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a b s t r a c t

This paper studies an optimal tuning of the boundary controller for a heterogeneous traffic flow model
with disturbances in order to alleviate congested traffic. The macroscopic first-order N-class Aw–Rascle
traffic model consists of 2N hyperbolic partial differential equations. The vehicle size and the driver’s
behavior characterize the type of vehicle. There are m positive characteristic velocities and 2N − m
negative characteristic velocities in the congested traffic after linearizing the model equations around
the steady state depending on the spatial variable. By using the backstepping method, a controller
implemented by a ramp metering at the inlet boundary is designed for rejecting the disturbances to
stabilize the 2N × 2N heterogeneous traffic system. The developed controller in terms of proportional
integral control is derived from mapping the original system to a target system with a proportional
integral boundary control rejecting the disturbances. The integral input-to-state stability of the target
system is proved by using the Lyapunov method. Finally, an optimization problem is established and
solved for seeking the optimal tuning of the controller.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

Traffic congestion is a pervasive problem that leads to in-
reased fuel consumption and risky driving conditions. It is natu-
al to use the boundary control on the available control signals
s the ramp metering or the variable speed limit to stabilize
he highway traffic systems. Paper (Tumash, de Wit, & Monache,
021) contributes to the boundary control design for the multi-
irectional congested traffic evolving on the large-scale urban
etworks represented by a continuum two-dimensional plane.
n Yu, Park, Bayen, Moura, and Krstic (2021), a reinforcement
earning boundary controller is designed to mitigate the stop-
nd-go congested traffic for the 2 × 2 quasilinear Aw–Rascle–
hang (ARZ) partial differential equations (PDEs) model by using
he proximal policy optimization which is an algorithm based on
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the neural networks. In Auriol and Pietri (2022), a delay-robust
stabilizing state feedback boundary control law is developed for
an underactuated network of two subsystems of a heterodirec-
tional linear first-order n + m hyperbolic PDEs system. In Guan,
hang, and Prieur (2020), an optimal tuning of PI controller is
one for the linearized ARZ traffic model by computing the value
f L2 gain from disturbance to output, that is to measure the dis-
urbance rejection capacity (see the recent survey Mironchenko
Prieur, 2020).
Usually, macroscopic models typically described by PDEs are

ore suitable to study congested traffic and the disturbances in
he traffic flow. In Guan, Zhang, and Prieur (2021), the linearized
RZ traffic flow model with boundary disturbances is mapped
nto an iISS target system by using a backstepping transforma-
ion in order to obtain a full state feedback controller, and we
se a backstepping method to derive an observer-based output
eedback controller to dissolve traffic congestion resulting from
raffic breakdown. The exact boundary controllability of a class
f nonlocal conservation laws modeling traffic flow is studied
n Bayen, Coron, Nitti, Keimer, and Pflug (2021). In Gupta and
atiyar (2007), the authors propose a new continuum model
ith an additional anisotropic term that ensures the charac-
eristic velocities can be less than or equal to the macroscopic
low speed. An extension of the speed gradient (SG) model is
ntroduced to study the mixed traffic flow system in Jiang and
u (2004). Paper (Mohan & Ramadurai, 2017) extends the Aw–
ascle (AR) model for heterogeneous traffic by using the area
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ccupancy and analyzes the properties of the extended model.
new car-following model for the heterogeneous traffic flow

s presented in Tang, Huang, Zhao, and Shang (2009). In Mohan
nd Ramadurai (2017), the macroscopic N-class AR traffic model
ith the consideration of vehicle size is used because of the
alidation of simulation. A continuum multi-class traffic model is
roposed on the basis of a three-dimensional flow–concentration
urface in Mohan and Ramadurai (2021). Paper (Fan & Work,
015) studies a two-type vehicle heterogeneous traffic model to
cquire the overtaking and creeping traffic flows. In Fan, Herty,
nd Seibold (2014), a generalized ARZ traffic flow system is de-
ived by modifying the pressure relation in the ARZ model and by
sing the data-fitting method.
The backstepping method is used to derive a boundary con-

roller in some papers. In Yu, Gan, Bayen, and Krstic (2020), a
oundary observer for the nonlinear ARZ traffic flow model is
esigned to estimate the information of the traffic states by using
he backstepping method. A controller is designed for the un-
eractuated cascade network of the interconnected PDEs systems
y using backstepping in Auriol (2020). Considering the limits of
echnology and cost, there have been works inspired by Coron,
azquez, Krstic, and Bastin (2013) to design a control law for
he linearized ARZ traffic flow model by using the backstepping
ransformations (see Yu & Krstic, 2019). Paper (Burkhardt, Yu, &
rstic, 2021) uses the backstepping method to design an output
eedback boundary control for the stop-and-go traffic problem of
he linearized two-class AR traffic flow system. As an extension of
he two-type vehicle traffic flow model in the paper (Burkhardt
t al., 2021), this paper generally investigates N > 2 vehicle types
ith the help of some coefficient matrices but in the presence
f the unknown and bounded disturbances (high traffic demand)
t the inlet and a bottleneck (flow restriction, constant densities)
t the outlet of the considered road section. This paper assumes
he flow conservation of each vehicle type at the upstream inlet
= 0, rather than the constant overall traffic flow entering and

eaving the investigated track section in the paper (Burkhardt
t al., 2021). In addition to these differences with respect to the
aper (Burkhardt et al., 2021), it is natural for the applications
o consider the case of a nonuniform steady-state and the trans-
ort velocities depending on the spatial variable. Moreover, the
bjective of this paper is to reject disturbances and alleviate the
ongested traffic (convergence to the nonuniform steady-state),
ot to regulate the leaving traffic flow. By means of solving the
ptimization problem, we obtain the optimal tuning parameters
o minimize the likelihood of congested traffic. Paper (Coron et al.,
013) uses a backstepping transformation to design a control law
nd derives the H2 exponential stability for a quasilinear 2 × 2

system of the first-order hyperbolic PDEs. Paper (Bastin, Coron, &
Hayat, 2021) studies the sufficient conditions for the local input-
to-state stability (ISS) in the sup norm of the general quasilinear
hyperbolic systems with the boundary input disturbances. For
the one-dimensional parabolic partial differential equations with
disturbances at both boundaries, the estimations of the input-to-
state stability in the various norms are studied in Karafyllis and
Krstic (2017).

Contributions: This paper states a new result on the controller
design by using the backstepping method for the linearized multi-
type traffic flow hyperbolic system around a nonuniform steady-
state to reject disturbances and then to alleviate the congested
traffic. Firstly, this work presents the derivation of an extended
multi-type AR traffic flow model in the characteristic form. Sec-
ondly, we prove the integral input-to-state stability (iISS) of a
target system that has a source term of integral form and a
proportional–integral (PI) boundary control for rejecting distur-
bances. Moreover, inspired by Hu, Di Meglio, Vazquez, and Krstic

(2016), a controller implemented by ramp metering is designed

2

to robustly stabilize the heterogeneous traffic system by applying
the backstepping method to the multi-type vehicle traffic model.

This paper is organized as follows: Section 2 introduces the
multi-type AR traffic flow model with the parameters character-
izing different vehicle types and the formulation of the control
problem to be solved. In Section 3, the iISS of the target system is
proved by the Lyapunov method, and a controller is designed by
using the backstepping approach. In Section 4, the optimization
problem is presented and the numerical results are provided for
verifying the existence of the optimal tuning of controller. The
paper ends with the concluding remarks in Section 5.

Notation. The set of positive real numbers is represented by
R>0. C0 is the set of continuous functions, and C1 is the set
of continuously differentiable functions. max(S) is the maximum
value of all the elements in S if S is a set. ∂t f and ∂xf respectively
enote the partial derivatives of a function f with respect to the
ariables t and x. f ′ denotes the first derivative of a function f

with respect to the variable x, and ḟ denotes the first derivative
of a function f with respect to the variable t . For a function
ϕ = [ϕ1, . . . , ϕn]

⊤
: [0, L] × [0, +∞) → Rn, we define the

following norms, the L2-norm

∥ϕ∥L2((0,L);Rn) =

(∫ L

0
(ϕ2

1 (ξ, t) + · · · + ϕ2
n (ξ, t)) dξ

) 1
2

,

the L∞-norm ∥ϕ∥L∞((0,L);Rn) =

ax
{
∥ϕ1∥L∞((0,L);R), . . . , ∥ϕn∥L∞((0,L);R)

}
,

he H1-norm ∥ϕ∥H1((0,L);Rn) =∫ L

0

(
∥ϕ∥

2
L2((0,L);Rn) + ∥ϕx∥

2
L2((0,L);Rn)

)
dx

) 1
2

,

and the H2-norm ∥ϕ∥H2((0,L);Rn) =

( ∫ L
0

(
∥ϕ∥

2
L2((0,L);Rn)

∥ϕx∥
2
L2((0,L);Rn) + ∥ϕxx∥

2
L2((0,L);Rn)

)
dx

) 1
2

.

