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A B S T R A C T

Recent advances in the use of Artificial Intelligence to control complex systems make it suitable for profile
plasma control. In this work, we propose an algorithm based on Deep Reinforcement Learning to control the
safety factor profile with a feedback design. For this purpose, we first derive a device-specific control-oriented
model with fast simulation time. Then, in order to enhance robustness with respect to external disturbances
and model errors, we include an error time integrator into the controller. A cascade of the kinetic and magnetic
models with the error time integrator is used in the learning procedure of the feedback controller. Finally,
to illustrate the efficiency of the proposed design procedure, the obtained controller is tested in a reference
plasma simulator, the Raptor simulator.
1. Introduction

Because of the high uncertainties in the measurements and esti-
mations of plasma profiles, as well as in the modelling of kinetic and
magnetic dynamics, robust feedback control is crucial to obtain high-
performance operations of tokamak reactors. In tokamak reactors, the
safety factor has been found to be strictly related to Magnetohydrody-
namic (MHD) activities [1]: therefore, controlling the safety factor to
the desired profile becomes an essential step towards obtaining long-
time discharges [2]. In this article, we will consider the safety factor
profile control problem during the so-called flat-top phase.

In the plasma control literature, it is common to interchangeably
speak about the current profile, safety factor 𝑞 (and its inverse 𝜄-profile),
magnetic flux gradient profile, and magnetic flux profile. From an oper-
ative point of view, a lot of contributions have been made by the plasma
physics and control communities working together. For instance, an
overview of the plasma control in the Tore Supra tokamak can be found
in [3]. More specifically, in [4] are shown experimental results using
proportional feedback for the control of the internal inductance on Tore
Supra, while in [5,6] the authors show the results on the DIII-D and
JET tokamaks obtained by using optimal control applied on data-driven
models. Subsequently, different strategies using first-principles-driven
models have been developed from the control community.
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The main challenge in model-based safety factor profile control for
advanced mode operations is the derivation of dynamical models that
are complex enough to retain the main physical properties and simple
enough to be used for feedback design. A first attempt to model and nu-
merically simulate the plasma profile evolution has been made in [7].
Then, a control-oriented model describing the magnetic flux gradient
and temperature evolution has been proposed in [8]. Control strategies
have been developed using a linear finite-dimensional approximation
of the original PDE describing the magnetic flux dynamics [9–11]. An
optimal controller designed on a nonlinear model obtained by Galerkin
approximation has been proposed in [12], while a backstepping con-
troller has been designed on the nonlinear model obtained by finite
differences in [13]. Model predictive control strategies for the safety
factor profile control have been presented in [14]. Nonlinear robust
safety factor profile control is developed in [15]. Control algorithms for
simultaneous control of magnetic and kinetic parameters of tokamak
plasmas using finite-dimensional approximation are presented in [16–
19].

Recently, much effort has been spent in designing controllers di-
rectly on the PDE model of magnetic and temperature diffusion. In [20],
a sum-of-square polynomial technique has been used to construct a
Lyapunov function to stabilize the closed-loop system, whereas in [21]
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the same technique has been used to optimize the bootstrap current.
Furthermore, a Lyapunov-based controller has been designed in [22,
23]. A Lyapunov-based control technique for the kinetic and magnetic
profiles designed on the linearization of the original equations has been
proposed in [24].

The seminal work [25] provided a powerful control-oriented fast
plasma transport simulator (Raptor) that helps the feedback design
study and implementation for kinetic and magnetic profiles control
for the TCV tokamak. This enabled the design, simulation and im-
plementation of multiple controllers [26,27]. For a broader overview
of emerging and current challenges in tokamak control, we refer the
reader to [28,29].

With the rise of Deep Neural Networks (DNNs) as tools for function
approximation, the machine learning community took a step towards
control problems of physical systems. Recently, Deep Reinforcement
Learning (DRL) methods proved to be effective in solving complex non-
linear control problems [30,31]. Guided by an optimization objective,
DRL algorithms train a DNN to produce a sequence of almost-optimal
inputs (or actions). This sequence of inputs is called policy. These algo-
rithms are data-driven, as training evolves according to the interactions
with the environment. One major advantage of DRL algorithms is their
direct applicability to a large family of complex systems, especially in
the case of model-free approaches, e.g. [32–34]. The environment to be
controlled is typically considered a black box. In order to estimate the
future performances of the policy without knowing the environment,
many DRL algorithms exploit an actor-critic structure. This family of
methods exploits two or more DNNs (see e.g. [35]). The former is used
for approximating the policy, while the latter predicts its performance
by estimating the sum of future rewards. This model-agnostic approach
enabled DRL algorithms to be applied on a wide variety of complex
tasks and, most recently, also in the field of nuclear fusion [36].

In this paper, we propose to design a dynamic DNN controller
complemented by a time integral of the error. Such an addition is
valuable because, according to systems and control theory, the addition
of an integrator in the feedback loop is known to solve the problems of
constant reference regulation and constant disturbance rejection [37].
This control strategy has indeed been shown to be effective for the
control of some classes of linear and nonlinear Ordinary Differential
Equations (ODE) [38], as well as some classes of linear and nonlinear
PDEs [39]. In [40], the authors presented a method to solve the regu-
lation problem of linear systems in closed-loop with a neural network
controller and an integrator. More recently, control design by RL has
been combined with Model Predictive Control to solve the tracking
problem of surface vessels [41].

However, few works have been so far dedicated to controlling PDEs
using DRL. Because of the spatial differential operators present in
PDEs, the state inherits some spatial regularity properties, such as local
smoothness. This intrinsic property can be exploited to design specific
RL algorithms that are able to deal with very large state spaces [42],
e.g. the regularized fitted q-iteration (RFQI) algorithm. Furthermore,
this method has been successfully applied to the control design of
a multidimensional nonlinear problem such as a heating, ventilating
and air conditioning system [42,43], but only with a finite amount
of possible actions. The case in which the action space is infinite-
dimensional has been investigated in [44]. More recently, a Proximal
Policy Optimization (PPO) algorithm has been used to design the con-
troller for congested freeway traffic [45]. DRL algorithms have already
been used in the context of nuclear fusion control. In [46], the authors
proposed a DRL technique to control the safety factor during the ramp-
up phase, while in [47] the authors developed a DRL algorithm to
train a feed-forward controller for the kinetic profiles. Recently, a
DRL controller has been proposed in [36] for plasma shape control.
A recent publication that aligns with our proposed work is [48], where
the authors present an RL-based algorithm for simultaneous control
of the safety factor and normalized beta in the JT-60SA tokamak. In
2

contrast to their approach, our contribution focuses on emphasizing
Table 1
Table of symbols.

Symbol Description

𝑠𝑗 Environment state at 𝑗
𝑎𝑗 Action applied to the environment at 𝑗
𝑉 𝜋 Value function
𝜋 Policy
𝑄𝜋 State–action value function
𝐴𝜋 Advantage function
𝑟𝑗 Reward at 𝑗
𝑅𝑗 Accumulated reward at 𝑗

the utilization of the time integral of the error as a parameter to be
fed into the trained neural network. Furthermore, after presenting our
control architecture and a novel training procedure, we claim that our
proposed control strategy compensates for the disparities between the
training model and real-world conditions.

The contribution of this paper hinges on an original model of
the kinetic and magnetic plasma dynamics: the resulting simulator is
fast enough to be used for learning purposes by a DRL algorithm. In
order to make the latter robust to constant model uncertainties and
disturbances, we embed the controller with an error time integrator.
To illustrate the robustness of the proposed controller, we test it on a
different model than the one used for training, i.e. the Raptor simulator.
Several authors proposed the inclusion of an error time integrator
in the control loop, which is fundamental in practical operations to
compensate for discrepancies between the model employed for control
design and the actual plant. Integral action-based strategies appeared
for instance in [49], with a modification of an LQR (referred to as LQI),
and in [50], where a Lyapunov control strategy is designed based on
the linearized partial differential equation (PDE). The main limitation
of these works is that they require the knowledge of a linearized model
around the desired equilibrium point. Furthermore, such approaches
typically limit the applicability of the resulting controller to a small re-
gion of initial conditions around the equilibrium. In contrast, our work
is based on a feedback design strategy that uses neural networks (NNs)
trained on an arbitrarily large region of the state space, thereby yielding
a controller applicable from any plant’s initialization. Furthermore,
we leverage on model-free reinforcement learning algorithms, thereby
circumventing the necessity for explicit knowledge of the system’s
dynamics in proximity to the desired operational point.

The paper is organized as follows: In Section 2 we propose some
preliminaries on Reinforcement Learning control and its use in combi-
nation with integral action. In Section 3 the plasma model is written as
a Markov decision process and the training algorithm is presented. The
simulation results of the obtained controller on the Raptor simulator are
shown in Section 4. Finally, some concluding remarks and comments
on future works are given in Section 5.

In the appendix section, additional context and clarification are pro-
vided for the presented material. Specifically, Appendix A introduces
the model of the tokamak’s kinetic and magnetic dynamics, Appendix B
outlines the simulation algorithm, and Appendix C offers a simple
example of implementing reinforcement learning control with integral
action.

2. Background on Reinforcement Learning control

In this section, we briefly introduce the essential Reinforcement
Learning concepts. A thorough discussion can be found in [51]. Justi-
fied by Bellman’s principle of optimality, Reinforcement Learning aims
at optimally solving a problem by learning a sequence of maximum-
reward actions (called policy). The policy optimization is driven by
value functions. The state-value function 𝑉 𝜋 (𝑠𝑗 ) corresponds to the ex-
pected total discounted reward 𝑅𝑗 starting from state 𝑠𝑗 at the 𝑗 time
instance and then following the policy. We remark that the value
function profoundly depends on the policy 𝜋. If the agent uses a given
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policy 𝜋 to select an action from the state 𝑠𝑗 , the value function is given
by

𝑉 𝜋 (𝑠𝑡) = E
[

𝑅𝑗 ∣ 𝑠𝑗
]

(1)

where E [⋅] stands for the expectation. The optimal policy is the policy
that corresponds to the maximum value 𝑉 ⋆(𝑠𝑗 ) of the value function

𝜋⋆ = argmax
𝜋
𝑉 𝜋 (𝑠𝑗 ). (2)

Dynamic Programming methods search for the optimal policy using the
former equation, but they require knowledge of the model. To enable
the concept of model-free Reinforcement Learning, it is necessary to
introduce the state–action value function or Q-function. The Q-function
corresponds to the expected total discounted reward when the action
𝑎𝑗 is taken in state 𝑠𝑗 , and then the policy 𝜋 is followed henceforth.
Therefore, the Q-function is given by

𝑄𝜋 (𝑠𝑗 , 𝑎𝑗 ) = E
[

𝑅𝑗 ∣ 𝑠𝑗 , 𝑎𝑗
]

. (3)

The optimal Q-function is given by

𝑄⋆(𝑠𝑗 , 𝑎𝑗 ) = max
𝜋
𝑄𝜋 (𝑠𝑗 , 𝑎𝑗 ) (4)

and stands for the expected total discounted reward when the agent
picks possible non-optimal action 𝑎𝑗 in 𝑠𝑗 , and then behaves optimally
henceforth. The relation between the optimal Q and V function is
expressed by

