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a b s t r a c t

This paper addresses the derivation of generic and tractable sufficient conditions ensuring the stability
of a coupled system composed of a reaction–diffusion partial differential equation (PDE) and a finite-
dimensional linear time invariant ordinary differential equation (ODE). The coupling of the PDE with
the ODE is located either at the boundaries or in the domain of the reaction–diffusion equation and
takes the form of the input and output of the ODE. We investigate boundary Dirichlet/Neumann/Robin
couplings, as well as in-domain Dirichlet/Neumann couplings. The adopted approach relies on the
spectral reduction of the problem by projecting the trajectory of the PDE into a Hilbert basis composed
of the eigenvectors of the underlying Sturm–Liouville operator and yields a set of sufficient stability
conditions taking the form of LMIs. We propose numerical examples, consisting of an unstable
reaction–diffusion equation and an unstable ODE, such that the application of the derived stability
conditions ensure the stability of the resulting coupled PDE–ODE system.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The stability analysis and control of coupled PDE–ODE systems
as emerged relatively recently in the literature (and more gen-
rally PDEs with dynamical boundary conditions, see e.g. Nicaise,
alein, and Fridman (2009)). Such a trend was driven by a certain
umber of practical applications involving a finite-dimensional
ynamics coupled with a phenomenon described by a PDE. This
ncludes, to cite a few, solid–gas interaction of heat diffusion and
hemical reaction (Tang & Xie, 2011), flexible cranes (He & Ge,
016), flexible aircraft (Lhachemi, Saussié, & Zhu, 2018), drilling
echanisms (Barreau, Seuret and Gouaisbaut, 2018), and power
onverters connected to transmission lines (Daafouz, Tucsnak, &
alein, 2014). PDE–ODE coupling can also arise due to feedback
ontrol. Indeed, the PDE can represent the open-loop plant to
e controlled while the ODE part gathers controller and actuator
ynamics, see e.g. Krstic (2009b) and Susto and Krstic (2010).
onversely, the PDE can represent the dynamics of an actuator
e.g., heat or flux sensors) that is embedded into the closed-loop
ontrol of a finite-dimensional plant modeled by an ODE.

✩ The work of C. Prieur has been partially supported by MIAI@Grenoble
Alpes (ANR-19-P3IA-0003). The material in this paper was not presented at any
conference. This paper was recommended for publication in revised form by
Associate Editor Fouad Giri under the direction of Editor Miroslav Krstic.
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The stabilization of PDE–ODE couplings has attracted much
attention in the recent years. One of the very first contributions
in this field was reported in Krstic (2009b) dealing with the
state-feedback stabilization and the observer design of a diffu-
sion PDE cascaded with an ODE via Dirichlet connection (see
also Susto and Krstic (2010) for the case of Neumann intercon-
nections). Such a problem can be interpreted as a compensa-
tion problem of an infinite-dimensional input dynamics (Krstic &
Bekiaris-Liberis, 2010) and was solved by employing a backstep-
ping control design procedure. This approach was also reported
in the case of string equation in Krstic (2009a) and Susto and
Krstic (2010) and was later on applied to other types of PDEs
such as beam (Wu & Wang, 2014) and linearized Korteweg–de
Vries (Ayadi, 2018) equations. This backstepping-based procedure
for PDE–ODE cascades was then extended to other boundary sta-
bilization problems such as wave PDEs cascaded with MIMO LTI
systems (Bekiaris-Liberis & Krstic, 2010), a diffusion PDE coupled
with an ODE (Tang & Xie, 2011), and a diffusion PDE sandwiched
between two ODEs (Wang & Krstic, 2019). The robustness of
certain of these control strategies for the stabilization of PDE–ODE
cascades were studied in Krstic (2009b), Sanz, García, and Krstic
(2018) and Susto and Krstic (2010), particularly for heat equations
w.r.t. the diffusion coefficient and the length of the diffusion
domain. Other extensions embracing the augmentation of the
backstepping transformation with either adaptive or sliding mode
control have been investigated in Li and Liu (2014) and Wang, Liu,
Ren, and Chen (2015). Recently, a different control design strategy
usion PDEs coupled at the boundaries with an ODE. Automatica (2022) 110465,
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sing Sylvester equation was proposed in Natarajan (2021) for
DE–PDE and PDE–ODE cascades.
In this context, the focus of this paper is put on the deriva-