Rn denotes the set of real n-dimensional column vector. Rn×l

denotes the set of real n × l matrices. 0n×l denotes the n × l
zero matrix. In is a n-dimensional identity matrix. Dn denotes the
set of n-dimensional diagonal matrix. D+

n denotes the set of n-
dimensional diagonal matrix in which the main diagonal entries
are positive. The n-dimensional column vector is represented
as M =

[
M1 M2 · · · Mn

]⊤, where the argument Mi (i =

1, 2, . . . , n) is a scalar or a column vector. The diagonal matrix is
represented as M = diag{d1, d2, . . . , dn} with the diagonal entry
di (i = 1, 2, . . . , n). The block diagonal matrix is represented as
M = diag{M1,M2, . . . ,Mn}, and the block matrix is represented

as M =

⎡⎢⎢⎣
M11 M12 · · · M1n
M21 M22 · · · M2n
...

...
. . .

...

Mn1 Mn2 · · · Mnn

⎤⎥⎥⎦, where the main diagonal

argument Mi (i = 1, 2, . . . , n) and the argument Mij (i, j =

1, 2, . . . , n) are matrices. [M]i,j denotes the entry of matrix M
in the ith row and the jth column.

{
Mij

}
n1≤i≤n2,l1≤j≤l2

denotes a
matrix consisting of the entries of matrix M in the rows from
n1th to n2th and the columns from l1th to l2th. M−1 denotes the
inverse matrix of a square matrix M . M⊤ denotes the transpose
of a matrix M . λ(M) is the set of all the eigenvalues of a matrix
M , and |λ(M)| is the set of absolute values of all the eigenvalues if
M is a square matrix. The symbol ∗ stands for a symmetric block
in a matrix.
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. Traffic flow system and control problem

The multi-type AR traffic flow model and the interpretations
f the crucial parameters are presented in this section. The
reparations for designing a controller are also done including
he transformations of the states and the linearization around a
onuniform steady-state. On the basis of the control problem to
e solved, the corresponding boundary conditions are derived.

.1. Multi-type AR traffic flow model

We investigate the multi-type AR traffic flow model in Mohan
nd Ramadurai (2017) that describes the dynamics of heteroge-
eous traffic consisting of N vehicle types on a road segment with

the length L,

∂tρi(x, t) + ∂x

(
ρi(x, t)vi(x, t)

)
= 0, (1)

∂t

(
vi(x, t) + pi (Ao(ρ))

)
+ vi(x, t)∂x

(
vi(x, t) + pi (Ao(ρ))

)
=

Ve,i (Ao(ρ)) − vi(x, t)
τi

, (2)

with the independent spatial variable x ∈ (0, L) and the indepen-
dent time variable t ∈ [0, +∞), where i is the index of vehicle
type with i = 1, 2, . . . ,N , ρi(x, t) and vi(x, t) are respectively the
density and the velocity of the vehicle type i. Additionally, the
density ρi(x, t) is defined as the number of vehicles passing the
road section per unit length, and the velocity vi(x, t) is defined as
the average speed of vehicles passing the location x in unit time.
The relaxation time τi of the vehicle type i is subject to the driving
behavior, and the area occupancy Ao(ρ) is formulated as

Ao(ρ) =
a⊤ρ

W
, (3)

where a = (a1, a2, . . . , aN )⊤ (ai is the occupied surface per vehicle
for type i), ρ = (ρ1, ρ2, . . . , ρN )⊤, and W is the width of the
road segment. The area occupancy Ao(ρ) describes the percentage
of the road space occupied by all the vehicle classes on the
considered road section. In the physical sense, 0 < Ao(ρ) ≤ 1.

For the heterogeneous traffic, the traffic pressure function
pi (Ao(ρ)) of the vehicle type i is an increasing function of the
area occupancy Ao(ρ) (see Burkhardt et al., 2021),

pi(Ao(ρ)) = vM
i

(
Ao(ρ)
AoMi

)γi

, i = 1, 2, . . . ,N, (4)

here the free-flow velocity vM
i and the maximum area occu-

ancy 0 < AoMi ≤ 1 of the vehicle type i respectively describe
he maximal velocity in the free regime and the maximum per-
entage of occupied surface in the congested regime, if there is
nly vehicle class i on the considered road segment. Denoting the
aximal free flow speed by vM

i and the maximal density by ρM
i ,

e assume that the inequalities 0 < vi ≤ vM
i , 0 < ρi ≤ ρM

i hold.
s described in the paper (Burkhardt et al., 2021), the constant
i > 1 is the pressure exponent of the vehicle type i that can be
uned to get realistic traffic pressure pi(Ao(ρ)).

The steady-state speed–Ao relationship of vehicle class i (=
, 2, . . . ,N) is given by the Greenshield’s model in Greenshields,
ibbins, Channing, and Miller (1935) as

e,i(Ao(ρ)) = vM
i − pi (Ao(ρ)) = vM

i

(
1 −

(
Ao(ρ)
AoMi

)γi
)

. (5)

here is a negative connection from the decreasing function
e,i (Ao(ρ)) describing the desired velocity of the drivers to the
rowded degree.
3

.2. Linearization of multi-type AR traffic flow model

Inspired by the case ‘‘2 vehicle classes’’ in Burkhardt et al.
2021), the multi-type AR traffic model (1)–(2) is linearized
round a nonuniform steady-state
∗

= (ρ∗

1 , v
∗

1, ρ
∗

2 , v
∗

2, . . . , ρ
∗

N , v∗

N )
⊤

∈ C1([0, L];R2N ),

here ρ∗

i , v
∗

i satisfy, for i = 1, 2, . . . ,N ,

v∗

i ρ
∗

i
′
+ ρ∗

i v
∗

i
′
= 0, (6)

v∗

i v
∗

i
′
+ v∗

i p
′

i =
Ve,i(Ao(ρ∗)) − v∗

i

τi
, (7)

with ρ∗
= (ρ∗

1 , ρ
∗

2 , . . . , ρ
∗

N )
⊤. From (6), note that ρ∗

i v
∗

i = di with
the given constant di and the given value for ρ∗

i (0), i = 1, 2 . . . ,N .
Assume that there exists a steady state ρ∗

i > 0, v∗

i > 0, defined
on [0, L] satisfying (6)–(7), as done in Bastin and Coron (2017) for
a different class of 2 × 2 hyperbolic systems.

Denoting (̃ρ1, ṽ1, ρ̃2, ṽ2, . . . , ρ̃N , ṽN )⊤ with

ρi = ρi − ρ∗

i ∈ H1([0, L] × [0, +∞);R),

vi = vi − v∗

i ∈ H1([0, L] × [0, +∞);R),

i = 1, 2, . . . ,N , by ũ ∈ H1([0, L] × [0, +∞);R2N ), the system
(1)–(2) is transformed to the following equation, for all x ∈ (0, L),
t ∈ [0, +∞),

A(̃u)̃ut (x, t) + B(̃u)̃ux(x, t) + C (̃u)̃u(x, t) = 0, (8)

where, for i, j = 1, 2, . . . ,N ,

A(̃u) =

⎡⎢⎢⎣
A11 (̃u) A12 (̃u) · · · A1N (̃u)
A21 (̃u) A22 (̃u) · · · A2N (̃u)

...
...

. . .
...

AN1 (̃u) AN2 (̃u) · · · ANN (̃u)

⎤⎥⎥⎦ , (9)

with

Aij (̃u) =

⎧⎪⎪⎨⎪⎪⎩
[

1 0
δii(ρ) 1

]
, if j = i,[

0 0
δij(ρ) 0

]
, if j ̸= i,

(10)

B(̃u) =

⎡⎢⎢⎣
B11 (̃u) B12 (̃u) · · · B1N (̃u)
B21 (̃u) B22 (̃u) · · · B2N (̃u)

...
...

. . .
...