𝑉 ⋆(𝑠𝑡) = max
𝑎𝑗∈

𝑄⋆(𝑠𝑗 , 𝑎𝑗 ). (5)

If the optimal Q-function is known, then the optimal action 𝑎⋆𝑗 can be
extracted by choosing the action 𝑎𝑗 that maximizes 𝑄⋆(𝑠𝑗 , 𝑎𝑗 )

𝑎⋆𝑗 = arg max
𝑎𝑗∈

𝑄⋆(𝑠𝑗 , 𝑎𝑗 ). (6)

This is the reason why the knowledge of the Q function enables model-
free RL. Finally, the advantage function measures how advantageous a
certain action 𝑎𝑗 is with respect to the one drawn from the policy

𝐴𝜋 (𝑠𝑗 , 𝑎𝑗 ) = 𝑄𝜋 (𝑠𝑗 , 𝑎𝑗 ) − 𝑉 𝜋 (𝑠𝑗 ). (7)

A summary of the RL notation is given in Table 1.
In RL, as well as in dynamic programming, the action is chosen

through a policy that has the objective of maximizing the expected total
discounted reward. In the present application, we have a system model
with continuous state and action spaces, which inherently comprise an
infinite number of elements. Due to this infinite nature, it becomes
infeasible to fully explore the whole state and action spaces [51]. Con-
sequently, tabular dynamic programming methods cannot be employed
to apply a reinforcement learning algorithm to our fusion control prob-
lem. Instead, the typical solution to tackle the continuous time nature
of state and action spaces is to employ deep function approximations
and estimate the value function and the policy. In our application, we
chose to use the PPO algorithm, which is based on Trust Region Policy
Optimization (TRPO). These algorithms use an actor-critic approach,
where the actor is in charge of improving the policy based on the value
function that is estimated by the critic. The actor and the critic corre-
spond to function approximators parametrized by 𝜙 and 𝜃, respectively.
In particular, in our application case, these function approximators are
selected to be DNNs and 𝜙, 𝜃 are vectors collecting weights and biases.

The Critic’s role is to evaluate the current policy prescribed by the
actor. At each iteration of an episode 𝑝, the tuple (𝑠𝑝,𝑗 , 𝑎𝑝,𝑗 , 𝑟𝑝,𝑗+1, 𝑠𝑝,𝑗+1)
is stored in a buffer 𝑝. Each episode is of length 𝐽 and each episode-
related buffer 𝑝 is stored in a general buffer . After a certain number
of episodes, the parametrized value function 𝑉𝜙 is updated to minimize
the following loss function

̂

3

𝑉 = E[𝑉𝜙(𝑠𝑗 ) − 𝑅𝑗 ] (8)
where Ê represents the estimated expectation and can be implemented
as the mean

𝑉 = 1
𝑁𝑠𝑎𝑚𝑝𝑙𝑒

∑

𝑝∈

𝐽
∑

𝑗=0

(

𝑉𝜙(𝑠𝑝,𝑗 ) − 𝑅𝑝,𝑗
)

(9)

where 𝑅𝑝,𝑗 is the total discounted reward at iteration 𝑗 of the 𝑝th
pisode and 𝑁𝑠𝑎𝑚𝑝𝑙𝑒 is the total number of samples. The critic parame-
ers 𝜙 are updated numerically via gradient descent.

The Actor ’s role is to use the information from the Critic to update
he current policy. To understand the PPO algorithm we first need to
nderstand the optimization objective of Policy Gradient (PG) methods,
efined as follows

𝑃𝐺(𝜃) = Ê[log𝜋𝜃(𝑎𝑗 ∣ 𝑠𝑗 )𝐴̂(𝑎𝑗 , 𝑠𝑗 )] (10)

hat can be implemented as

𝑃𝐺(𝜃) =
1

𝑁𝑠𝑎𝑚𝑝𝑙𝑒

∑

𝑝∈

𝐽
∑

𝑗=0
(log𝜋𝜃(𝑎𝑝,𝑗 ∣ 𝑠𝑝,𝑗 )𝐴̂(𝑎𝑝,𝑗 , 𝑠𝑝,𝑗 )) (11)

where 𝜋𝜃(𝑎𝑝,𝑗 ∣ 𝑠𝑝,𝑗 ) is computed using the current neural network and
𝐴̂(𝑎𝑗 , 𝑠𝑗 ) using the Generalized Advantage Estimator (GEA) using the
critic value estimator. It can be proven that (10) drives the policy in
a gradient ascent fashion, with respect to the objective function [52].
The policy 𝜋𝜃 is the current neural network that gives the probability of
picking 𝑎𝑗 when the environment gives a certain state observation 𝑠𝑗 . If
for a certain couple (𝑎𝑗 , 𝑠𝑗 ) the advantage is positive, the policy gradient
updates 𝜃 to augment the probability of taking the action 𝑎𝑗 when the
environment is in 𝑠𝑗 . Unfortunately, with the previously defined loss
function, the parameter 𝜃 will often be updated far from the previous
policy. To solve this problem, one can use the Trust Region Policy
Optimization (TRPO) [53]. The objective of TRPO is to maximize the
loss function

𝑇𝑅𝑃𝑂(𝜃) = Ê

[

𝜋𝜃(𝑎𝑗 ∣ 𝑠𝑗 )
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑗 ∣ 𝑠𝑗 )

𝐴̂(𝑎𝑗 , 𝑠𝑗 )

]

(12)

subject to the constraint

Ê[𝐾𝐿[𝜋𝜃𝑜𝑙𝑑 (⋅ ∣ 𝑠𝑗 ), 𝜋𝜃(⋅ ∣ 𝑠𝑗 )]] ≤ 𝛿 (13)

where 𝜃𝑜𝑙𝑑 corresponds to the actor parameters before the last update
and the 𝐾𝐿 is the Kullback–Leibler function measuring the difference
between the old and current policy. The constraint assures that the new
policy does not deviate from the old policy by any more than 𝛿. In this
work, we adopt the PPO reinforcement learning algorithm [54], which
is based on TRPO. Indeed, while TRPO computes the trust region using
second-order information, PPO approximates it via clipping. For PPO
the loss function to be maximized is defined as

𝐶𝐿𝐼𝑃 (𝜃) = Ê
[

min(𝑟𝑗 (𝜃)𝐴̂(𝑎𝑗 , 𝑠𝑗 ), clip(𝑟𝑗 (𝜃), 1 − 𝜖, 1 + 𝜖)𝐴̂(𝑎𝑗 , 𝑠𝑗 ))
]

(14)

where

𝑟𝑗 (𝜃) =
𝜋𝜃(𝑎𝑗 ∣ 𝑠𝑗 )
𝜋𝜃𝑜𝑙𝑑 (𝑎𝑗 ∣ 𝑠𝑗 )

. (15)

The idea is to use probability clipping, which removes the incentives
for moving 𝑟𝑗 outside of the interval [1 − 𝜖, 1 + 𝜖]. The minimum of
the clipped and unclipped objective ensures the final objective is a
lower bound (i.e., a pessimistic bound) on the unclipped objective. With
this scheme, we only ignore the change in probability ratio when it
would improve the objective, and we include it when it deteriorates
the objective.

3. Control design

In this section, we propose the design of a dynamic controller
enhanced with knowledge about the integral of the error. Inspired by
classical control-theoretic solutions (PIs and PIDs) and recent results
on total stability [55,56], we embed the stabilization of a discrete-time
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Fig. 1. General overview of a control scheme including a time integrator. In the
context of this work, the controller is a DNN trained using a DRL algorithm. For more
information regarding the control structure, we refer to Figs. 4 and 6.

integrator in the control objective. As such, we consider the problem of
stabilizing the extended cascade system composed of the plant and the
integrator, as in Fig. 1. The idea is to embed ‘‘memory’’ in the agent
by providing some time-related information. Then, if the integrator’s
state is stabilized, we guarantee a zero-tracking error with respect to
the (constant) reference. Note that such a property is due to the spe-
cific structure of the integrator dynamics. Actually, an alternative for
embedding memory into the agent is to use Recursive Neural Networks
(RNNs), e.g. [57,58]. Yet, aside from the increased complexity in their
training due to back-propagation through time, it would not be possible
to guarantee perfect asymptotic tracking and (constant) disturbance
rejection. Indeed, it is not possible to predict the dynamics information
that will be stored in the RNN’s latent space and its evolution. As stated
above, the proposition of adding an integral state to the controller stems
from regulation theory. To explain the need for an integral state, a toy
example is considered in Appendix C.

3.1. Integral state for magnetic flux control

Consider 𝜓(𝑅,𝑍) the poloidal flux of the magnetic field 𝐵(𝑅,𝑍)
assing through a disc centred at the toroidal axis at height 𝑍 and with
urface 𝑆 = 𝜋𝑅2 where 𝑅 is the large plasma radius. Let the magnetic
lux be defined as

(𝑅,𝑍) = 1
2𝜋 ∫𝑆

𝐵(𝑅,𝑍)𝑑𝑆 (16)

and its dynamics can be expressed by the following reaction–diffusion
equation [8]

𝜕𝜓
𝜕𝑡

(𝑥, 𝑡) =
𝐷(𝑥, 𝑡)
𝑎2𝜌

𝜕2𝜓
𝜕𝑥2

(𝑥, 𝑡) +
𝐺(𝑥, 𝑡)
𝑎𝜌

𝜕𝜓
𝜕𝑥

(𝑥, 𝑡) + 𝑆(𝑥, 𝑡). (17)

where 𝑥 = 𝜌∕𝑎𝜌 identifies the normalized spatial variable, 𝐷(𝑥, 𝑡) and
(𝑥, 𝑡) are diffusion parameters, while 𝑆(𝑥, 𝑡) is the source term and are
efined in (A.2). In this study, we consider that the magnetic flux is
ontrolled by two Electron Cyclotron Current Drive (ECCD) systems,
ach characterized by its input power 𝑃𝑒𝑐𝑐𝑑,𝑖, where 𝑖 ∈ 1, 2. Our
ase of study resembles the scenario presented in [50], where the
wo inputs are applied to the same spatial point. Specifically, the first
ntenna 𝑃𝑒𝑐𝑐𝑑,1 has a positive effect on 𝑧𝑗 , while the second antenna
𝑒𝑐𝑐𝑑,2 has a negative effect on it. Thus, from a theoretical point of
iew, the two inputs can be treated as a single input. The term 𝜌 is
he toroidal flux coefficient indexing the magnetic surfaces, defined
s 𝜌 = (2𝜙∕𝐵𝜙0)

1
2 , where 𝜙 is the toroidal magnetic flux and 𝐵𝜙0

s the value of the toroidal magnetic flux at the plasma center. The
patial index belongs to the interval 𝜌 ∈ [0, 𝑎𝜌] where 𝑎𝜌 is the minor
lasma radius corresponding to the Last Closed Flux Surface (LCFS). An
mportant quantity of plasma control in tokamak devices is the safety
actor. This distributed variable measures the toroidal over poloidal
urns of a field line passing through a point (𝑅,𝑍) in a toroidal plane.
ince the magnetic field lines are assumed to be equal in the same
agnetic surface, we can define the safety factor for each magnetic
4

urface indexed by 𝑥. In particular, the safety factor is defined as the
uotient between the toroidal and poloidal gradient, that using the
revious definition of the toroidal magnetic flux, can be defined as