ion of generic and tractable sufficient stability conditions en-
uring the stability of coupled systems composed of a general
eaction–diffusion PDE and an ODE, with various coupling con-
igurations, rather than on the design of a particular controller
or a specific setting. The derivation of such analysis tools for
tability assessment of PDE–ODE loops is of primary impor-
ance. Indeed, such generic stability conditions can be used to
ssess a posteriori the stability of open-loop unstable reaction–

diffusion PDEs when placed in closed-loop with a controller
designed empirically using a finite-dimensional truncated model
of the PDE. Conversely, considering the infinite-dimensional con-
trol strategies reported in the previous paragraph, their practical
implementation require their finite-dimensional approximation.
In that case, stability analysis tools are required to assess that
the finite-dimensional approximation of the controller dynamics
still achieves the stabilization of the PDE.

The traditional approach for studying the stability of cou-
pled PDE–ODE systems consists of the adequate selection of a
Lyapunov functional. At a very high level, the general trend is
to build the Lyapunov functional by considering terms related
to (1) the energy of the PDE (measured via a relevant norm);
(2) the energy of the ODE; (3) the coupling of the PDE–ODE
system. Such Lyapunov functionals can be built manually (Coron
& Trélat, 2004, 2006; Lhachemi & Prieur, 2020) but can also
be obtained numerically by considering very general Lyapunov
functional candidates while resorting to numerical methods, such
as a sum of square procedure, to obtain an admissible suitable set
of parameters (Ahmadi, Valmorbida, & Papachristodoulou, 2016;
Gahlawat & Peet, 2016).

In the abovementioned context, a number of contributions
have been reported in the recent years to study the stability
of coupled PDE–ODE systems with couplings occurring at the
boundaries of the PDE. A first fruitful approach relies on the
introduction of a partial integral representation of the PDE (Peet,
2021a) in order to study the stability of PDE–ODE loops using
linear matrix inequalities (LMIs). Such an approach can be used
to study PDE–ODE loops using convex optimization tools (Das,
Shivakumar, Peet, & Weiland, 2020; Peet, 2021b; Shivakumar,
Das, Weiland, & Peet, 2019). A second fruitful approach relies on
the use of Legendre polynomials as a basis of projection for the
PDE trajectories. In essence, this consists of the construction of
a classical Lyapunov functional accounting for the PDE and ODE
parts considered separately while adding a cross quadratic term
mixing the state of the ODE with a finite number of coefficients
of projection of the PDE trajectory into the basis of Legendre
polynomials. Such an approach was reported in Baudouin, Seuret,
and Gouaisbaut (2019) for the study of a coupled system com-
posed of a reaction PDE and an ODE. This method was also
reported in Barreau, Seuret, Gouaisbaut and Baudouin (2018)
in the case of a string equation coupled with an ODE, as well
as in Barreau, Gouaisbaut, Alexandre and Sipahi (2018) for the
study of input–output stability. Input–output stability properties
for coupled PDE–ODE systems using Legendre polynomials-based
projections was further investigated in Barreau, Scherer, Gouais-
baut, and Seuret (2020). Finally, the stability of abstract boundary
control systems with dynamic boundary conditions and positive
underlying C0-semigroups was studied in Boulouz, Bounit, and
Hadd (2021).