BN1 (̃u) BN2 (̃u) · · · BNN (̃u)

⎤⎥⎥⎦ , (11)

with

Bij (̃u) =

⎧⎪⎪⎨⎪⎪⎩
[

ṽi + v∗

i ρ̃i + ρ∗

i
(̃vi + v∗

i )δii(ρ) ṽi + v∗

i

]
, if j = i,[

0 0
(̃vi + v∗

i )δij(ρ) 0

]
, if j ̸= i,

(12)

and

C (̃u) =

⎡⎢⎢⎣
C11 (̃u) C12 (̃u) · · · C1N (̃u)
C21 (̃u) C22 (̃u) · · · C2N (̃u)

...
...

. . .
...

CN1 (̃u) CN2 (̃u) · · · CNN (̃u)

⎤⎥⎥⎦ , (13)

with (14) given in Box I. Therein, for i, j, k = 1, 2, . . . ,N ,

δij(ρ) = ∂ρjpi (Ao(ρ)) =
vM
i γiaj

AoMi W

(
Ao(ρ)
AoMi

)γi−1

,

δij(ρ∗) = ∂ρjpi
(
Ao(ρ∗)

)
=

vM
i γiaj
M

(
Ao(ρ∗)

M

)γi−1

,

Aoi W Aoi
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Cij (̃u) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
v∗

i
′ ρ∗

i
′

1
τi
δii(ρ∗) + v∗

i
∑N

k=1 σiki(ρ∗)ρ∗

k
′ 1

τi
+ v∗

i
′
+

∑N
k=1 δik(ρ)ρ∗

k
′

]
, if j = i,[

0 0
1
τi
δij(ρ∗) + v∗

i
∑N

k=1 σikj(ρ∗)ρ∗

k
′ 0

]
, if j ̸= i.

(14)

Box I.
Gij(u∗) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
v∗

i
′ ρ∗

i
′

1
τi
δii(ρ∗) + v∗

i
∑N

k=1 σiki(ρ∗)ρ∗

k
′
− δii(ρ∗)v∗

i
′ 1

τi
+ v∗

i
′
+

∑N
k=1,k̸=i δik(ρ

∗)ρ∗

k
′

]
, if j = i,

[
0 0

1
τi
δij(ρ∗) + v∗

i
∑N

k=1 σikj(ρ∗)ρ∗

k
′
− δij(ρ∗)v∗

j
′

−δij(ρ∗)ρ∗

j
′

]
, if j ̸= i.

(19)

Box II.
φ

P

P

a

φ

φ

P

T
d
φ
−

φ
d

P

B
t
i
I
φ
o
c

a

ikj(ρ∗) = ∂ρkδij(ρ
∗) =

vM
i γi(γi − 1)akaj

(AoMi W )2

(
Ao(ρ∗)
AoMi

)γi−2

.

ecause of the invertibility of A(̃u), i.e., |A(̃u)| ̸= 0, we transform
nd linearize the system (8) around the nonuniform steady-state
∗, then for all x ∈ (0, L), t ∈ [0, +∞), the linearized system is
erived as follows,

t (x, t) + F (u∗ )̃ux(x, t) = G(u∗ )̃u(x, t), (15)

where, for i, j = 1, 2, . . . ,N ,

F (u∗) =

⎡⎢⎢⎣
F11(u∗) F12(u∗) · · · F1N (u∗)
F21(u∗) F22(u∗) · · · F2N (u∗)

...
...

. . .
...

FN1(u∗) FN2(u∗) · · · FNN (u∗)

⎤⎥⎥⎦ , (16)

with

Fij(u∗) =⎧⎪⎪⎨⎪⎪⎩
[
v∗

i ρ∗

i
0 v∗

i − ρ∗

i δii(ρ
∗)

]
, if j = i,[

0 0
(v∗

i − v∗

j )δij(ρ
∗) −ρ∗

j δij(ρ
∗)

]
, if j ̸= i,

(17)

and

G(u∗) =

⎡⎢⎢⎣
G11(u∗) G12(u∗) · · · G1N (u∗)
G21(u∗) G22(u∗) · · · G2N (u∗)

...
...

. . .
...

GN1(u∗) GN2(u∗) · · · GNN (u∗)

⎤⎥⎥⎦ , (18)

with (19) given in Box II.
Inspired by Zhang, Liu, Wong, and Dai (2006), the character-

istic polynomial P2N (characteristic variable λ) in this paper is
analyzed as follows,

P2N (λ) = |λI2N − F (u∗)|
= (λ − φ1)(λ − φ2) · · · (λ − φ2N−1)(λ − φ2N )

×

(
1 +

(
1

λ − φ1
−

1
λ − φ2

)
· · ·

(
1

λ − φ2N−1
−

1
λ − φ2N

)
(φ1 − φ3)(φ3 − φ5) · · · (φ2N−3 − φ2N−1)(φ2N−1 − φ1)

)
, (20)
4

with φ1 = v∗

1 , φ2 = v∗

1 −ρ∗

1δ11(ρ
∗), φ3 = v∗

2 , φ4 = v∗

2 −ρ∗

2δ22(ρ
∗),

. . ., φ2N−1 = v∗

N , φ2N = v∗

N − ρ∗

NδNN (ρ∗). Assume that φ1 > φ2 >

3 > φ4 > · · · > φ2N−1 > φ2N , then

2N (φi) < 0, i = 1, 2, . . . , 2N, (21)

2N (φ1 + φ3 + · · · + φ2N−1) > 0, (22)

nd there is a constant ai, i = 1, 2, 3, . . . ,N − 1, on the domain
φ2i > ai > φ2i+1 such that

P2N (ai) > 0. (23)

By using the intermediate value theorem, (21), (22), (23) im-
ply that the polynomial P2N (λ) has 2N − 1 distinct positive
eigenvalues λ1, λ2, λ3, λ4, · · · , λ2N−1 such that

1 + φ3 + · · · + φ2N−1 > λ1 > φ1 > φ2 > λ2 > a1
> · · · > λ2N−3 > φ2N−3 > φ2N−2 > λ2N−2 > aN−1

> λ2N−1 > φ2N−1 > 0. (24)

From (20), note that if λ < min{2φ3 −φ1, 2φ5 −φ3, . . . , 2φ2N−1 −

2N−3, 2φ2N − φ2N−1}, then it holds

2N (λ) > 0. (25)

herefore, if φ2N < 0, there is a negative eigenvalue −λ2N on the
omain 0 > φ2N > −λ2N > min{2φ3−φ1, 2φ5−φ3, . . . , 2φ2N−1−

2N−3, 2φ2N − φ2N−1}; if φ2N > 0, there is a negative eigenvalue
λ2N on the domain 0 > −λ2N > min{2φ3 − φ1, 2φ5 −

3, . . . , 2φ2N−1 − φ2N−3, 2φ2N − φ2N−1} under the following con-
itions

2N (0) =φ1φ2 · · · φ2N−1φ2N + (φ1 − φ2)(φ3 − φ4)
· · · (φ2N−1 − φ2N )(φ1 − φ3)(φ3 − φ5)

· · · (φ2N−3 − φ2N−1)(φ2N−1 − φ1) < 0. (26)

y the analysis of (25), we note that under the condition (26),
here is not less than one negative eigenvalue (congested traffic),
f 0 > min{2φ3−φ1, 2φ5−φ3, . . . , 2φ2N−1−φ2N−3, 2φ2N −φ2N−1}.
f 0 < min{2φ3 − φ1, 2φ5 − φ3, . . . , 2φ2N−1 − φ2N−3, 2φ2N −

2N−1}, all the eigenvalues are positive (free traffic). The analysis
f eigenvalues in this paper is actually the generalization of the
ase N = 2 in Burkhardt et al. (2021).
The hyperbolicity of the system (15) is clearly discussed as

bove, i.e., for all u∗
∈ C1([0, L];R2N ), the matrix F (u∗) has 2N
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Fig. 1. Multi-type vehicles traffic on a road with disturbances and flow restriction.
E