(𝑥, 𝑡) =
𝑑𝜙
𝑑𝜓

=
𝜕𝜙∕𝜕𝑥
𝜕𝜓∕𝜕𝑥

= −
𝐵𝜙0𝑎2𝜌𝑥

𝜕𝜓∕𝜕𝑥
(18)

where 𝜙(𝑥, 𝑡) is the toroidal flux defined in (A.11). Another important
quantity in plasma analysis is the 𝜄-profile, which is also referred to as
‘‘rotational transform’’

𝜄(𝑥, 𝑡) = 1
𝑞(𝑥, 𝑡)

=
𝜕𝜓∕𝜕𝑥
𝐵𝜙0𝑎2𝜌𝑥

. (19)

he 𝜄-profile is a more natural control variable since it proportionally
epends on the poloidal flux gradient. Additional details about the
odel are discussed in Appendix A. The following equation gives the
lasma thermal energy dynamics
{

𝜏𝑡ℎ = 𝑒−5.7466𝑃 0.0214
𝑜ℎ (1 + 𝑃𝑒𝑐𝑐𝑑,1)0.0426(1 + 𝑃𝑒𝑐𝑐𝑑,2)0.0012

𝑑
𝑑𝑡𝑊𝑡ℎ = − 1

𝜏𝑡ℎ
𝑊𝑡ℎ + 𝑃𝑡𝑜𝑡, 𝑊𝑡ℎ(0) = 𝑃𝑡𝑜𝑡(0)𝜏𝑡ℎ(0)

(20)

where,

𝑃𝑡𝑜𝑡 =
𝑁𝑒𝑐𝑐𝑑
∑

𝑖=1
𝑃𝑒𝑐𝑐𝑑,𝑖 + 𝑃𝑂𝐻 (21)

while 𝑃𝑂𝐻 identifies the ohmic power and is defined in (A.12). Al-
though temperature regulation is not the primary objective of this
work, we still consider thermal dynamics in the model. The reason
for including these dynamics is to account for the delay introduced
by temperature diffusion. Rather than using a pure delay term, we
chose to represent the temperature diffusion by an appropriate dynamic
equation for more accurate modelling. At the same time, we made
the decision not to incorporate the full distributed thermal diffusion
model in order to minimize simulation time and achieve a sufficiently
short training time for the RL algorithm. For more details regarding the
temperature reconstruction using thermal energy and Ohmic power, we
refer to Appendix B.

By utilizing an implicit–explicit time discretization and a fixed-
step spatial discretization for Eq. (17), and an implicit–explicit time
discretization for Eq. (20), we obtain the difference equation

𝑧𝑗+1 = 𝑓 (𝑧𝑗 , 𝑎𝑗 ) (22)

in the state variable 𝑧𝑗 = [𝜓𝑗 𝑊𝑡ℎ,𝑗 ] ∈ R𝑁+1 and input 𝑎𝑗 ∈ [0, 1] = .
The discrete vector field 𝑓 is defined in (B.5). Here, 𝑁 is the number
of elements used in the spatial discretization of Eq. (17). Hence, at
iteration 𝑗, the vector 𝜓𝑗 ∈ R𝑁 denotes the discretized magnetic flux
in 𝑁 spatial points, while 𝑊𝑡ℎ,𝑗 represents the thermal energy. The re-
lation between 𝑎𝑗 and 𝑃𝑒𝑐𝑐𝑑,𝑖 and further information on the simulation
algorithm employed in this study can be found in Appendix B.

In this work, the objective is to regulate the 𝜄-profile 𝜄(𝑥, 𝑡) defined
n (19) to a desired 𝜄⋆(𝑥). As 𝜄 depends on the magnetic flux gradient
𝜕𝜓
𝜕𝑥 (𝑥, 𝑡), the control objective can be reformulated as the regulation to
a desired magnetic flux gradient profile 𝜕𝜓⋆

𝜕𝑥 (𝑥). Therefore, we define
the discretized version of the magnetic flux gradient

𝜕𝜓𝑗
𝜕𝑥

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜓𝑗,2−𝜓𝑗,1
𝛿𝑥1𝜓𝑗,3−𝜓𝑗,1

𝛿𝑥1+𝛿𝑥2
⋮

𝜓𝑗,𝑁−𝜓𝑗,𝑁−1
𝛿𝑥𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

𝐶
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⎡

⎢

⎢

⎢

⎢

⎢

⎣

− 1
𝛿𝑥1

1
𝛿𝑥1

0 ⋯ 0 0

− 1
𝛿𝑥1+𝛿𝑥2

0 1
𝛿𝑥1+𝛿𝑥2

⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ⋯ − 1

𝛿𝑥𝑁
1

𝛿𝑥𝑁

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝜓𝑗 (23)
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Fig. 2. Examples of different poloidal magnetic flux equilibriums of the reaction–
diffusion equation describing the magnetic flux dynamics. In black we show that with
a certain set of parameters 𝐾1, changing the applied constant input (ECCD power),
he poloidal magnetic flux equilibrium changes. The red profile represent a possible
oloidal magnetic flux equilibrium with a different set of parameters 𝐾2.

here 𝜕𝜓𝑗
𝜕𝑥 ∈ R𝑁 and 𝐶 ∈ R𝑁×𝑁 . Then, we select one element of the

agnetic flux gradient to define the output 𝑦𝑠 = 𝑆 𝜕𝜓
𝜕𝑥 , where 𝑆 ∈ R1×𝑁

is the selection matrix with a single element equal to one and zero
elsewhere. From now on, we assume that the system’s parameters are
known to belong to a certain range of values. This means that we do
not know the exact parameter’s value, but we only have an estimation.
Consider 𝑘𝑛 a generic system’s parameter. According to the previous
assumption, we know that 𝑘𝑛 ∈ [𝑘𝑛, 𝑘̄𝑛]. We define the vector 𝐾 as the
collection of all the system’s parameters 𝐾 = [𝑘1 𝑘2 … 𝑘𝑁𝑘 ]

𝑇 ∈  =
[𝑘1, 𝑘̄1]×[𝑘2, 𝑘̄2]×⋯×[𝑘𝑁𝑘 , 𝑘̄𝑁𝑘 ] ⊂ R𝑁𝑘 , where 𝑁𝑘 is the total number of
parameters. We denote by 𝑓𝐾 (𝑧𝑗 , 𝑎𝑗 ) the magnetic flux dynamics with
parameters 𝐾

⎧

⎪

⎨

⎪

⎩

𝑧𝑗+1 = 𝑓𝐾 (𝑧𝑗 , 𝑎𝑗 )

𝑦𝑗 =

[

𝜕𝜓𝑗
𝜕𝑥
𝑦𝑠,𝑗

]

=
[

𝐶𝜓𝑗
𝑆𝐶𝜓𝑗

]

.
(24)

By simulating this system with constant input 𝑎⋆, it is possible to
extract the magnetic flux gradient at witch the system stabilizes 𝜕𝜓

𝜕𝑥
⋆

.
In particular, the equilibrium magnetic flux gradient is related to the
equation’s set of parameters 𝐾 and the applied constant input 𝑎⋆. It
is worth to remark that equilibrium magnetic flux’s gradients obtained
with the same input 𝑎⋆ and different set of parameters 𝐾1 and 𝐾2 may
be different, as shown in Fig. 2. In real applications, an integral action
is vital since we have to compensate for the uncertainties coming from
the modelling procedure. At the same time, the integral action allows
compensation for the mismatch between Raptor and the training model.

Control problem. Stabilize the magnetic flux gradient 𝜕𝜓
𝜕𝑥 as close as

possible to the (potentially unreachable) desired magnetic flux gradient 𝜕𝜓
𝜕𝑥

⋆
,

and at the same time make sure that the selected output 𝑦𝑠 = 𝑆 𝜕𝜓
𝜕𝑥 converges

o the desired value 𝑦⋆𝑠 = 𝑆 𝜕𝜓
𝜕𝑥

⋆
.

The use of the integral action allows the regulation of the integrated
uantity to zero. Having at our disposal one input (the two antennas
ct in opposite directions on the magnetic flux dynamics, therefore they
an be treated as a single input), in case of unreachable equilibrium,
sing the integral action we can regulate to zero the error 𝑦𝑠,𝑗 −𝑦⋆𝑠 . We

define the discrete-time integrator state dynamics as

𝜀𝑗+1 = 𝜀𝑗 + (𝑦𝑠,𝑗 − 𝑦⋆𝑠 )𝛿𝑡. (25)

We define the extended state as

𝑠𝑗 =
[

𝑧𝑗
𝜀𝑗

]

∈  = R𝑁+2 (26)

and therefore the extended dynamics can be defined as

𝑠𝑗+1 =
[

𝑓𝐾 (𝑧𝑗 , 𝑎𝑗 )
𝜀𝑗 + (𝑦𝑠,𝑗 − 𝑦⋆𝑠 )𝛿𝑡

]

= 𝑔𝐾 (𝑠𝑗 , 𝑎𝑗 ). (27)

Since we do not know a priori the equilibrium of the integral state
(since it depends on the unknown parameters 𝐾), we fix the integral

⋆

5

state reference to zero 𝜀 = 0.
3.2. Magnetic flux and temperature dynamics plus integral state as a
Markov Decision Process

In this section, we express the tokamak magnetic flux and tem-
perature dynamical model together with the integral state in Markov
Decision Process settings. At each time step 𝑗, the environment con-
ditions are described by the state vector 𝑠𝑗 ∈ , while the action
corresponding to the power of the ECCD antennas can be picked from
the action space 𝑎𝑗 ∈ . An action 𝑎𝑗 is applied to the environment in
state 𝑠𝑗 at a time 𝑗, which evolves to the state 𝑠𝑗+1 according to the state
transition probability (𝑠𝑗+1 ∣ 𝑠𝑗 , 𝑎𝑗 ). In other words, (𝑠𝑗+1 ∣ 𝑠𝑗 , 𝑎𝑗 )
represents the probability of ending in state 𝑠𝑗+1 when we apply an
action 𝑎𝑗 in state 𝑠𝑗 . In our case, since we have the model of the system,
the state transition probability boils down to deterministic dynamics

(𝑠𝑗+1 ∣ 𝑠𝑗 , 𝑎𝑗 ) = 𝛿(𝑠𝑗+1 − 𝑔𝐾 (𝑠𝑗 , 𝑎𝑗 )) (28)

where 𝛿(⋅) is the Dirac delta function. When applying the action 𝑎𝑗 ,
the agent receives the new state 𝑠𝑗+1 together with a scalar reward
𝑟𝑗+1 = 𝑟(𝑠𝑗+1, 𝑎𝑗 ), as shown in Fig. 3. We select the reward such that