In this paper, we study the stability of a generic 1-D reac-
tion diffusion equation coupled with a finite-dimensional ODE.
The approach adopted in this work differs from the methods
described in the previous paragraph because it relies on spectral

reduction methods. These spectral reduction methods are used t

2

to build a suitable Lyapunov functional candidate and derive
a set of tractable LMI conditions ensuring the exponential sta-
bility of the coupled PDE–ODE system. Compared to Baudouin
et al. (2019), which was concerned with an open-loop stable
constant coefficient diffusion PDE with left and right Dirich-
let couplings, our approach allows the consideration of generic
reaction–diffusion PDEs that are possibly open-loop unstable and
with variety of couplings that include Dirichlet, Neumann, and
Robin traces. Compared to Das et al. (2020), Peet (2021b) and
Shivakumar et al. (2019) the approach adopted in this paper
allows the coupling of the ODE with the PDE through a Dirich-
let/Neumann trace that can be located either at the boundary
or inside the spatial domain. Moreover, the exponential stability
results derived in this paper are established for system trajec-
tories evaluated in H1-norm. This feature has two important
implications: (1) the exponential decrease of the PDE trajectories
in L∞-norm1; and (2) the exponential decay of the coupling
channels between ODE and PDE components. This last point is
of paramount importance for practical applications because it
ensures that the signals in the actuation/sensing channels are also
convergent. The relevance of these LMI conditions are assessed
based on numerical examples associated with PDEs and ODEs that
are all unstable.

The rest of the paper is organized as follows. Section 2 de-
scribes the notations and reports a number of basic properties
for Sturm–Liouville operators. Then the study is split into two
parts. Firstly, the case of a Dirichlet trace used as an input for the
ODE is investigated in Section 3. Secondly, the case of a Neumann
trace used as an input for the ODE is reported in Section 4. Finally,
concluding remarks are formulated in Section 5.

2. Notation and properties

Spaces Rn are endowed with the Euclidean norm denoted by
∥ · ∥. The associated induced norms of matrices are also denoted
by ∥ · ∥. L2(0, 1) stands for the space of square integrable func-
tions on (0, 1) and is endowed with the inner product ⟨f , g⟩ =∫ 1
0 f (x)g(x) dx and the norm is denoted by ∥ · ∥L2 . For an integer

m ≥ 1, the m-order Sobolev space is denoted by Hm(0, 1) and
s endowed with its usual norm ∥ · ∥Hm . For a symmetric matrix
∈ Rn×n, P ⪰ 0 (resp. P ≻ 0) means that P is positive semi-

definite (resp. positive definite) while λM (P) (resp. λm(P)) denotes
ts maximal (resp. minimal) eigenvalue.

Let θ1, θ2 ∈ [0, π/2], p ∈ C1([0, 1]) with p > 0, and q ∈
0([0, 1]) with q ≥ 0. Let the Sturm–Liouville operator A :

D(A) ⊂ L2(0, 1)→ L2(0, 1) be defined byAf = −(pf ′)′+qf on the
omain D(A) = {f ∈ H2(0, 1) : cos(θ1)f (0) − sin(θ1)f ′(0) = 0,
os(θ2)f (1)+ sin(θ2)f ′(1) = 0}. The operator A is self-adjoint and
ts eigenvalues λn, n ≥ 1, are simple, non negative, and form an
ncreasing sequence with λn →+∞ as n→+∞. Moreover, the
ssociated unit eigenvectors φn ∈ L2(0, 1) form a Hilbert basis
nd we also have D(A) = {f ∈ L2(0, 1) :

∑
n≥1 |λn|

2
| ⟨f , φn⟩ |

2 <

∞} with Af =
∑

n≥1 λn ⟨f , φn⟩φn.
Let p∗, p∗, q∗ ∈ R be such that 0 < p∗ ≤ p(ξ ) ≤ p∗ and
≤ q(ξ ) ≤ q∗ for all ξ ∈ [0, 1], then it holds (Orlov, 2017):

≤ π2(n− 1)2p∗ ≤ λn ≤ π2n2p∗ + q∗ (1)

or all n ≥ 1. Assuming further than p ∈ C2([0, 1]), we have
or any given ξ ∈ [0, 1] that φn(ξ ) = O(1) and φ′n(ξ ) =
(
√

λn) as n → +∞ (see Orlov (2017)), where O denotes the
Bachmann–Landau asymptotic notation. Moreover, we also have,