(
t

A

eal distinct eigenvalues different to zero. Given 2N eigenvalues

1 > λ2 > · · · > λm > 0 > −λm+1 > · · · > −λ2N , (27)

f F (u∗), λi ∈ C1([0, L];R>0), i = 1, . . . , 2N , that does not depend
n t , and assuming that the congestion mode is kept along the
rajectory, we denote by m the number of positive eigenvalues.
e get that 2N − m is the number of waves against the traffic

low (upstream) in the congested traffic due to the reaction of
he drivers to their respective leading vehicles, and due to the
igh value of Ao(ρ). In order to alleviate the traffic congestion,
e thus compute the 2N − m boundary conditions reducing
Ao(ρ)∥L∞((0,L);R). Due to (3), it is done by controlling the sum of
he states. Because of ∥Ao(ρ)∥L∞ ≤ C∥Ao(ρ)∥H1 with a positive
onstant C , we will study the scenarios 2N − m ≥ 1 in the
H1 sense in this paper. The two-type vehicle case is investigated
in the paper (Burkhardt et al., 2021), where m = 3, N = 2.
With an invertible transformation matrix T ∈ C1([0, L];R2N×2N )
whose columns are the corresponding right eigenvectors of 2N
eigenvalues, by using the transformation ω = T−1̃u ∈ H1([0, L] ×

[0, +∞);R2N ), the linearized system (15) is rewritten as, for all
x ∈ (0, L), t ∈ [0, +∞),

∂tω(x, t) + Λ(x)∂xω(x, t) = M(x)ω(x, t), (28)

where

Λ = diag{Λ+, −Λ−
} ∈ C1([0, L];D2N ),

Λ+
= diag{λ1, λ2, . . . , λm} ∈ C1([0, L];D+

m),

Λ−
= diag{λm+1, λm+2, . . . , λ2N} ∈ C1([0, L];D+

2N−m),

M = T−1G(u∗)T − T−1F (u∗)T ′
∈ C1([0, L];R2N×2N ).

Then, the following definitions are given for the subsequent anal-
ysis and investigation,

|Λ| = diag
{
Λ+, Λ−

}
∈ C1([0, L];D+

2N ),

Λ′
= diag

{
λ′

1, . . . , λ
′

m, −λ′

m+1, . . . ,−λ′

2N

}
∈ C0([0, L];D2N ),

(Λ+)′ = diag{λ′

1, λ
′

2, . . . , λ
′

m} ∈ C0([0, L];D+

m),

(Λ−)′ = diag{λ′

m+1, λ
′

m+2, . . . , λ
′

2N} ∈ C0([0, L];D+

2N−m),

where λ′

i (i = 1, 2, . . . , 2N) is the derivative of λi with respect to
he spatial variable x.

.3. Problem statement

The control problem is motivated by alleviating the congestion
n a road segment with the disturbances at the inlet boundary
nd the flow restriction at the downstream boundary. For exam-
le, the occurrence of traffic congestion is attributed to the excess
apacity of a bottleneck at the downstream outlet and the high
raffic demand (modeled as the disturbances) at the upstream
nlet of the considered road section.

In order to alleviate the traffic congestion, we design a bound-
ry control law to reject disturbances for an investigated road
egment, on which a ramp metering is installed at the inlet x = 0
nd a constant density is kept at the outlet x = L,

(L, t) = ρ∗(L), ∀t ∈ [0, +∞), (29)
i i

5

for i = 1, 2, . . . ,N . As described in Piccoli and Garavello (2006),
the interface at the bottleneck plays a key role in the analysis
of the boundary condition at the inlet of a bottleneck. It is a
buffer zone for velocity drop (the velocity in the interface is
continuously decreasing from the left boundary of the interface
to x = L). The value of the velocity limit vi(L, ·) is derived from
the constant density ρ∗

i (L) and the measurement of the flux qi(L, ·)
at the inlet of a bottleneck, for i = 1, 2, . . . ,N . The diagram of the
control model is illustrated in Fig. 1.

We can derive the following equation on the basis of the flow
conservation at the upstream inlet x = 0, for all t ∈ [0, +∞),

Q ∗

in + p̄(t) + Q ∗

rmp + ΘU(t) =

⎡⎢⎢⎣
ρ1(0, t)v1(0, t)
ρ2(0, t)v2(0, t)

...

ρN (0, t)vN (0, t)

⎤⎥⎥⎦ , (30)

where Q ∗

in ∈ RN is a vector whose entries are the constant
inflow of each vehicle class, and p̄ ∈ C1([0, +∞);RN ) is a
vector whose entries are the unknown disturbances of the flow
rate of each vehicle class and serves as an exogenous variable
depending on the time variable t . The actuation signal vector U ∈

C0([0, +∞);R2N−m) with a coefficient matrix Θ ∈ RN×2N−m is
implemented by an on-ramp metering at the upstream boundary
of the considered road segment. The matrix Θ is the control
matrix describing the impact of the control input on the flow
of each vehicle class. To alleviate the congestion, we want to
minimize the area occupancy when the total inflow at the inlet
consisting of the total inflow at the ramp 0 ≤ Q ∗

rmp + ΘU ≤ Qmax
rmp

(Qmax
rmp is the flux limit on the on-ramp), and the total inflow

at the inlet 0 ≤ Q ∗

in + p̄ ≤ Qmax
in (Qmax

in is the flux limit of
the incoming road) are limited by the maximum flow Qmax ≥[
1 1 . . . 1

]
(Q ∗

in + p̄ + Q ∗
rmp + ΘU) ≥ 0, and 0 < vi(0, ·) ≤

vM
i , 0 < Ao(ρ(0, ·)) ≤ max{AoM1 , AoM2 , . . . , AoMN }. From (6), the

nominal on-ramp flux rate Q ∗
rmp ∈ RN satisfies the relation

Q ∗

in + Q ∗

rmp =

⎡⎢⎢⎢⎢⎣
ρ∗

1 (0)v
∗

1 (0)
ρ∗

2 (0)v
∗

2 (0)
...

ρ∗

N (0)v
∗

N (0)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ρ∗

1 (L)v
∗

1 (L)
ρ∗

2 (L)v
∗

2 (L)
...

ρ∗

N (L)v
∗

N (L)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎣
d1
d2
...

dN

⎤⎥⎥⎦ . (31)

q. (31) represents the sum of the inflow Q ∗

in and the referenced
input on-ramp flux rate Q ∗

rmp, as the referenced input, is equiva-
lent to the steady-state flow at the inlet and outlet boundaries of
the considered road segment. Then, (30) shows that the control
input is implemented to reject the disturbances p̄.

From the boundary condition at x = L, by combining (30) with
31) and linearizing, the boundary conditions are derived, for all
∈ [0, +∞),

1̃u(0, t) = p̄(t) + ΘU(t), (32)

B1̃u(L, t) = 0, (33)

with

A = diag
{
[v∗(0), ρ∗(0)], . . . , [v∗ (0), ρ∗ (0)]

}
∈ RN×2N ,
1 1 1 N N
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Ψ

1 = diag
{[

1 0
0 0

]
, . . . ,

[
1 0
0 0

]}
∈ R2N×2N .

or the sake of alleviating the congestion and preventing the
apacity drop, a controller is designed by using the backstepping
pproach in this paper. In the next subsection, a Riemann coordi-
ate transformation of the state ω is dealt with in order to make
he development and analysis of the controller easier.

.4. Riemann coordinates transformation

By the transformation

=

[
R+

R−

]
= Ψ ω, (34)

ith Ψ = diag
{
Ψ +, Ψ −

}
∈ C∞([0, L];D+

2N ),

+
= diag

⎧⎪⎨⎪⎩e
−

∫ x

0

[M(s)]1,1
λ1(s)

ds
, e

−

∫ x

0

[M(s)]2,2
λ2(s)

ds
,

. . . , e
−

∫ x

0

[M(s)]m,m

λm(s)
ds

⎫⎪⎬⎪⎭ ∈ C∞([0, L];D+

m),

Ψ −
= diag

⎧⎪⎨⎪⎩e

∫ x

0

[M(s)]m+1,m+1

λm+1(s)
ds

,

e

∫ x

0

[M(s)]m+2,m+2

λm+2(s)
ds

, . . . , e

∫ x

0

[M(s)]2N,2N

λ2N (s)
ds

⎫⎪⎬⎪⎭
∈ C∞([0, L];D+

2N−m),

from ω ∈ H1([0, L] × [0, +∞);R2N ) to the new variable R ∈

H1([0, L] × [0, +∞);R2N ) with R+
: [0, L] × [0, +∞) → Rm,

R−
: [0, L] × [0, +∞) → R2N−m, we derive the following system

with a simpler source term in which all the diagonal entries of
the coefficient matrix are zero, for all x ∈ (0, L), t ∈ [0, +∞),

Rt (x, t) + Λ(x)Rx(x, t) = Σ(x)R(x, t), (35)