𝑟(𝑠𝑗+1, 𝑎𝑗 ) = −
( 𝜕𝜓𝑗+1

𝜕𝑥
−
𝜕𝜓
𝜕𝑥

⋆)𝑇

𝑄
( 𝜕𝜓𝑗+1

𝜕𝑥
−
𝜕𝜓
𝜕𝑥

⋆)

− 𝛼3𝑆
( 𝜕𝜓𝑗+1

𝜕𝑥
−
𝜕𝜓
𝜕𝑥

⋆)

𝜀𝑗+1 − 𝛼4𝜀2𝑗+1 − 𝑅(𝑎𝑗 − 𝑎
⋆)2 (29)

where

𝑄 =
⎡

⎢

⎢

⎣

𝛼1𝐼(𝑝𝑖−1)×(𝑝𝑖−1) 0 0
0 𝛼2 0
0 0 𝛼1𝐼(𝑁−𝑝𝑖)×(𝑁−𝑝𝑖)

⎤

⎥

⎥

⎦

∈ R𝑁×𝑁 (30)

where the notation 𝐼𝛼×𝛼 stands for an identity matrix of dimensions
𝛼×𝛼. The 𝑄 matrix is built to have a different cost at the diagonal entry
corresponding to the error integrated by the integral state. It possible
to notice that the third term in (29) can be rewritten as

𝛼3𝑆
( 𝜕𝜓𝑗+1

𝜕𝑥
−
𝜕𝜓
𝜕𝑥

⋆)

𝜀𝑗+1 = 𝛼3(𝑦𝑠,𝑗 − 𝑦⋆𝑠 )𝜀𝑗+1 = 𝛼3
𝜀𝑗+1 − 𝜀𝑗

𝛿𝑡
𝜀𝑗+1. (31)

Therefore, the presence of this term in the reward allows to penalize
the integral state variations. The policy 𝜋 defines the mapping from the
state space to the action space, which the agent modifies during the
learning phase, and will be used once the learning procedure is com-
pleted. The policy can be deterministic or stochastic. A stochastic policy
draws actions from a random distribution, whose state-dependent mo-
menta are learned by the agent. A common choice in DRL algorithms
is to draw from Gaussian distributions. Hence, the policy DNN 𝜋(𝑠𝑗 ) =
[𝜇(𝑠𝑗 ), 𝜎(𝑠𝑗 )]𝑇 is a function of the state 𝑠𝑗 that returns the mean 𝜇 and
the variance 𝜎. Then, the probability of selecting 𝑎𝑗 when the system
is in the state 𝑠𝑗 is

(𝑎𝑗 ∣ 𝑠𝑗 ) =
1

𝜎
√

2𝜋
𝑒
− 1

2

(

𝑎𝑗−𝜇(𝑠𝑗 )
𝜎(𝑠𝑗 )

)2

. (32)

In the case of deterministic policy, we have that

(𝑎𝑗 ∣ 𝑠𝑗 ) = 𝛿(𝑎𝑗 − 𝜇(𝑠𝑗 )). (33)

Hence, in the case of deterministic policies, the policy DNN is usually
trained to provide directly the next action. As in the standard DRL
framework, we optimize over a discounted objective. Hence, the total
discounted reward from time 𝑗 onward is defined as

𝑅𝑗 =
∞
∑

𝑘=0
𝛾𝑘𝑟(𝑠𝑗+1+𝑘, 𝑎𝑗+𝑘) (34)

where 𝛾 ∈ [0, 1] is the discount factor. The tokamak’s environment,
together with the integral action, is sketched in Fig. 4.
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Fig. 3. General representation of the interaction between the environment (system to
be controlled) and the agent (controller) in the RL context.

Fig. 4. Graphical representation of the tokamak environment together with the integral
state in the RL settings. The action allows to compute the future state. The future state
together with the actual input allow to compute the future reward.

3.3. Training algorithm

In this section, we describe the strategy used in the training algo-
rithm in order to make the agent learn how to use the integral state to
regulate the desired error to zero. The implementation of the learning
algorithm is summarized in Algorithm 1. Firstly, the parameters 𝐾 ∈ 
are selected according to the tokamak configuration that we want to
control. In the following, we refer to 𝑁𝐸 and 𝑁𝑆 as the number of
episodes and episode steps in the training, respectively. We define the
steady-state output set  as

 = {(
𝜕𝜓
𝜕𝑥

⋆
, 𝑎⋆) ∈ R𝑁 ×}. (35)

t the beginning of every episode, a couple of steady-state output and
nput ( 𝜕𝜓𝜕𝑥

⋆
, 𝑎⋆) ∈  is selected. After analysing numerous equilibrium

positions using different plasma parameters, we observed that the
variation of the gradient’s equilibria was small with respect to plasma
parameter variations. In particular, we noticed that by changing the
plasma parameters, we could shift the 𝜕𝜓

𝜕𝑥
⋆

maximum value and either
latten or sharpen the shape of the equilibrium function around this
oint. To avoid the time-consuming task of identifying all possible
teady-state outputs with different parameters selection, we observed
hat a similar outcome could be achieved by adding a Gaussian function
erturbation to the calculated equilibrium position computed with
arameters

𝜕𝜓𝑃
𝜕𝑥

⋆
=
𝜕𝜓
𝜕𝑥

⋆
+

𝑐
𝜎
√

2𝜋
𝑒−

1
2

(

𝑥−𝜇
𝜎

)2

(36)

here 𝜇 ∽ 𝑈 ([0.4, 0.6]), 𝜎 ∽ 𝑈 ([0.8, 1.2]) and 𝑐 ∽ 𝑈 ([−1,+1]) are
continuous uniform random variable selected in different intervals. We
chose to use the Gaussian function since it is a function that approaches
zero at 𝑥 = 1, 0, as we aimed to preserve the value of 𝜕𝜓

𝜕𝑥
⋆

at the
lasma’s center and the LCFS. This decision was influenced by the fact
hat the magnetic flux gradient remains fixed at zero at the center,
hile the flux gradient at the LCFS is primarily dependent on the
agnetic central location, which experiences comparatively minimal
6

ariations compared to other plasma parameters. t
Algorithm 1 Training Algorithm
Data:

• Initialize parameters for actor 𝜃0 and critic 𝜙0

• Initialize the evolution parameters 𝐾 ∈ 

for 𝑘 = 1 to 𝑁𝐸 do
Initialize the tokamak’s state 𝑧0 ∈ 𝑍
Initialize the integrator state 𝑥𝑖,0 = 0
Randomly select a couple of compatible steady-state output and
input ( 𝜕𝜓𝜕𝑥

⋆
, 𝑎⋆)

Compute the perturbed steady-state output 𝜕𝜓𝑃
𝜕𝑥

⋆
using (35)

for 𝑗 = 1 to 𝑁𝑆 do
The agent draws an action 𝑎𝑗 using the current stochastic policy
𝜋𝜃𝑘
Update the state 𝑠𝑗+1 = 𝑔𝐾 (𝑠𝑗 , 𝑎𝑗 )

Compute the reward 𝑟𝑗+1 = 𝑟(𝑠𝑗+1, 𝑎𝑗 ) using ( 𝜕𝜓𝑃𝜕𝑥
⋆
, 𝑎⋆)

end
Compute the total discounted reward 𝑅𝑗
Compute the Advantage estimate 𝐴𝑗 from current critic 𝑉𝜙𝑘 using
the ‘‘Generalized Advantage Estimate’’ algorithm
Update actor 𝜃𝑘+1 minimizing (14)
Update critic 𝜙𝑘+1 minimizing (9).

end

After the modification of the equilibrium’s shape, we ask the agent
to stabilize the system to this unreachable equilibrium, and therefore
we expect the agent to give priority to the regulation of the integrated
error at one point of the spatial domain. Then, the learning procedure
is carried out following the PPO algorithm described in the previous
section. It is worth emphasizing that during the learning procedure,
a stochastic policy is employed to improve exploration, whereas in
Section 4, a deterministic policy will be utilized at test time.

The selection matrix 𝑆, for the definition of the point to be regu-
lated, is selected to be 0 in all entries except for the 5th position, which
is set equal to 1. This means that we seek to regulate to zero the error at
the 𝑥 = 0.2 position. We select a position near the plasma center since
t is in the interval of the spatial domain where the measures are more
eliable. Moreover, we are sufficiently near the deposit of the ECCD
urrent that is in 𝑥 = 0.

To design the training-based controller, we carry out four different
ontroller training in order to give some hints on the definition of the
𝑖 parameters depending on the desired closed-loop performances. It
s worth mentioning that only the ratio between the free parameters
atters in the learning of the final controller. Therefore, we arbitrarily

ix the value of the 𝛼3, 𝛼4 and 𝑅 parameters, letting varying only the 𝛼1
and 𝛼2 parameters. In particular, the common cost parameters for the
four trainings are

𝛼3 = 0.1, 𝛼4 = 130, 𝑅 = 0.01, (37)

hile the 𝛼1 and 𝛼2 parameters (𝛼1, 𝛼2) are selected in the set of pairs
(0.1, 0.05), (1, 0.5), (10, 5), (100, 50)}. In Fig. 5(a), we show the episode

reward mean (as defined in (29)) of four trainings with different 𝛼1 and
𝛼2. In Fig. 5(b) we show the time-varying profiles at two points of the
spatial domain, namely 𝑥 = 0 and 𝑥 = 0.2, of the closed-loop simulations
using the four obtained controllers. The simulations are performed on
the same model with which the controllers have been trained, while
we set an unreachable equilibrium position, in the form of (36), as
desired set-point. A proper functioning of the integral action becomes
necessary to obtain the convergence towards the equilibrium at the
integrator location, i.e. at 𝑥 = 0.2. Throughout the different simulations,

e employ the same unreachable equilibrium to ensure comparability
etween the simulations. After analysing Figs. 5(a) and 5(b), we class

he four different cases depending on the speed of the integral action,
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Fig. 5. Episode reward mean during the RL training and Magnetic flux trajectories with the corresponding controllers. Case 1: 𝛼1 = 0.1, 𝛼2 = 0.05; Case 2: 𝛼1 = 1, 𝛼2 = 0.5; Case 3:
1 = 10, 𝛼2 = 5; Case 4: 𝛼1 = 100, 𝛼2 = 50.
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he overshoot magnitude and the number of steps 𝑁𝑠𝑡𝑒𝑝𝑠 after which no
ubstantial controller changes were observed:

• Case 1: 𝛼1 = 0.1, 𝛼2 = 0.05. Big overshoot, fast regulation. 𝑁𝑠𝑡𝑒𝑝𝑠 =
3.5 × 106;

• Case 2: 𝛼1 = 1, 𝛼2 = 0.5. Medium overshoot, medium speed
regulation. 𝑁𝑠𝑡𝑒𝑝𝑠 = 4.5 × 106;

• Case 3: 𝛼1 = 10, 𝛼2 = 5. No overshoot, slow regulation. 𝑁𝑠𝑡𝑒𝑝𝑠 =
4.5 × 106;

• Case 4: 𝛼1 = 100, 𝛼2 = 50. No overshoot, no regulation. 𝑁𝑠𝑡𝑒𝑝𝑠 =
3.5 × 106.

t follows from the comparisons of all these cases that reducing the
alues of 𝛼1 and 𝛼2 with respect to 𝛼4 provides a quick output reg-
lation at the desired point. However, this comes at the expense of
larger magnitude of overshoot. Furthermore, due to the difference

n 𝑁𝑠𝑡𝑒𝑝𝑠 across the various cases, we can formulate some prelimi-
ary hypotheses (which necessitate more extensive investigation for
alidation) concerning the learning behaviour of the RL algorithm.
pecifically, in Cases 1 and 4, the 𝛼𝑖 parameters ‘‘guide’’ the controller’s
earning towards distinct objectives: achieving rapid integral action and
inimizing overshoot, respectively. In Cases 2 and 3, the 𝛼𝑖 parameters

teer the controller towards a balance between these two attributes. We
nfer that this difference is accountable for the larger 𝑁𝑠𝑡𝑒𝑝𝑠 in Case 2
nd 3, where the controller is ‘‘asked’’ to learn two distinct attributes
ather than just one.