1 This result immediately follows from our stability result established in H1-
orm and the fact that the L∞-norm is bounded by the H1-norm. Note however
hat this does not imply stability in L∞-norm.
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or all f ∈ D(A), ⟨Af , f ⟩ =
∑

n≥1 λn ⟨f , φn⟩
2
=

∫ 1
0 p(f ′)2+qf 2 dξ+

(0)f (0)f ′(0)− p(1)f (1)f ′(1). Hence, provided q > 0 and because
1, θ2 ∈ [0, π/2] and p > 0, we obtain the existence of constants
1, C2 > 0 so that

1∥f ∥2H1 ≤

∑
n≥1

λn ⟨f , φn⟩
2
= ⟨Af , f ⟩ ≤ C2∥f ∥2H1 (2)

or any f ∈ D(A). This in particular implies that, for any f ∈ D(A)
nd any ξ ∈ [0, 1], f (ξ ) =

∑
n≥1 ⟨f , φn⟩φn(ξ ) and f ′(ξ ) =

n≥1 ⟨f , φn⟩φ
′
n(ξ ). For any α ∈ (0, 1), we introduce the frac-

ional powers of A by defining D(Aα) = {f ∈ L2(0, 1) :
n≥1 |λn|

2α
| ⟨f , φn⟩ |

2 < +∞} and Aα f =
∑

n≥1 λα
n ⟨f , φn⟩φn.

For any f ∈ L2(0, 1) we define PN f = f −
∑N

n=1 ⟨f , φn⟩φn =

n≥N+1 ⟨f , φn⟩φn

. Dirichlet trace as an input of the ODE

.1. Coupled PDE-ODE systems

We consider in this section the following PDE–ODE system:

t (t, ξ ) = (pzξ )ξ (t, ξ )− q̃(ξ )z(t, ξ ) (3a)

cos(θ1)z(t, 0)− sin(θ1)zξ (t, 0) = 0 (3b)

cos(θ2)z(t, 1)+ sin(θ2)zξ (t, 1) = y(t) = Cx(t) (3c)

˙(t) = Ax(t)+ Bz(t, ζm) (3d)

(0, ξ ) = z0(ξ ), x(0) = x0 (3e)

or t > 0 and ξ ∈ (0, 1) where θ1, θ2 ∈ [0, π/2], p ∈ C2([0, 1])
ith p > 0, q̃ ∈ C0([0, 1]), and ζm ∈ [0, 1]. Here A ∈ Rn×n, B ∈ Rn,
nd C ∈ R1×n are matrices, z0 ∈ L2(0, 1) and x0 ∈ Rn are initial

conditions, and z(t, ·) ∈ L2(0, 1) and x(t) ∈ Rn are the state of the
reaction–diffusion PDE and of the ODE at time t , respectively.

The PDE–ODE system (3) consists of a reaction–diffusion PDE
coupled with an ODE. The output y(t) = Cx(t) of the ODE is
seen as a boundary input for the PDE and is applied at the right
Robin boundary condition. Conversely, the pointwise Dirichlet
trace z(t, ζm) is seen as an input of the ODE (3d). The objective of
this section is to derive numerically tractable sufficient conditions
ensuring the exponential stability of the PDE–ODE system (3)
when evaluating the PDE trajectory in H1-norm.

We introduce without loss of generality q ∈ C0([0, 1]) and
qc ∈ R such that

q̃ = q− qc, q > 0. (4)

Remark 1. Even if the presentation focuses on the case θ1, θ2 ∈

[0, π/2], the derived results can be extended to θ1, θ2 ∈ [0, 2π ].
Indeed, considering first the case θ1, θ2 ∈ [0, π], the proposed
strategy also applies provided (1) q > 0 from (4) is selected large
enough so that the estimates (2) still hold for some constants
C1, C2 > 0; (2) the change of variable (5) is replaced by w(t, ξ ) =
z(t, ξ ) − ξα

cos θ2+α sin θ2
y(t) for any fixed α > 1 selected so that

os(θ2)+α cos(θ2) ̸= 0. Finally, in view of ((3b)–(3c)), the general
ase θ1, θ2 ∈ [0, 2π ] reduces to the case θ1, θ2 ∈ [0, π] by
roceeding with the following substitutions: (1) if θ1 ∈ (π, 2π ]
hen θ1 ← θ1 − π ; (2) if θ2 ∈ (π, 2π ] then θ2 ← θ2 − π and
←−C .