Rin(t) = KPRout (t) + Γ0(p̄(t) + ΘU(t)), (36)

where

Σ =

[
Σ++ Σ+−

Σ−+ Σ−−

]
∈ C1([0, L];R2N×2N ),

Rin =

[
R+(0, ·)
R−(L, ·)

]
∈ L∞([0, +∞);R2N ),

Rout =

[
R+(L, ·)
R−(0, ·)

]
∈ L∞([0, +∞);R2N ),

KP =

[
0m×m Γ1
Γ3 02N−m×2N−m

]
∈ R2N×2N ,

Γ0 =

[
Γ2

02N−m×N

]
∈ R2N×N ,

with

Σ++
=

{
ϵij

}
1≤i,j≤m ∈ C1([0, L];Rm×m),

Σ+−
=

{
ϵij

}
1≤i≤m,m+1≤j≤2N ∈ C1([0, L];Rm×2N−m),

Σ−+
=

{
ϵij

}
m+1≤i≤2N,1≤j≤m ∈ C1([0, L];R2N−m×m),

Σ−−
=

{
ϵij

}
m+1≤i≤2N,m+1≤j≤2N ∈ C1([0, L];R2N−m×2N−m),
6

and ϵij ∈ C1([0, L]),

ϵij =

{
0, if j = i,
[Ψ ]i,i · [M]i,j · [Ψ ]

−1
j,j , if j ̸= i.

There are matrices Υ1 ∈ Rm×N and Υ2 ∈ R2N−m×2N such that
Υ1A1T+(0) ∈ Rm×m and Υ2B1T−(L) ∈ R2N−m×2N−m are invertible,
and we obtain

Γ1 = −(Υ1A1T+(0))−1Υ1A1T−(0),

Γ2 = (Υ1A1T+(0))−1Υ1,

Γ3 = −Ψ −(L)(Υ2B1T−(L))−1Υ2B1T+(L)(Ψ +(L))−1,

T+(0) =
{
T 0
ij

}
1≤i≤2N,1≤j≤m

∈ R2N×m,

T−(0) =
{
T 0
ij

}
1≤i≤2N,m+1≤j≤2N

∈ R2N×2N−m,

T+(L) =
{
T L
ij

}
1≤i≤2N,1≤j≤m

∈ R2N×m,

T−(L) =
{
T L
ij

}
1≤i≤2N,m+1≤j≤2N

∈ R2N×2N−m,

and

T 0
ij = [T (0)]i,j, T L

ij = [T (L)]i,j.

Since the transformation (34) is invertible, the linearized system
in terms of density and velocity has the same stability property
as the system (35)–(36). Inspired by Coron et al. (2013), we are
now in a position to design the controller.

3. Controller design

3.1. Target system

Consider the backstepping transformations, for all x ∈ (0, L),
t ∈ [0, +∞),

Z+(x, t) = R+(x, t), (37)

Z−(x, t) = R−(x, t) −

∫ L

x
G1(x, ξ )R+(ξ, t) dξ

−

∫ L

x
G2(x, ξ )R−(ξ, t) dξ, (38)

where G1, G2 are piecewise differentiable kernels defined on the
triangular domain T =

{
(x, ξ ) ∈ R2

| 0 ≤ x ≤ ξ ≤ L
}
as described

in Hu et al. (2016).
A system can be precisely controlled by only tuning the pro-

portional gain, but the stability is relatively weakened, and even
an unstable state occurs. In practical control engineering, the PI
controller is mainly used to improve the stable property of the
controlled system. Inspired by Hu et al. (2016), the following
target system is introduced, for all x ∈ (0, L), t ∈ [0, +∞),

Zt (x, t) + Λ(x)Zx(x, t) = Σ1(x)Z(x, t)

+

∫ L

x
C1(x, ξ )Z(ξ, t) dξ + k1(x)Zout (t), (39)

Zin(t) = KPZout (t) + X(t), (40)

X(t) = KI

∫ t

0
Zout (σ ) dσ + Γ0p̄(t), (41)

where

Z =

[
Z+

Z−

]
∈ H1([0, L] × [0, +∞);R2N ),

Σ1 =

[
Σ++ Σ+−

]
∈ C1([0, L];R2N×2N ),
02N−m×m 02N−m×2N−m
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1 =

[
C+ C−

02N−m×m 02N−m×2N−m

]
,

1 =

[
0m×m 0m×2N−m
K1 02N−m×2N−m

]
∈ C1([0, L];R2N×2N ),

in(·) =

[
Z+(0, ·)
Z−(L, ·)

]
∈ L∞([0, +∞);R2N ),

out (·) =

[
Z+(L, ·)
Z−(0, ·)

]
∈ L∞([0, +∞);R2N ),

I =

[
K 11
I K 12

I
02N−m×m 02N−m×2N−m

]
∈ R2N×N ,

ith K 11
I ∈ Rm×m, K 12

I ∈ Rm×2N−m. Here k1 is a strictly upper
riangular matrix, and C+, C− are given as the piecewise differ-
ntiable solutions to the Volterra integral equations, for all (x, ξ )
n T,

+(x, ξ ) = Σ+−(x)G1(x, ξ ) +

∫ ξ

x
C−(x, s)G1(s, ξ ) ds, (42)

−(x, ξ ) = Σ+−(x)G2(x, ξ ) +

∫ ξ

x
C−(x, s)G2(s, ξ ) ds. (43)

he system (39)–(41) is considered under the initial conditions,

(·, 0) = Z0(·) ∈ L∞([0, L];R2N ), (44)

(0) = X0 = Γ0p̄(0) ∈ R2N . (45)

he exponential stability for the H1-norm of the target system
39)–(41) is as follows. It is based on a sufficient condition that
ould be checked numerically in Section 4.

heorem 1. The steady-state Z(x, t) ≡ 0 of the system (39)–
41) is integral input-to-state stable for the H1-norm if there exist
ositive constants α, q1, q2, q3, q4, diagonal positive-definite matrices
1, P4 ∈ R2N×2N , a symmetric positive-definite matrix P2 ∈ R2N×2N

nd a matrix P3 ∈ R2N×2N such that the following matrix inequalities
old, for all x ∈ [0, L],
(i)

(x) =

⎡⎢⎣Ω11(x) Ω12(x) Ω13(x) Ω14
∗ Ω22 Ω23(x) Ω24
∗ ∗ Ω33 Ω34
∗ ∗ ∗ Ω44(x)

⎤⎥⎦ ≥ 0, (46)

where

Ω11(x) = −Λ′(x)P1 − αP1 −

(
Σ⊤

1 (x)P1 + P1Σ1(x)

+ q1Lν2
1 I2N +

(
L
q1

+
L
q2

)
C⊤

1 (0, x)C1(0, x)
)

,

Ω12(x) = −P3KI − P1k1(x),

Ω13(x) = −Λ′(x)P3 − αP3 − Σ⊤

1 (x)P3,

Ω14 = 02N×2N ,

Ω22 =
1
L
E2P1 −

1
L
K⊤

P E1P1KP −
1
L
K⊤

I E1P4KI ,

Ω23(x) = −
1
L
K⊤

P E1P1 −
1
L

(
K⊤

P M1 + M2
)
− K⊤

I P2

− k⊤

1 (x)P3,

Ω24 = −
1
L
K⊤

I E1P4KP ,

Ω33 = −
1
E1P1 −

1 (
M1 + M⊤

)
− αP2 − q2Lν2I2N ,
L L 1 2

7

Ω34 = 02N×2N ,

Ω44(x) =
1
L
E2P4 −

1
L
K⊤

P E1P4KP −
1
q4

k⊤

1 (x)k1(x),

ith

1 =

[
Λ+(0)P++

3 Λ+(0)P+−

3
−Λ−(L)P−+

3 −Λ−(L)P−−

3

]
,

2 =

[
−Λ+(L)P++

3 −Λ+(L)P+−

3
Λ−(0)P−+

3 Λ−(0)P−−

3

]
,

P++

3 = {P3}1≤i,j≤m ∈ Rm×m,

P+−

3 = {P3}1≤i≤m,m+1≤j≤2N ∈ Rm×2N−m,

P−+

3 = {P3}m+1≤i≤2N,1≤j≤m ∈ R2N−m×m,

P−−

3 = {P3}m+1≤i≤2N,m+1≤j≤2N ∈ R2N−m×2N−m,

E1 = diag
{
Λ+(0), Λ−(L)

}
, E2 = diag

{
Λ+(L), Λ−(0)