In the next section, the controller trained with the parameters of
ase 1 is tested in closed loop with the Raptor simulator. The reason
ehind the selection of the controller of Case 1 lies in its sufficiently fast
ntegral action. However, if the priority is to have reduced overshoot
t the expense of a slower integral action, an alternative would be to
elect the controller of Case 3. We remark that the output of the training
rocedure is a trained neural network that takes as input the state 𝑠𝑗
nd the reference point 𝑠⋆𝐾 and returns the values of the input 𝑎𝑗 to be
pplied.

. Control results

In this section, we show the closed-loop simulations of the RL
eedback control law applied to the Raptor simulator. In the follow-
ng simulations, the parameters are selected equal to the ones in
B.7)–(B.8). Target 𝜄-profiles, corresponding to steady-state plasma con-
igurations, are generated by applying a constant input for a sufficiently
ong time in the Raptor simulator. If these profiles are used in the
7

c

eedback control law without changing the Raptor configurations, we
an achieve perfect tracking of the target profiles. Nevertheless, it is
ifficult to get perfect tracking in practical applications because of the
igh system uncertainties and the limited degrees of freedom in the
vailable actuators. During the simulations, the ramp-up phase lasts
ntil 𝑡 = 0.02 s bringing the central current from 𝐼𝑝 = 80 kA to 𝐼𝑝 =
20 kA, while the feedback controller is activated at 𝑡 = 0.1 s. During the
lat-top phase, four different target profiles are given to the controller:
he first at 𝑡 = 0.1 s, the second at 𝑡 = 2.5 s, the third at 𝑡 = 5 s, and
he last at 𝑡 = 7.5 s. Therefore, to test the robustness of the RL control
eedback, we set up three different control scenarios:

• 1st scenario: RL feedback applied on the Raptor simulator (with
and without anti-windup).

• 2nd scenario: RL feedback applied on the Raptor simulator with
input disturbance.

• 3rd scenario: RL feedback applied on the Raptor simulator with
input disturbance and different integration point (no retraining).

st scenario.

The training procedure is done using the linear integrator dynamic
escribed by (25). In the first simulation, the test is done using the
ame integrator dynamics as in the training. A strong overshoot can be
bserved for the target equilibrium corresponding to a constant feed-
orward near the input’s limits. This overshot problem is due to the
indup problem caused by the simultaneous presence of the integrator
nd the input saturation. To solve this problem, we implement an anti-
indup scheme modifying the integrator linear dynamics (25) into

𝜀𝑗+1 =

⎧

⎪

⎨

⎪

⎩

𝜀𝑗 if 𝑎𝑗 = 1 and 𝜀𝑛𝑒𝑤 < 𝜀𝑗
𝜀𝑗 if 𝑎𝑗 = 0 and 𝜀𝑛𝑒𝑤 ≥ 𝜀𝑗
𝜀𝑛𝑒𝑤 else

𝜀𝑛𝑒𝑤 = 𝜀𝑗 + (𝑦𝑠,𝑗 − 𝑦⋆𝑠 )𝛿𝑡.

(38)

e refer to [59] for a survey on anti-windup techniques for linear,
onlinear, discrete, and continuous time systems. In Fig. 6, we show
he controller design for the Raptor simulator. Fig. 7 shows the 𝜄-profile
volution at four locations of the spatial domain 𝑥 ∈ {0, 0.1, 0.2, 0.35}
uring a simulation time of length 𝑇𝑠𝑖𝑚 = 10 s. In Fig. 7, we compare the
imulation results in case the controller is equipped or not with the anti-
indup algorithm. We remark that for every 𝜄-profile stabilization, the

ontroller without the anti-windup presents a larger overshoot when
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Fig. 6. Graphical representation of the proposed control scheme applied to the Raptor simulator. At each time step the trained neural network (𝑓𝑁𝑁 ) returns a number (𝑢𝑗 )
between 0 and 1. This number is mapped to the ECCD powers to be applied to Raptor. At the same time as the input is applied to Raptor, the integral state is updated.
Fig. 7. Rotational transform profiles (𝜄(𝑥, 𝑡)) at different points of the spatial domain {0, 0.1, 0.2, 0.35}. The orange curves represent the temporal evolution of the profiles without
the implementation of the anti-wind-up algorithm, while the blue curves depict the profiles with the utilization of the anti-wind-up algorithm.
the feed-forward input (connected to the required reference) is closer
to the saturation. Using the linear integrator dynamics, the integrator
state can continue to integrate (possibly in the wrong direction) when
the input is saturated. This means that the integrator will need some
additional time to come back to a value in the interval where the
input is not saturated. Using the nonlinear integrator dynamics in
(38), we prevent the integrator state to vary in the wrong direction
in case of input saturation. Notice that the trajectories with the anti-
windup implementation present a smaller overshoot for some profiles
and no overshot in others. Fig. 8 shows the 𝜄-profiles at different time
instants 𝑡 ∈ {2.5, 2.7, 2.9, 3.1, 3.3} and the feedback control input

𝑎𝑗 =
[

𝑃𝑒𝑐𝑐𝑑,1
𝑃𝑒𝑐𝑐𝑑,2

]

during the simulation interval. Comparing Figs. 8(a)

and 8(c), we can remark that the 𝜄-profile in the case of anti-windup
implementation is much closer to the desired profile than in the case
of linear integrator dynamics. Nevertheless, in both cases, the perfect
tracking of the desired 𝜄-profile is eventually achieved for all given
references.
8

2nd scenario.

The same controller including the anti-windup integrator as in the
last section is evaluated in the second scenario. In this scenario, we
introduce an input disturbance at time 𝑡 = 5.3 s, implemented with a
Neutral-Beam Injector with 𝜌𝑑𝑒𝑝 = 0.4 and 𝑤𝑐𝑑 = 0.4. Both parameters
𝜌𝑑𝑒𝑝, 𝑤𝑐𝑑 are set differently from the ones of the ECCD antenna in (B.8).
Therefore, when the input disturbance is activated, the magnetic flux
profile is modified and it is not possible to obtain the perfect tracking
of the 𝜄-profile reference as in the previous scenario. Fig. 9 represents
the 𝜄 trajectories in four points of the spatial domain. Starting from the
disturbance application, we can remark that the error at the integration
point 𝑥 = 0.2 is regulated to zero, while the trajectories in the other
locations are not regulated to zero. Fig. 10(a) shows that the 𝜄-profile
is stabilized to the desired profile at 𝑡 = 5.3 s, when the disturbance
is introduced. Then, the profile is stabilized into a shape that coincides
with the desired shape at 𝑥 = 0.2 and it is different at the other locations
of the spatial domain.
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Fig. 8. 𝜄-profile and applied input comparison between controller with and without anti-windup.
Fig. 9. Rotational transform profiles (𝜄(𝑥, 𝑡)) at different points of the spatial domain {0, 0.1, 0.2, 0.35} for a time period of 10 seconds. A disturbance, implemented as a Neutral-Beam
njector placed in a different place from the ECCD antenna control input, is applied at time 𝑡 = 5.3 (s).
w
𝑥
i
w

rd scenario.

In this third scenario, we use the same anti-windup controller used
n the previous scenarios. In this scenario, the integration position
s changed from 𝑝 = 5 to 𝑝 = 3. This means that the position
9

𝑖 𝑖 i
here we want to regulate the error to zero is 𝑥 = 0.1 instead of
= 0.2. We remark that the neural network has not been retrained

n a different integration position, therefore with this simulation, we
ant to test the robustness of our control algorithm with respect to the

ntegration point. Fig. 11 shows that before the disturbance application,
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I

Fig. 10. 𝜄-profiles and applied ECCD power (𝑃𝐸𝐶𝐶𝐷,𝑖) for the two antennas in case of external disturbance application.
Fig. 11. Rotational transform profiles (𝜄(𝑥, 𝑡)) at different points of the spatial domain {0, 0.1, 0.2, 0.35} for a time period of 10 seconds. A disturbance, implemented as a Neutral-Beam
njector placed in a different place from the ECCD antenna control input, is applied at time 𝑡 = 5.3 (s). In this simulation the position at which we want to regulate the error to

zero is 𝑥 = 0.1, while the controller was trained to regulate the error at 𝑥 = 0.2.
the controller is able to perfectly track the desired profiles. While after
the disturbance application, the error is regulated to zero at 𝑥 = 0.1
and not in the other points. In Fig. 12(a) we remark that after the
disturbance application, the 𝜄-profile is stabilized to a shape where the
error is zero at 𝑥 = 0.1 position.

5. Conclusions

In this article, we have developed a dynamic Deep Neural Network
(DNN) controller enhanced with an integral action using a Deep Re-
inforcement Learning (DRL) algorithm to regulate the plasma safety
factor in a tokamak. Firstly, we provided an overview of the current
state-of-the-art in reinforcement learning control. Subsequently, we
derived a simplified, finite-dimensional nonlinear discrete system from
the original distributed magnetic and kinetic plasma equations. Next,
a DRL training algorithm has been proposed to design the controller
for the plasma dynamics in cascade with the temporal integrator of the
error to be regulated. The proposed simulator has been implemented
in Python to be able to train the DNN controller using state-of-the-
art DRL algorithms. Finally, we evaluated the performance of the
obtained controller on the Raptor simulator under standard conditions,
10
in the presence of external disturbances and when the time integrator
integrates an error that differs from the one used during training.

