closed loop with (8) and (9)
boils down to designing the anti-windup with minimal ρa
in (12). Due to (21), such minimization can be achieved by
solving the following optimization problem:

inf τ2 + r − β
subject to: (19), (20), (27), (28), X, Y ∈ S2N

p ,[
−rI V > 0
? −Y I
? ? −X

]
≤ 0.

(31)

Minimizing the value of r is equivalent to maximizing
λmin(P ) with P as in Proposition 3. Indeed, it turns out
that

P−1 =
[
Y V
? V >(Y−X−1)−1V

]
and the last constraint in (31) is equivalent to P−1 − rI ≤
0 which means 1

λmin(P ) ≤ r. Other optimization problems
could be solved, as the maximization of the size of the region
of attraction for the local exponential stability of the origin
of (3) in closed loop with (8) and (9).

Remark 2: The basic algorithm to design the anti-windup
compensator is as follows. For the given system, we numer-
ically solve the linear conditions (19), (27), (28) for N ≥ 0.
Then, we confirm that (20) holds for the chosen N . If not,
we increment N and repeat the procedure. The anti-windup
parameters are then deduced using (29). ◦

VI. NUMERICAL SIMULATION

In this section, we use the YALMIP package in MATLAB
to solve the LMIs and derive a feasible solution to Problem 1.
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Fig. 1. Left: time evolution of the output y with anti-windup (solid-blue
line), without anti-windup (dashed-red line) and without saturation (dotted-
black line). Right: time evolution of the saturated control signal u(t).

Consider (3) with b(z) = m(z) = p(z) = q(z) ≡ 1. We il-
lustrate the result of Section III using a modal approximation
that captures the 50 dominant modes of the reaction-diffusion
plant with an in-domain disturbance given by, for all t ≥ 0,
d(t) = 0.5 sin(2t), so that Assumptions 1 and 2 hold with
ξ = 1. The saturation limit is ūl = 1. Choose qc = 3 such
that the open-loop plant is unstable with N0 = 1 and select
the dimension of the finite-dimensional controller N = 2.
We consider a given output feedback controller rendering the
closed-loop, system without saturation, exponentially stable.
For this selection of the controller, solving (31) gives:

Aaw =

[ 0.53 0.01 −0.18 5.17
−0.02 −22 5.05 −1.87
−0.25 1.36 −149 1.65
−7.42 9.23 −24 −1.4

]
, Baw =

[ −81
−14
34
−195

]
Caw =

[−18 −34 −12 −28
−4 −23 15 −29

]
, Daw = [ 197

124 ]

(32)

Figure 1 shows that the norm of the output of the closed-
loop system with anti-windup converges to zero faster and
smoother than that without anti-windup, imitating the linear
behavior. Also, the effect of the disturbance on the steady-
state reflects the bound in (12). In addition, Figure 1 shows
that the control input in the closed-loop system with anti-
windup tends to saturate for a longer time. This makes the
effect of the proposed anti-windup compensator clear.

VII. CONCLUSION

In this paper, we designed an anti-windup compensator
for a reaction diffusion equation with in-domain saturated
control inputs. The proposed compensator allowed to com-
pensate for the control saturation. Sufficient conditions for
regional exponential stability and input-output stability were
devised. A numerical affordable approach to the design of
the compensator was propoed.

The use of more general Lyapunov functionals and alterna-
tive anti-windup schemes are currently part of our research.
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