}
, ν1 =

max (λ(P1)) , ν2 = max (|λ(P3)|),
(ii)

M(x) =
(
−Λ′(x) − αI2N

)
P4−

(
Σ⊤

1 (x)P4 + P4Σ1(x)

+ (q3L + q4)ν2
3 I2N +

L
q3

C⊤

1 (0, x)C1(0, x)
)

≥ 0, (47)

ith ν3 = max (λ(P4)).
In other words, there exist positive constants b1, c1 such that, for

every Z0 ∈ H1
(
(0, L);R2N

)
, X0 ∈ R2N , and for any p̄ such that

˙̄p ∈ C0
[0, +∞), the solution Z ∈ C0

(
[0, +∞);H1

(
(0, L);R2N

))
,

X ∈ C0
(
[0, +∞);R2N

)
to the Cauchy problem (39)–(41), (44)–(45)

is defined on [0, +∞) × [0, L] and satisfies

∥Z(·, t)∥2
H1((0,L);R2N)

+ |X(t)|2

≤c1e−αt
(
∥Z0∥2

H1((0,L);R2N)
+ |X0|

2
)

+ b1

∫ t

0

˙̄p⊤(s) ˙̄p(s) ds, ∀t ∈ [0, +∞). (48)

Remark. This theorem is in fact very general and could be
applied to other control problems modeled by the hyperbolic
systems. □

Proof. The following H1 Lyapunov function candidate is intro-
duced for the stability analysis of the system (39)–(41), for all
t ∈ [0, +∞),

V (Z(x, ·), X(·), Zt (x, ·)) = V1 + V2 + V3 + V4, (49)

where

V1 =

∫ L

0
Z⊤(x, ·)P1(x)Z(x, ·) dx, (50)

V2 =

∫ L

0

(
Z⊤(x, ·)P3(x)X(·) + X⊤(·)P⊤

3 (x)Z(x, ·)
)
dx, (51)

V3 = LX⊤(·)P2X(·), (52)

V4 =

∫ L

0
Z⊤

t (x, ·)P4(x)Zt (x, ·) dx, (53)

and for all x ∈ [0, L],

P1(x) ≜ P1diag
{
e−µxIm, eµxI2N−m

}
,

(x) ≜ P diag
{
e−

µ
2 xI , e

µ
2 xI

}
,
3 3 m 2N−m
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4(x) ≜ P4diag
{
e−µxIm, eµxI2N−m

}
.

y definition, the notation Zt must be understood as, for all x ∈

0, L],

t (x, ·) ≜ − Λ(x)Zx(x, ·) + Σ1(x)Z(x, ·)

+

∫ L

x
C1(x, ξ )Z(ξ, ·) dξ + k1(x)Zout (·).

nder the definition of V and straightforward estimations, there
xists a positive real constant β such that, for every Z , we can
btain the following inequality,

1
β

∫ L

0

(
∥Z(x, ·)∥2

L2 + |X(·)|2 + ∥Zx(x, ·)∥2
L2

)
dx

≤ V

≤ β

∫ L

0

(
∥Z(x, ·)∥2

L2 + |X(·)|2 + ∥Zx(x, ·)∥2
L2

)
dx. (54)

By time differentiation of (39) and (40), Zt can be shown to satisfy
the following equations, for all x ∈ [0, L],

Ztt (x, ·) = −Λ(x)Ztx(x, ·) + Σ1(x)Zt (x, ·)

+

∫ L

x
C1(x, ξ )Zt (ξ, ·) dξ + k1(x)Żout (·), (55)

Żin(·) = KP Żout (·) + Ẋ(·). (56)

Taking time derivative of V1 along the solutions to (39)–(41) and
using integration by parts, the following result is achieved,

V̇1 = Z⊤

out (·)
(
K⊤

P Ē1P1KP − e−µLĒ2P1
)
Zout (·)

+ Z⊤

out (·)K
⊤

P Ē1P1X(·) + X⊤(·)P1Ē1KPZout (·)

+ X⊤(·)Ē1P1X(·)

+

∫ L

0
Z⊤(x, ·)

(
Λ′(x)P1(x) − µ|Λ(x)|P1(x)

)
Z(x, ·) dx

+

∫ L

0

( (
Σ1(x)Z(x, ·) +

∫ L

x
C1(x, ξ )Z(ξ, ·) dξ + k1(x)Zout (·)

)⊤

P1(x)Z(x, ·) + Z⊤(x, ·)P1(x)(
Σ1(x)Z(x, ·) +

∫ L

x
C1(x, ξ )Z(ξ, ·) dξ + k1(x)Zout (·)

) )
dx, (57)

with

Ē1 = diag
{
Λ+(0), eµLΛ−(L)

}
,

Ē2 = diag
{
Λ+(L), eµLΛ−(0)

}
.

By taking time derivative of V2 along the solutions to (39)–(41)
and using integration by parts, we get

V̇2 ≤ Z⊤

out (·)
(
K⊤

P M̄1 + M̄2
)
X(·) + X⊤(·)M̄1X(·)

+ X⊤(·)
(
M̄⊤

1 KP + M̄⊤

2

)
Zout (·) + X⊤(·)M̄⊤

1 X(·)

+

∫ L

0
Z⊤(x, ·)

(
Λ′(x)P3(x) −

µ

2
|Λ(x)|P3(x)

)
X(·) dx

+

∫ L

0
X⊤(·)

(
−

µ

2
P⊤

3 (x)|Λ(x)| + P⊤

3 (x)Λ′(x)
)
Z(x, ·) dx

+

∫ L

0

(
Z⊤(x, ·)P3(x)KIZout (·)

+Z⊤

out (·)K
⊤

I P⊤

3 (x)Z(x, ·)
)
dx

+ κ1

∫ L

Z⊤(x, ·)P3(x)Γ0
(
Z⊤(x, ·)P3(x)Γ0

)⊤
dx
0

8

+
L
κ1

˙̄p⊤(·) ˙̄p(·)

+

∫ L

0

( (
Σ1(x)Z(x, ·) +

∫ L

x
C1(x, ξ )Z(ξ, ·) dξ + k1(x)Zout (·)

)⊤

P3(x)X(·) + X⊤(·)P⊤

3 (x)

Σ1(x)Z(x, ·) +

∫ L

x
C1(x, ξ )Z(ξ, ·) dξ + k1(x)Zout (·)

) )
dx, (58)

ith a positive constant κ1 and

¯ 1 =

[
Λ+(0)P++

3 Λ+(0)P+−

3
−e−

µ
2 LΛ−(L)P−+

3 −e
µ
2 LΛ−(L)P−−

3

]
,

¯ 2 =

[
−e−

µ
2 LΛ+(L)P++

3 −e
µ
2 LΛ+(L)P+−

3
Λ−(0)P−+

3 Λ−(0)P−−

3

]
.

y taking time derivative of V3 along the solutions to (39)–(41),
e can derive the following result with a positive constant κ2,

˙3 ≤ LZ⊤

out (·)K
⊤

I P2X(·) + LX⊤(·)P2KIZout (·)

+ Lκ2X⊤(·)P2Γ0
(
X⊤(·)P2Γ0

)⊤
+

L
κ2

˙̄p⊤(·) ˙̄p(·). (59)

Taking time derivative of V4 along the solutions to (39)–(41), (55)
and using integration by parts, we get

V̇4 ≤ Ż⊤

out (·)
(
K⊤

P Ē1P4KP − e−µLĒ2P4
)
Żout (·)

+ Ż⊤

out (·)K
⊤

P P4Ē1KIZout (·)

+ Z⊤

out (·)K
⊤

I Ē1P4KP Żout (·)

+ Z⊤

out (·)K
⊤

I Ē1P4KIZout (·) +
1
κ3

˙̄p⊤(·) ˙̄p(·)

+ κ3Ż⊤

out (·)K
⊤

P Ē1P4Γ0
(
K⊤

P Ē1P4Γ0
)⊤

Żout (·)

+ κ4Z⊤

out (·)K
⊤

I Ē1P4Γ0
(
K⊤

I Ē1P4Γ0
)⊤

Zout (·)

+
1
κ4

˙̄p⊤(·) ˙̄p(t) + ˙̄p(·)⊤Γ ⊤

0 Ē1P4Γ0 ˙̄p(·)

+

∫ L

0
Z⊤

t (x, ·)
(
Λ′(x)P4(x) − µ|Λ(x)|P4(x)