A possible extension to this work is the realization of a second loop
of optimization that learns how to select the best 𝛼𝑖 parameters of
the reward function to optimize a cost function as the one proposed
in Section 3.3 of [60]. Another future research is to use the same RL
algorithm to achieve simultaneous stabilization of the temperature and
the safety factor profile. Additionally, an important extension would be
to obtain at least local stability guarantees for the closed-loop system
with the proposed dynamic DNN controller.
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Appendix A. Safety factor and thermal energy control model

Consider the reaction–diffusion equation describing the magnetic
flux dynamics (see Table A.2)

𝜕𝜓
𝜕𝑡

(𝑥, 𝑡) =
𝐷(𝑥, 𝑡)
𝑎2𝜌

𝜕2𝜓
𝜕𝑥2

(𝑥, 𝑡) +
𝐺(𝑥, 𝑡)
𝑎𝜌

𝜕𝜓
𝜕𝑥

(𝑥, 𝑡) + 𝑆(𝑥, 𝑡). (A.1)

For a summary of the notation regarding the fusion equations, we
refer to Table A.2. The coefficients 𝐷(𝑥, 𝑡), 𝐺(𝑥, 𝑡), and 𝑆(𝑥, 𝑡) can be
computed by following [61, eq. III-34] as

𝐷(𝑥, 𝑡) =
𝜂∥𝐶2

𝜇0𝐶3
𝐺(𝑥, 𝑡) =

𝜂∥𝐹𝑎𝜌
𝜇0𝐶3

𝜕
𝜕𝜌

(

𝐶2
𝐹

)

𝑆(𝑥, 𝑡) = 𝐿(𝜌, 𝑡)𝑗𝑛𝑖

𝐿(𝜌, 𝑡) =
𝜂∥𝑉 ′𝐵𝜙0
𝐹𝐶3

(A.2)

where 𝜂∥(𝜌, 𝑡) is the resistivity, 𝜇0 is the permeability of the free space, 𝐹
is the diamagnetic function, 𝑉 (𝜌, 𝑡) is the plasma volume, 𝑉 ′ = 𝜕𝑉

𝜕𝜌 is the
volume spatial derivative while 𝐶2 and 𝐶3 are space varying parameters
depending on the considered plasma geometry configuration. 𝑗𝑛𝑖(𝑥, 𝑡) is
the non-inductive current source and includes the bootstrap current 𝑗𝑏𝑠
as well as the ECCD density currents 𝑗𝑒𝑐𝑐𝑑

𝑗𝑛𝑖 = 𝑗𝑏𝑠 + 𝑗𝑒𝑐𝑐𝑑 . (A.3)

In this work, the bootstrap currents are computed according to [25]

𝑗𝑏𝑠 = −
𝑘𝑏𝑠

(

31
𝜕ln(𝑛𝑒) + 𝑅𝑝𝑒(31 + 32)

𝜕ln(𝑇𝑒)
11

𝜕𝜓∕𝜕𝜌 𝜕𝜌 𝜕𝜌 d
Table A.2
Table of symbols and corresponding units.

Symbol Description Unit

𝑎𝜌 Radius of the LCFS m
𝐵 Magnetic field T
𝐵𝜙 Toroidal magnetic field T
𝜂∥ Resistivity Ω × m
𝑒 Electron charge 1.6022 × 10−19 C
𝐹 Diamagnetic function T × m
𝜄 Rotational transform
𝐼𝑝 Total plasma current A
𝑗𝑛𝑖 Non-inductive current J/m2

𝑗𝑏𝑠 Bootstrap current J/m2

𝑗𝑒𝑐𝑐𝑑 Electron Ciclotron Current Drive density current J/m2

𝑗𝑡𝑜𝑟 Toroidal density current J/m2

𝜇0 Permeability of the free space 4𝜋 × 10−7 H/m
𝑛𝑒 Electron density profile m−3

𝑛𝑖 Ion density profile m−3

𝜙 Magnetic flux of the toroidal field T/m2

𝑃𝑒𝑐𝑐𝑑 ECCD power W
𝑃𝑂𝐻 Total ohmic power W
𝜓 Magnetic flux of the poloidal field T/m2

𝑞 Safety factor
𝑅 Major plasma radius m
𝑅0 Magnetic center location m
𝜌 Spatial index
𝜏𝑡ℎ Thermal energy confinement time s
𝑇𝑒 Electronic temperature eV
𝑇𝑖 Ion temperature eV
𝑈𝑝𝑙 Toroidal loop voltage
𝑉 Plasma volume m3

𝑊𝑡ℎ Plasma thermal energy J
𝑥 Normalized spatial index
𝜒𝑒 Electron thermal diffusivity m2/s
𝑍𝑒𝑓𝑓 Effective Plasma charge C

+ (1 − 𝑅𝑝𝑒)(31 + 𝛼34)
𝜕ln(𝑇𝑖)
𝜕𝜌

)

(A.4)

here 𝑇𝑒 is the electronic temperature, 𝑇𝑖(𝑥, 𝑡) ≈ 𝛼𝑇 𝑖(𝑡)𝑇𝑒(𝑥, 𝑡) is the
ons temperature, 𝑛𝑒 is the electron density, 𝛼 is a constant parameter
hile 𝑘𝑏𝑠, 31, 32, 34, 𝑅𝑝𝑒 are space varying parameters depending

on the electronic and ion temperatures and on the plasma geometric
configuration. The ion-to-electron temperature ratio can be fixed to
𝛼𝑇 𝑖 = 0.7. The electron density can be approximated by

𝑛𝑒(𝑥, 𝑡) ≈
𝛾𝑛 + 1
𝛾𝑛

(1 − 𝑥𝛾𝑛 )𝑛̄𝑒 (A.5)

here 𝑛̄𝑒 is the electron line average density, that in our case has been
onsidered to be constant 𝑛̄𝑒 = 1 × 10−19.

An appropriate and effective choice used in control-oriented plasma-

ynamics simulators is to approximate the current density by a
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weighted Gaussian [8]. According to [25], the ECCD efficiency can be
modelled heuristically as

𝑗𝑒𝑐𝑐𝑑,𝑖(𝜌, 𝑡) = 𝑐𝑐𝑑,𝑖𝑒
𝜌2∕0.52 𝑇𝑒

𝑛𝑒
𝑒−4(𝜌−𝜌𝑑𝑒𝑝,𝑖)

2∕𝑤2
𝑐𝑑,𝑖𝑃𝑒𝑐𝑐𝑑,𝑖(𝑡) (A.6)

where 𝑤𝑑𝑒𝑝 is the deposition width and 𝜌𝑑𝑒𝑝 is the location of the peak
of the deposition, while 𝑃𝑒𝑐𝑐𝑑,𝑖 is the power associated with the 𝑖th
antenna. The parameter 𝑐𝑐𝑑 is a machine-dependent parameter that
can be chosen to scale the expression to the experimentally obtained
current drive values. The total ECCD current is obtained as the sum of
the different antennas, that in this work are considered to be two

𝑗𝑒𝑐𝑐𝑑 (𝜌, 𝑡) = 𝑗𝑒𝑐𝑐𝑑,1(𝜌, 𝑡) + 𝑗𝑒𝑐𝑐𝑑,2(𝜌, 𝑡). (A.7)

According to [62], the conductivity can be computed as

𝜂∥ = 1
𝜎∥

= 1
𝜎𝑠𝑝𝑡𝑧𝑐𝑛𝑒𝑜

. (A.8)

The Spitzer conductivity 𝜎𝑠𝑝𝑡𝑧 depends on the electron temperature and
on the effective value of the plasma charge 𝑍𝑒𝑓𝑓 . This last parameter
may in general vary spatially, but it is chosen here to be a fixed quantity
for the whole plasma 𝑍𝑒𝑓𝑓 = 3.5. The neoclassical correction 𝑐𝑛𝑒𝑜
depends on the electron and ion collisionality parameters as well as
on 𝑍𝑒𝑓𝑓 . Both 𝜎𝑠𝑝𝑡𝑧 and 𝑐𝑛𝑒𝑜 are space and time-varying.

Specific boundary conditions have to be considered both at the
center and on the LCFS of the plasma. At the plasma center, the spatial
variation of the flux is zero
𝜕𝜓
𝜕𝑥

(0, 𝑡) = 0, (A.9)

while at the LCFS, we consider a Neumann boundary condition

𝜕𝜓
𝜕𝑥

(1, 𝑡) = −
𝑅0𝜇0𝐼𝑝(𝑡)

2𝜋
. (A.10)

where 𝐼𝑝 is the total plasma current. The toroidal flux 𝜙(𝑥, 𝑡) is defined
as the magnetic flux passing through a poloidal surface centered at 𝑅0
and with normalized radius 𝑥. Assuming that the toroidal magnetic field
remains constant, it is possible to obtain an explicit formula for the
toroidal flux [8]

𝜙(𝑥, 𝑡) = 1
2𝜋 ∫𝑆𝑝𝑜𝑙

𝐵(𝑅,𝑍)𝑑𝑆𝑝𝑜𝑙 = − 1
2𝜋 ∫𝑆𝑝𝑜𝑙

𝐵𝜙𝑑𝑆𝑝𝑜𝑙 ≈ −
𝐵𝜙0𝑎2𝜌𝑥

2

2
.

(A.11)

An instrumental quantity for the temperature dynamics is the ohmic
power

𝑃𝑂𝐻 = ∫

1

0

1
2𝜋𝑅0

𝑈𝑝𝑙𝑗𝑡𝑜𝑟𝑑𝑥 (A.12)

In the previous equation, 𝑈𝑝𝑙 identifies the toroidal loop voltage while
𝑗𝑡𝑜𝑟 corresponds to the toroidal density and they can be computed as

𝑈𝑝𝑙 =
𝜕𝜓
𝜕𝑡

𝑗𝑡𝑜𝑟 =
1
𝜂∥

(

𝐷(𝑥, 𝑡)
𝑎2𝜌

𝜕2𝜓
𝜕𝑥2

+
𝐺(𝑥, 𝑡)
𝑎𝜌

𝜕𝜓
𝜕𝑥

)

. (A.13)

The temperature diffusion equation writes

3
2
𝜕𝑛𝑒𝑇𝑒
𝜕𝑡

= 1
𝜌
𝜕
𝜕𝜌

(

𝜌𝑛𝑒𝜒𝑒(𝜌, 𝑡)
𝜕𝑇𝑒
𝜕𝜌

)

−
3𝑛𝑒𝑇𝑒
2𝜏𝑑

+ 𝑆𝑇 (𝜌, 𝑡) (A.14)

where 𝜒𝑒(𝜌, 𝑡) is the electron thermal diffusivity, 𝜏𝑑 is the time-varying
amping modelling the losses and 𝑆𝑇 (𝜌, 𝑡) is the source term. In our
pecific application, where we consider two ECCD inputs, we have

𝑇 (𝜌, 𝑡) = 𝑆𝑇 ,𝑒𝑐𝑐𝑑,1(𝜌, 𝑡) + 𝑆𝑇 ,𝑒𝑐𝑐𝑑,2(𝜌, 𝑡). (A.15)

t is worth remarking that for 𝑖 ∈ {1, 2} the source term has an
mplitude such that
1

0
𝑆𝑇 ,𝑒𝑐𝑐𝑑,𝑖(𝑥, 𝑡)𝑑𝑥 = 𝑃𝑒𝑐𝑐𝑑,𝑖. (A.16)

Because of the high uncertainty of the proposed temperature model
and in order to effectively diminish the simulation time, we choose
12
to use an empirical reduced-order model that approximates the actual
temperature dynamics, similar to the one proposed in [63]. This model
is composed of an ordinary differential equation representing the evolu-
tion of the thermal energy 𝑊𝑡ℎ and a Neural network that takes as input
he total power and the thermal energy and returns the distributed
emperature profile. The plasma thermal energy is defined as

𝑡ℎ = 𝑊𝑒(𝑡) +𝑊𝑖(𝑡) =
3𝑒
2 ∫𝑉

(𝑛𝑒𝑇𝑒 + 𝑛𝑖𝑇𝑖)𝑑𝑉 = 3𝑒
2 ∫𝑉

(1 + 𝛼𝑇 𝑖𝛼𝑛𝑖)𝑛𝑒𝑇𝑒𝑑𝑉

(A.17)

where 𝑛𝑖 ≈ 𝛼𝑛𝑖𝑛𝑒(𝑥, 𝑡) is the ions density, 𝑒 is the electron charge and
𝑊𝑒,𝑊𝑖 are the electrons and ions energy, respectively. The density ratio
can be approximately computed as 𝛼𝑛𝑖 ≈ (7 −𝑍𝑒𝑓𝑓 )∕6.

The exponents in the 𝜏𝑡ℎ expression in (20) have been obtained by
applying linear regression on data obtained from Raptor simulations.
In particular, the collected data together with the applied open-loop
input, are organized in the vectors 𝑋 and 𝑌 as following

𝑋 =

⎡

⎢

⎢

⎢

⎢

⎣

1
log(𝑃𝑡𝑜𝑡)

log(1 + 𝑃𝑒𝑐𝑐𝑑,1)
log(1 + 𝑃𝑒𝑐𝑐𝑑,2)

⎤

⎥

⎥

⎥

⎥

⎦

𝑌 = 𝜏𝑡ℎ. (A.18)

Linear regression is then applied to the couple (𝑋, 𝑌 ) to obtain the
power constant values 𝑘0, 𝑘1, 𝑘2, 𝑘3 such that

𝜏𝑡ℎ = 𝑒𝑘0𝑃 𝑘1𝑡𝑜𝑡 (1 + 𝑃𝑒𝑐𝑐𝑑,1)
𝑘2 (1 + 𝑃𝑒𝑐𝑐𝑑,2)𝑘3 . (A.19)

The temperature profile is obtained as the output of an artificial Neural
Network

𝑇𝑒(𝑥, 𝑡) = 𝑓𝑁𝑁 (𝑃𝑡𝑜𝑡,𝑊𝑡ℎ). (A.20)

he neural network has been trained using a set of temperature profiles
ssociated with the total power and the thermal energy obtained by
ome Raptor simulations. For both the 𝜏𝑡ℎ linear regression and the

NN training, the Raptor simulations have been obtained by applying
different constant open-loop inputs to the system and extracting the
total power, the thermal energy, 𝜏𝑡ℎ and the temperature profiles.

Appendix B. Simulation algorithm

Employing a combination of implicit–explicit time discretization
and fixed-step spatial discretization, as outlined in [8, Appendix A],
system (17) can be approximated by the difference equation

𝜓𝑗+1 = 𝐵−1
𝑗 𝐴𝑗𝜓𝑗 + 𝐵−1

𝑗 𝑆𝑗 (B.1)

where 𝜓𝑗 , 𝑆𝑗 ∈ R𝑁 are 𝑁-dimensional vectors of the magnetic flux and
the source term at 𝑁 different point of the spatial domain at the 𝑗 time
iteration. The matrices 𝐴𝑗 ∈ R𝑁×𝑁 and 𝐵𝑗 ∈ R𝑁×𝑁 depend on the
plasma physical parameters and change at every iteration 𝑗. The time
discretization step is fixed at 𝛿𝑡 = 0.01, with an implicit–explicit ratio of
ℎ = 0.45, and the total simulation time is referred to as 𝑇𝑠𝑖𝑚. The space
domain is divided into 𝑁 = 21 discretization elements, with a fixed
spatial discretization step of 𝛿𝑥𝑖 = 0.05. Similarly, the thermal energy
dynamics can be approximated by the difference equation

𝑊𝑡ℎ,𝑗+1 = 𝑑𝑗𝑊𝑡ℎ,𝑗 + 𝑠𝑗𝑃𝑡𝑜𝑡,𝑗 (B.2)

where 𝑊𝑡ℎ,𝑗 , 𝑃𝑡𝑜𝑡,𝑗 ∈ R are the thermal energy and the total power at
the 𝑗 time iteration. 𝑑𝑗 and 𝑠𝑗 are coefficients depending on 𝜏𝑡ℎ,𝑗 . It is
worth remarking that our study case is similar to the one considered
in [50], where the two available inputs act on the same spatial point:
the first antenna 𝑃𝑒𝑐𝑐𝑑,1 acts positively on 𝑧𝑗 while the second 𝑃𝑒𝑐𝑐𝑑,2
acts negatively. The two input powers have limited maximum power
𝑃𝑒𝑐𝑐𝑑,𝑖 ∈ [𝑃 𝑒𝑐𝑐𝑑,𝑖, 𝑃𝑒𝑐𝑐𝑑,𝑖]. To control the magnetic flux gradient, the
control action corresponds to the difference between the two antennas’
power. Inversely, the control action for the temperature profile corre-
sponds to the sum of the two antennas’ power. Since in this work we
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are interested in magnetic control, in the following we define a function
mapping from the desired power difference to the value of each antenna
power. Firstly, we define the control input 𝑎𝑗 ∈ [0, 1] that is mapped to
the desired difference 𝛼𝑗 ∈ [𝛼, 𝛼̄] between the two ECCD powers applied
t the 𝑗 time iteration

𝑗 = 𝛼 + 𝑎𝑗 (𝛼̄ − 𝛼) = 𝑃𝑒𝑐𝑐𝑑,1,𝑗 − 𝑃𝑒𝑐𝑐𝑑,2,𝑗 , (B.3)

where 𝛼 = 𝑃 𝑒𝑐𝑐𝑑,1 − 𝑃𝑒𝑐𝑐𝑑,2 and 𝛼̄ = 𝑃𝑒𝑐𝑐𝑑,1 − 𝑃 𝑒𝑐𝑐𝑑,2. Given a desired
ower difference 𝛼𝑗 , the control input powers are mapped to minimize
heir sum 𝑃𝑒𝑐𝑐𝑑,1,𝑗 + 𝑃𝑒𝑐𝑐𝑑,2,𝑗 . The mapping can be expressed by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝑒𝑐𝑐𝑑,1,𝑗 = 𝑃 𝑒𝑐𝑐𝑑,1
𝑃𝑒𝑐𝑐𝑑,2,𝑗 = 𝑃 𝑒𝑐𝑐𝑑,1 − 𝛼𝑗

if 𝛼𝑗 < 𝑃 𝑒𝑐𝑐𝑑,1 − 𝑃 𝑒𝑐𝑐𝑑,2

𝑃𝑒𝑐𝑐𝑑,1,𝑗 = 𝛼𝑗 + 𝑃 𝑒𝑐𝑐𝑑,2
𝑃𝑒𝑐𝑐𝑑,2,𝑗 = 𝑃 𝑒𝑐𝑐𝑑,2

if 𝛼𝑗 ≥ 𝑃 𝑒𝑐𝑐𝑑,1 − 𝑃 𝑒𝑐𝑐𝑑,2.

(B.4)

After the spatial discretization of the magnetic flux dynamics and
the temporal discretization of both the magnetic flux and thermal
energy dynamics, we obtain the difference equation

𝑧𝑗+1 =

[

𝐵−1
𝑗 𝐴𝑗 0
0 𝑑𝑗

]

𝑧𝑗 +

[

𝐵−1
𝑗 𝑆𝑗

𝑠𝑗𝑃𝑡𝑜𝑡,𝑗

]

= 𝑓 (𝑧𝑗 , 𝑎𝑗 ). (B.5)

in the state variable

𝑧𝑗 =
[

𝜓𝑗
𝑊𝑡ℎ,𝑗

]

∈ R𝑁+1. (B.6)

The steps for the plasma magnetic flux and temperature simulation are
listed in Algorithm 2. The constant parameters are fixed as follows

𝐵𝜙0 = 1.44, 𝑅0 = 0.88, 𝑎𝜌 = 0.25, 𝑍𝑒𝑓𝑓 = 3.5, 𝛿0 = 0.3,
̄𝑒 = 1 × 10−19, 𝛼𝑇 𝑖 = 0.7, 𝜇0 = 4𝜋 × 10−7, 𝛾𝑛 = 2.

(B.7)

In the current experiment, we assume that the two ECCD actuators,
described by the injected current density in (A.6), have the following
parameters

𝑐𝑐𝑑,1 = 1, 𝜌𝑑𝑒𝑝,1 = 0, 𝑤𝑐𝑑,1 = 0.35,
𝑃𝑒𝑐𝑐𝑑,1 = 900 (MW), 𝑃 𝑒𝑐𝑐𝑑,1 = 360 (MW),

𝑐𝑐𝑑,2 = −1, 𝜌𝑑𝑒𝑝,2 = 0, 𝑤𝑐𝑑,2 = 0.35,
𝑃𝑒𝑐𝑐𝑑,2 = 750 (MW), 𝑃 𝑒𝑐𝑐𝑑,2 = 100 (MW).

(B.8)

It is worth noticing that the Ohmic power at time instant 𝑗 + 1 is
computed with the variables 𝜂∥,𝑗 , 𝑇𝑒,𝑗 , 𝑇𝑖,𝑗 , 𝑢𝑗 , belonging to the time
instant 𝑗, as well as 𝜓𝑗+1, belonging to the time instant 𝑗 + 1. With
this simulation procedure, it is not possible to only use variables
belonging to the time instant 𝑗 + 1 for the 𝑃𝑂𝐻,𝑗+1 calculation because
𝑃𝑂𝐻,𝑗+1 itself is needed to compute 𝑇𝑒,𝑗+1 and 𝑇𝑖,𝑗+1. This is an intrinsic
property of this simulation procedure, introduced in [8], that avoids
the implementation of a fixed point iteration research to find all the
states at the time step 𝑗+1. The nonlinear components of the model are
delayed by one sample while an implicit–explicit scheme is used for the
linear components, thus avoiding the fixed-point iteration algorithm to
obtain a faster simulation.