)
Zt (x, ·) dx

+

∫ L

0

( (
Σ1(x)Zt (x, ·) +

∫ L

x
C1(x, ξ )Zt (ξ, ·) dξ + k1(x)Żout (·)

)⊤

4(x)Zt (x, ·) + Z⊤

t (x, ·)P4(x)

Σ1(x)Zt (x, ·) +

∫ L

x
C1(x, ξ )Zt (ξ, ·) dξ + k1(x)Żout (·)

) )
dx, (60)

ith positive constants κ3 and κ4.
The three rightmost integrals in (57), (58) and (60) are consid-

red individually,∫ L

0

( (
Σ1(x)Z(x, ·) +

∫ L

x
C1(x, ξ )Z(ξ, ·) dξ + k1(x)Zout (·)

)⊤

1(x)Z(x, ·) + Z⊤(x, ·)P1(x)(
Σ1(x)Z(x, ·) +

∫ L

x
C1(x, ξ )Z(ξ, ·) dξ + k1(x)Zout (·)

) )
dx

≤

∫ L

0

(
(Σ1(x)Z(x, ·) + k1(x)Zout (·))⊤ P1(x)Z(x, ·)

+ Z⊤(x, ·)P1(x) (Σ1(x)Z(x, ·) + k1(x)Zout (·))
)

dx

+ q1Le2µLν2
1

∫ L

0
Z⊤(x, ·)Z(x, ·) dx

+
L
q1

∫ L

0
(C1(0, x)Z(x, ·))⊤(C1(0, x)Z(x, ·)) dx. (61)
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imilarly, we derive the inequalities for the other two integrals,∫ L

0

( (
Σ1(x)Z(x, ·) +

∫ L

x
C1(x, ξ )Z(ξ, ·) dξ + k1(x)Zout (·)

)⊤

P3(x)X(·) + X⊤(·)P⊤

3 (x)(
Σ1(x)Z(x, ·) +

∫ L

x
C1(x, ξ )Z(ξ, ·) dξ + k1(x)Zout (·)

) )
dx

≤

∫ L

0

(
(Σ1(x)Z(x, ·) + k1(x)Zout (·))⊤ P3(x)X(·)

+ X⊤(·)P⊤

3 (x) (Σ1(x)Z(x, ·) + k1(x)Zout (·))
)

dx

+ q2LeµLν2
2

∫ L

0
X⊤(·)X(·) dx

+
L
q2

∫ L

0
(C1(0, x)Z(x, ·))⊤(C1(0, x)Z(x, ·)) dx, (62)

∫ L

0

( (
Σ1(x)Zt (x, ·) +

∫ L

x
C1(x, ξ )Zt (ξ, ·) dξ + k1(x)Żout (·)

)⊤

P4(x)Zt (x, ·) + Z⊤

t (x, ·)P4(x)(
Σ1(x)Zt (x, ·) +

∫ L

x
C1(x, ξ )Zt (ξ, ·) dξ + k1(x)Żout (·)

) )
dx

≤

∫ L

0

(
(Σ1(x)Zt (x, ·))⊤P4(x)Zt (x, ·)

+ Z⊤

t (x, ·)P4(x)Σ1(x)Zt (x, ·)
)

dx

+ (q3L + q4)e2µLν2
3

∫ L

0
Z⊤

t (x, ·)Zt (x, ·) dx

+
L
q3

∫ L

0
(C1(0, x)Zt (x, ·))⊤(C1(0, x)Zt (x, ·)) dx

+
1
q4

∫ L

0
(k1(x)Żout (·))⊤(k1(x)Żout (·)) dx. (63)

sing (57)–(63), there exists a constant α > 0 such that, for all
≥ 0,

˙ = V̇1 + V̇2 + V̇3 + V̇4

≤ −αV −

∫ L

0

⎡⎢⎢⎢⎣
Z(x, ·)
Zout (·)
X(·)

Żout (·)

⎤⎥⎥⎥⎦
⊤

Ω̄(x)

⎡⎢⎣Z(x, ·)
Zout (·)
X(·)
Żout (·)

⎤⎥⎦ dx

−

∫ L

0
Z⊤

t (x, ·)M̄(x)Zt (x, ·) dx

+ ˙̄p⊤(·)
(( L

κ1
+

L
κ2

+
1
κ3

+
1
κ4

)
I2N + Γ ⊤

0 Ē1P4Γ0

)
˙̄p(·), (64)

here, for all x ∈ [0, L],

Ω̄(x) =

⎡⎢⎢⎣
Ω̄11(x) Ω̄12(x) Ω̄13(x) Ω̄14

∗ Ω̄22 Ω̄23(x) Ω̄24
∗ ∗ Ω̄33 Ω̄34
∗ ∗ ∗ Ω̄44(x)

⎤⎥⎥⎦ (65)

with

Ω̄11(x) = µ|Λ(x)|P1(x) − Λ′(x)P1(x) − αP1(x)

− κ1P3(x)Γ0(P3(x)Γ0)⊤ −

(
Σ⊤

1 (x)P1(x)

+ P (x)Σ (x) + q Le2µLν2I
1 1 1 1 2N

9

+

(
L
q1

+
L
q2

)
C⊤

1 (0, x)C1(0, x)
)

,

Ω̄12(x) = −P3(x)KI − P1(x)k1(x),

¯ 13(x) =
µ

2
|Λ(x)|P3(x) − Λ′(x)P3(x) − αP3(x)

− Σ⊤

1 (x)P3(x),
Ω̄14 = 02N×2N ,

Ω̄22 =
e−µL

L
Ē2P1 −

1
L
K⊤

P Ē1P1KP −
1
L
K⊤

I Ē1P4KI

−
κ4

L
K⊤

I Ē1P4Γ0(K⊤

I Ē1P4Γ0)⊤,

¯ 23(x) = −
1
L
K⊤

P Ē1P1 −
1
L

(
K⊤

P M̄1 + M̄2
)
− K⊤

I P2

− k⊤

1 (x)P3(x),

¯ 24 = −
1
L
K⊤

I Ē1P4KP ,

¯ 33 = −
1
L
Ē1P1 −

1
L

(
M̄1 + M̄⊤

1

)
− κ2P2Γ0(P2Γ0)⊤ − αP2 − q2LeµLν2

2 I2N ,

¯ 34 = 02N×2N ,

Ω̄44(x) =
e−µL

L
Ē2P4 −

1
L
K⊤

P Ē1P4KP

−
κ3

L
K⊤

P Ē1P4Γ0
(
K⊤

P Ē1P4Γ0
)⊤

−
1
q4

k⊤

1 (x)k1(x),

nd

¯ (x) =
(
−Λ′(x) + µ|Λ(x)| − αI2N

)
P4(x)

−

(
Σ⊤

1 (x)P4(x) + P4(x)Σ1(x)

+ (q3L + q4)e2µLν2
3 I2N +

L
q3

C⊤

1 (0, x)C1(0, x)
)

. (66)

Under the conditions (46), (47), ∃ µ, κ1, κ2, κ3, κ4 > 0 small
nough, such that Ω̄ ≥ 0 and M̄ ≥ 0, thus

˙ ≤ −αV + α1 ˙̄p⊤(·) ˙̄p(·), (67)

ith α1 = max
(
λ

(( L
κ1

+
L
κ2

+
1
κ3

+
1
κ4

)
I2N + Γ ⊤

0 P4Ē1Γ0

))
. Thus

long the solutions to the system (39)–(41), for all t ∈ [0, +∞),

≤ V (0)e−αt
+ α1

∫ t

0

˙̄p⊤(s) ˙̄p(s) ds. (68)

ombining this relation with (54), there exist positive constants
1 = β2, b1 = βα1 such that, for all t ∈ [0, +∞),∫ L

0

(
∥Z(x, t)∥2

L2 + |X(t)|2 + ∥Zx(x, t)∥2
L2

)
dx

≤ c1e−αt
(∫ L

0

(
∥Z0(x)∥2

L2 + |X0|
2
+ ∥Zx(x, 0)∥2

L2
)
dx

)
+ b1

∫ t

0

˙̄p⊤(s) ˙̄p(s) ds, (69)

ompleting the proof of Theorem 1. □

Based on the invertibility of backstepping transformation, it
an be shown that the H1 norm of the system (39)–(41) is
quivalent to the H1 norm of the system (35)–(36). Thus, the
xponential stability of the H1 norm of the system (39)–(41)
mplies the corresponding one for the H1 norm of the system
35)–(36).