To test the simulator’s precision with respect to a certain tokamak
configuration, we compare the trajectories obtained with the appli-
cation of some constant open-loop controls with the ones obtained
through the application of the same controls with the Raptor simulator.
The Raptor simulator is a real-time predictor of the 𝛹 and 𝑇𝑒 profiles
sed as an observer in the TCV control environment [25]. The kinetic
nd magnetic profiles are obtained by simulating two coupled nonlinear
eaction–diffusion PDEs. Therefore, the Raptor simulator provides fairly
recise simulation results that can be taken as a reference for our
imulator. Fig. B.13 shows the 𝜕𝜓

𝜕𝜌 (𝜌, 𝑡) trajectories with the application
of the open loop input 𝑎 = 0.15. The initial condition for both the

aptor and the training simulator corresponds to the steady state with
13
Algorithm 2 Simulation Algorithm
Data:

• Initialization of 𝜓0, 𝑊𝑡ℎ,0 and 𝑃𝑂𝐻,0 from Raptor simulation
after the ramp-up phase

• Initialization of the constant physical parameters
• Initialization of the constant simulation parameters
• Initialization of the open-loop input 𝑈
• Simulation initialization 𝑗 = 0

hile 𝑗 < 𝑇𝑠𝑖𝑚∕𝛿𝑡 do

1. Input extraction : 𝑎𝑗 = 𝑈 [𝑗]
2. Temperature: 𝑇𝑒,𝑗 , 𝑇𝑖,𝑗 ← 𝑓𝑡𝑒𝑚𝑝(𝑎𝑗 , 𝑃𝑂𝐻,𝑗 ,𝑊𝑡ℎ,𝑗 ) with (21),

(A.20) and (B.3)–(B.4)
3. Resistivity: 𝜂∥,𝑗 ← 𝑓𝑟𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑡𝑦(𝑇𝑒,𝑗 , 𝜓𝑗 ) with (A.8)
4. Bootstrap current: 𝑗𝑏𝑠,𝑗 ← 𝑓𝑏𝑜𝑜𝑠𝑡𝑟𝑎𝑝(𝑇𝑒,𝑗 , 𝑇𝑖,𝑗 , 𝜓𝑗 ) with (A.4)
5. ECCD deposit: (𝑗𝑒𝑐𝑐𝑑,1)𝑗 , (𝑗𝑒𝑐𝑐𝑑,2)𝑗 ← 𝑓𝑒𝑐𝑐𝑑 (𝑎𝑗 , 𝑇𝑒,𝑗 ) with

(A.6)
6. Non-inductive currents: 𝑗𝑛𝑖,𝑗 ← 𝑗𝑏𝑠,𝑗 + (𝑗𝑒𝑐𝑐𝑑,1)𝑗 + (𝑗𝑒𝑐𝑐𝑑,2)𝑗
7. Diffusion coefficients: 𝐷𝑖,𝑗 , 𝐺𝑖,𝑗 , 𝐿𝑖,𝑗 ← 𝑓𝑐𝑜𝑒𝑓𝑓 (𝜂∥,𝑗 ) with

(A.2)
8. Magnetic flux: 𝜓𝑗+1 ← 𝑓𝜓 (𝜓𝑗 , 𝐷𝑖,𝑗 , 𝐺𝑖,𝑗 , 𝐿𝑖,𝑗 , 𝑗𝑛𝑖,𝑗 ) with (B.5)
9. Thermal energy: 𝑊𝑡ℎ,𝑗+1 ← 𝑓𝑡ℎ𝑒𝑟𝑚𝑎𝑙(𝑢𝑗 , 𝑃𝑂𝐻,𝑗 ,𝑊𝑡ℎ,𝑗 ) with

(B.5)
10. Ohmic Power: 𝑃𝑂𝐻,𝑗+1 = 𝑓𝑜ℎ𝑚𝑖𝑐 (𝜂∥,𝑗 , 𝑇𝑒,𝑗 , 𝑇𝑖,𝑗 , 𝑎𝑗 , 𝜓𝑗+1)

with (A.12)–(A.13)

𝑗 ← 𝑗 + 1
end

the constant open loop input 𝑎 = 0.7. In Fig. B.13(a) are shown the
trajectories of four points of the spatial domain 𝑥 = 0.05, 0.35, 0.5, 0.75
f both the Raptor and training simulator. While in Fig. B.13(b) are
hown the 𝜕𝜓

𝜕𝜌 (𝜌, 𝑡) profiles at time instants 𝑡 = 0.1, 0.2, 1.5. We remark
that there exists a visible difference between the profiles obtained
with the proposed simulation algorithm and the Raptor simulator.
Nevertheless, we can observe similar trends:

• Small values of the input result to small values of the magnetic
gradient peak,

• Small values of the input result to a right-shift of the magnetic
gradient peak.

In the following sections, we show that having a model that keeps the
same trends as the ‘‘real’’ system is enough to design a controller with
a DRL algorithm.

Appendix C. Reinforcement Learning with integral action on a toy
model

Consider a continuous-time mass–spring–damper system with mass
𝑚, spring constant 𝑘0, damping 𝑐, and position denoted by 𝑥. The toy
model’s dynamic equations can be expressed as

̈(𝑡) = −𝑘
0

𝑚
𝑥(𝑡) − 𝑐

𝑚
𝑥̇(𝑡) + 1

𝑚
𝑎(𝑡) (C.1)

where 𝑎(𝑡) is the control force (action) applied to the system. The state
space representation, with 𝑧 = [𝑥 𝑥̇]𝑇 , corresponds to

̇ (𝑡) =

𝐴
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[

0 1
𝑘0 𝑐

]

𝑧(𝑡) +

𝐵
⏞⏞⏞
[

0
1

]

𝑎(𝑡) (C.2)

− 𝑚 −𝑚 𝑚
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sing an implicit–explicit discretization scheme, we are able to ob-
ain the difference equation corresponding to the mass–spring–damper
ystem

𝑗+1 =

𝐴𝐷
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝐼 − 𝛿𝑡(1 − ℎ)𝐴)−1(𝐼 + ℎ𝛿𝑡𝐴) 𝑧𝑗 +

𝐵𝐷
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝐼 − 𝛿𝑡(1 − ℎ)𝐴)−1𝐵 𝑎𝑗 , (C.3)

where 𝛿𝑡 is the discretization time step. The control objective is to find
a control law capable of stabilizing the system to a desired position
𝑥⋆. Hence, we aim at steering the system to 𝑧⋆ = [𝑥⋆ 0]⊤. Moreover,
we want such a stabilization property to be robust, namely, we want
the controller to stabilize the system even in presence of (constant)
disturbances. An example of such disturbances may be the imperfect
knowledge of the system’s parameters, e.g., the spring’s constant 𝑘 =
𝑘0 + 𝛿𝑘 with 𝛿𝑘 ∈ [−𝛥, 𝛥]. Hence, we model the true plant to be
controlled as

𝑧𝑗+1 = (𝐴𝐷 + 𝐴̃𝐷)𝑧𝑗 + 𝐵𝐷𝑎𝑗 , (C.4)

where 𝑧𝑗 = [𝑥𝑗 𝑥̇𝑗 ]𝑇 and 𝐴̃𝐷 embeds the constant unknown spring
variation 𝛿𝑘. Instead of using a more conventional control approach
(e.g. Lyapunov-based, forwarding, etc.) we now want to use an RL
algorithm to learn the policy (controller) for the former system. To do
that, let us define the optimal problem via the reward

𝑟𝑗 = (𝑧𝑗 − 𝑧⋆)𝑇𝑄(𝑧𝑗 − 𝑧⋆) + 𝑅(𝑎𝑗 − 𝑎⋆)2. (C.5)

where 𝑎⋆ = 𝑘0𝑥⋆ is the steady state input for obtaining the desired
equilibrium with a spring constant 𝑘 = 𝑘0. The training is performed on
a system with unitary parameters 𝑚 = 𝑐 = 1 and spring constants 𝑘0 = 1
and 𝛥 = 0.2. The cost matrices are defined as 𝑄 = 0.001𝐼 and 𝑅 = 0.01.
In this example, we use a 2 layers neural network with 32 nodes for
both the actor and the critic. The learning rate is set equal to 𝛾 = 0.001.
Training is performed with a 2 × 106 total number of steps, while each
episode has 500 steps. The time step is set equal to 𝛿𝑡 = 0.1. The training
is performed using 8 environments in parallel using the PPO algorithm.
At each episode, the spring parameter variation is selected randomly
in the interval [−𝛥, 𝛥]. Fig. C.14 shows the evolution of the episode
reward mean over time. In Fig. C.15, we show the mass–spring–damper
system in a closed loop with the trained control law in case 𝑘 = 1 with
initial conditions set to 𝑥0 = −4, 𝑥̇0 = −5. We can see that the control
law drives the system towards an equilibrium position, with a constant
offset from the desired position 𝑥⋆ = 1.

Now, let us add the integrator dynamics and consider the stabiliza-
tion of the extended system
{

𝑧𝑗+1 = (𝐴𝐷 + 𝐴̃𝐷)𝑧𝑗 + 𝐵𝐷𝑎𝑗 ,
⋆

(C.6)
14

𝜀𝑗+1 = 𝜀𝑗 + (𝑥𝑗 − 𝑥 )𝛿𝑡.
Fig. C.14. Reward mean over steps of the mass–spring–damper controller training
without the integral action.

Then, if the extended system is stabilized to some (𝑧𝑒, 𝜂𝑒) by a feedback
ontrol law 𝑎(𝑡) = 𝑢(𝑧, 𝜂) such that 𝑢(𝑧𝑒, 𝜂𝑒) = 𝑢𝑒, we have

0 = (𝐴𝐷 + 𝐴̃𝐷)𝑧𝑒 + 𝐵𝐷𝑢𝑒,
0 = (𝑥𝑒 − 𝑥⋆)𝛿𝑡.

(C.7)

s such, the second equation implies 𝑥𝑒 = 𝑥⋆. Hence, 𝑥⋆ is reached
ven in presence of constant unknown variation of the spring constant.
e rewrite the open-loop system with state 𝑠𝑗 = [𝑥𝑗 𝑥̇𝑗 𝜀𝑗 ]𝑇 as

𝑗+1 =
⎡

⎢

⎢

⎣

𝐴𝐷 + 𝐴̃𝐷
0
0

𝛿𝑡 0 1

⎤

⎥

⎥

⎦

𝑠𝑗 +
⎡

⎢

⎢

⎣

0
1
𝑚
0

⎤

⎥

⎥

⎦

𝑎𝑗 +
⎡

⎢

⎢

⎣

0
0

−𝑥⋆𝛿𝑡

⎤

⎥

⎥

⎦

(C.8)

We define

𝑠⋆ =
⎡

⎢

⎢

⎣

0
𝑥⋆

0

⎤

⎥

⎥

⎦

(C.9)

and the reward as

𝑟𝑗 = (𝑠𝑗 − 𝑠⋆)𝑇𝑄𝑒(𝑠𝑗 − 𝑠⋆) + 𝑅(𝑎𝑗 − 𝑎⋆)2 (C.10)

here 𝑄𝑒 is the new extended state cost matrix and 𝑎⋆ = 𝑘0𝑥⋆ as before.
e perform the same training as the one done for the system without

he integrator state. In this case we fix

𝑒 =
⎡

⎢

⎢

⎣

0.001 0 0.0005
0 0.001 0

0.0005 0 0.001

⎤

⎥

⎥

⎦

𝑅 = 0.01. (C.11)

In Fig. C.16 is depicted the evolution of the episode reward mean.

In Fig. C.17 we show the extended system in closed-loop with the
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Fig. C.15. Control action and position of the mass–spring damper system in closed loop with a controller without integral state that has been trained on a model with a different
pring coefficient.
Fig. C.16. Reward mean over steps of the mass–spring–damper controller training with integral action.
Fig. C.17. Control action, integral state and position of the mass–spring damper system in closed loop with a controller with integral state that has been trained on a model with
different spring coefficient.
r
s

rained control law in case 𝑘 = 1. We can appreciate that in this case,
he position converges to the desired equilibrium. Therefore, we have
rained a robust controller that makes use of an integrator state to be
15

d

obust with respect to constant parameter variation. It is possible to
how that the same controller is robust also with respect to constant
isturbances.
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