L. Guan, L. Zhang and C. Prieur Automatica 148 (2023) 110790

3

s
t

R
(

U

.2. Control law

Take time derivative and spatial derivative on (37)–(38), and
ubstitute them into (39)–(41) to get the following equations of
he kernels G1 and G2, for all (x, ξ ) ∈ T,

Λ−(x)G1
x (x, ξ ) − G1

ξ (x, ξ )Λ
+(ξ )

= G1(x, ξ )
(
(Λ+)′(ξ ) + Σ++(ξ )

)
+ G2(x, ξ )Σ−+(ξ ), (70)

Λ−(x)G2
x (x, ξ ) + G2

ξ (x, ξ )Λ
−(ξ )

= G2(x, ξ )
(
−(Λ−)′(ξ ) + Σ−−(ξ )

)
+ G1(x, ξ )Σ+−(ξ ), (71)

with the boundary conditions

G1(x, x)Λ+(x) + Λ−(x)G1(x, x) = Σ−+(x), (72)

G2(x, x)Λ−(x) − Λ−(x)G2(x, x) = −Σ−−(x), (73)

G1(x, L)Λ+(L) − G2(x, L)Λ−(L)Γ3 = K1(x). (74)

These equations are under-determined, and to ensure well-pose-
dness, additional boundary conditions are added,

G2
ij(0, ξ ) = g2

ij (ξ ), 1 ≤ j < i ≤ 2N − m, (75)

for some arbitrary functions g2
ij , 1 ≤ j < i ≤ 2N − m.

There is a matrix Θ ∈ R2N−m×m such that ΘΓ2Θ ∈
2N−m×2N−m is invertible, then we deduce, from (36), (37), (38),
40), (41), the following controller defined as, ∀t ∈ [0, +∞),

(t) =
(
ΘΓ2Θ

)−1
Θ

∫ t

0

(
K 11
I R+(L, σ ) + K 12

I R−(0, σ )
)
dσ

−
(
ΘΓ2Θ

)−1
ΘK 12

I

∫ t

0

∫ L

0

(
G1(0, ξ )R+(ξ, σ )

+ G2(0, ξ )R−(ξ, σ )
)

dξ dσ

−
(
ΘΓ2Θ

)−1
ΘΓ1

∫ L

0

(
G1(0, ξ )R+(ξ, t)

+ G2(0, ξ )R−(ξ, t)
)

dξ . (76)

Due to the dependence of U on the parameter Γ2 and the in-
clusion of the parameter Γ2 in the coefficient matrix Γ0, Γ0
has an effect on U and thus has an impact on the iISS of the
system (35)–(36). Under the conditions of Theorem 1, the target
system (39)–(41) is integral input-to-state stable. Thus, using the
invertibility of backstepping transformation, the original system
(35)–(36) is integral input-to-state stable in the H1-norm with the
control law (76).

4. Optimal tuning of the controller and numerical studies

In Theorem 1, we theoretically assume that there are P1, P2, P3
and P4 such that Ω and M satisfy the inequalities (46) and (47).
In this section, an optimization problem is presented and solved
for verifying the existences of P1, P2, P3, and P4 and obtaining
the optimal values of parameters of the designed controller. The
experiment is set and the results of computation are presented
and discussed.

4.1. Optimal tuning of the controller

From (3), we note that Ao(ρ) depends on the density vector
ρ. The higher value of ∥ρ∥L∞((0,L);RN) is, the higher value of
∥Ao(ρ)∥L∞((0,L);R) is, then the traffic congestion is more possible
to happen. Even though the traffic system has been stabilized,
traffic congestion easily happens again due to the high road occu-
pancy. In order to minimize the probability of the re-occurrence

of the congested traffic after stabilization, we set the following

10
optimization problem to derive the optimal tuning of the control
law U ,

min
ρ∗
i (0),v

∗
i (0),KI ,α,q1,q2,q3,P1,P2,P3,P4

∥Ao(ρ)∥L∞((0,L);R)

subject to (46) and (47). (77)

From (76), the value of U depends on the parameters Γ1, Γ2, K 11
I ,

K 12
I and the kernels G1, G2 at x = 0. From the definitions of KP ,

KI and Γ2, we notice that the controller U actually depends on
the parameters KI , ρ∗

i (0), v
∗

i (0), ρ
∗

i (L), and v∗

i (L) (i = 1, 2, . . . ,N),
while the values of them for the optimal tuning can be obtained
by solving the optimization problem (77). Due to ρ∗

i v
∗

i = di,
i = 1, 2, . . . ,N , KI , ρ∗

i (0) are the key parameters of the controller
for the given v∗

i (0).

4.2. Numerical studies

For numerical computation, the traffic parameters of two ve-
hicle classes on a considered road section in the congested regime
are chosen as in Burkhardt et al. (2021), see Table 1. The spatial
variable x is discretized on the domain [0, L]. Given v∗

1 (0) =

50 km/h and v∗

2 (0) = 25 km/h, the values of ρ∗

1 , ρ∗

2 on the
domain [0, L] are derived by solving the ordinary differential
equations (6)–(7) with the initial values ρ∗

1 (0), ρ∗

2 (0). By using
a linear search method, we compute ρ∗

1 (0), ρ∗

2 (0), and solve the
optimization problem (77). These parameters are crucial for the
control gains. We obtain the optimal values of ρ∗

1 (0), ρ∗

2 (0) in
Table 1 and see Fig. 2 for the plot of the nonuniform steady-state.
The relationships a1 < a2, τ1 < τ2 and v∗

1 (0) > v∗

2 (0) in Table 1
illustrate that, class 1 represents small and fast vehicles, and class
2 describes big and slow vehicles. When α → 0, q1 = 10−6,
q2 = 1, q3 = 10−5, q4 = 10−6,

P1 = diag {2.0624, 2.4130, 7.1381, 2.5177} × 103,

P2 = 1.8797 × 104
× I4,

P3 =

⎡⎢⎣−14.3656 −0.1018 −0.0520 −0.0969
0.1162 −16.6918 0.0284 −0.1367
0.1040 −0.0498 −43.7981 1.2582

−0.1063 −0.1313 0.6899 17.0344

⎤⎥⎦ ,

and

P4 = diag {2.2409, 2.5573, 3.8620, 2.4711} × 103.

The solution to the optimization problem (77) gives the following
control gains

K 11
I =

[
−20 30 30
−24 −7 26
−10 20 −30

]
× 10−5, K 12

I =

[60
30
20

]
× 10−5,

Γ1 =

[
−0.785
1.047

−4.204

]
× 10−4, Γ2 =

[ 0 0.0469
0 −0.0625

0.0332 0.2051

]
,

for which the conditions of Theorem 1 are satisfied. As a final
remark, let us explain how to simulate the system (35)–(36) in a
closed loop with the control (76) and these control gains. It asks in
particular to discretize the piecewise continuously differentiable
kernel functions G1 and G2 by following the approach of Hu
et al. (2016). See also Chen, Vazquez, and Krstic (2022) where
discontinuous kernel functions are numerically computed for a
different control problem.
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Table 1
Selected values of parameters.
Name Symbol Value Unit

Number of vehicle class N 2 1

Relaxation time τ1 30 s
τ2 60 s

Pressure exponent γ1 2.5 1
γ2 2 1

Free-flow velocity vM
1 80 km

h

vM
2 60 km

h

Maximum Ao(ρ) AoM1 0.9 1

AoM2 0.85 1

Occupied surface per vehicle a1 10 m2

a2 42 m2

Steady-state density at the inlet ρ∗

1 (0) 110 veh
km

ρ∗

2 (0) 70 veh
km

Steady-state velocity at the inlet v∗

1 (0) 50 km
h

v∗

2 (0) 25 km
h

Road width W 6.5 m
Road length L 1 km
Number of grid points Nx 40 1

Fig. 2. Relation between the spatial variable x and the nonuniform steady-state
∗

= (ρ∗

1 , v
∗

1 , ρ
∗

2 , v
∗

2 )
⊤ .

. Conclusion

The robust control problem was studied to stabilize the multi-
ype linearized AR traffic flow system. A controller was designed
y using backstepping and the optimal tuning was done numer-
cally.

Inspired by Coron et al. (2013), the H2 locally iISS and state
stimation problem will be studied for the quasilinear system in
uture research. It would be of interest to solve this analogous
roblem by using more complicated backstepping transforma-
ions to simplify the target system.
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