emark 2. System (3), as well as system (15) that will be
escribed in the next section, can be used to represent a variety
f practical situations. For instance the PDE part can stand for a
eaction–diffusion process coupled with a finite-dimensional LTI
ontroller materialized by the ODE. Conversely, the ODE part can
erge both finite-dimensional LTI plant along with its associated
 o

3

inite-dimensional LTI controller while the PDE part describes
he sensor dynamics. This latter situation is similar to the one
escribed in Krstic (2009b) where a controller was designed
or a cascaded PDE–ODE system using a backstepping transfor-
ation. One of the main motivations for deriving generic sta-
ility conditions for coupled PDE–ODE systems such as (3) is
ltimately when the to-be-implemented finite-dimensional con-
roller is computed either on a finite-dimensional approximation
f the PDE or via the approximation of an infinite-dimensional
utput feedback controller (obtained, e.g., using backstepping
ontrol design procedures).

emark 3. The PDE–ODE system (3) with θ1 = π/2, θ2 = 0,
nd ζm = 0 was studied in Baudouin et al. (2019) in the case
f a stable diffusion PDE (i.e., without reaction term) and with
constant diffusion coefficient using the projection of the PDE

rajectories into a finite subset of Legendre polynomials.

.2. Preliminary spectral reduction

We rewrite (3) under an equivalent PDE–ODE system with
omogeneous boundary conditions. Specifically, introducing the
hange of variable

(t, ξ ) = z(t, ξ )−
ξ 2

cos θ2 + 2 sin θ2
y(t) (5)

we infer that (3) is equivalent to

wt (t, ξ ) = (pwξ )ξ (t, ξ )+ (qc − q(ξ ))w(t, ξ ) (6a)
+ a(ξ )y(t)+ b(ξ )ẏ(t)

cos(θ1)w(t, 0)− sin(θ1)wξ (t, 0) = 0 (6b)

cos(θ2)w(t, 1)+ sin(θ2)wξ (t, 1) = 0 (6c)

(t) = Cx(t) (6d)

˙(t) = Ax(t)+ B (w(t, ζm)+ µmy(t)) (6e)

(0, ξ ) = w0(ξ ), x(0) = x0 (6f)

ith a(ξ ) = 1
cos θ2+2 sin θ2

{2p(ξ )+ 2ξp′(ξ )+ (qc − q(ξ ))ξ 2
}, b(ξ ) =

−
ξ2

cos θ2+2 sin θ2
, µm = −b(ζm), and w0(ξ ) = z0(ξ )− ξ2

cos θ2+2 sin θ2
y(0).

After this change of variable, the well-posedness in terms
of classical solutions of the above PDE–ODE system for initial
conditions w0 ∈ D(A1/2) and x0 ∈ Rn is a consequence of Pazy
(2012, Thm. 6.3.1 and 6.3.3). More precisely, we have for any
w0 ∈ D(A1/2) and any x0 ∈ Rn the existence and unique-
ess of a classical solution (w, x) ∈ C0([0,∞); L2(0, 1) × Rn) ∩
1((0,∞); L2(0, 1) × Rn) with w(t, ·) ∈ D(A) for all t > 0.
oreover, from the proof of Pazy (2012, Thm. 6.3.1), we have
w ∈ C0((0,∞); L2(0, 1)) and A1/2w ∈ C0([0,∞); L2(0, 1)).
We now introduce the Hilbert basis {φi : i ≥ 1} of L2(0, 1)

ormed by the eigenvectors of the Sturm–Liouville operatorA. We
ntroduce the coefficients of projection:

i(t) = ⟨w(t, ·), φi⟩ , ai = ⟨a, φi⟩ , bi = ⟨b, φi⟩ (7)

and define ci = φi(ζm) for i ≥ 1. Considering classical solutions,
we obtain that

ẇi(t) = (−λi + qc)wi(t)+ aiCx(t) (8a)

+ biC

⎧⎨⎩(A+ µmBC)x(t)+ B
∑
j≥1

cjwj(t)

⎫⎬⎭
˙(t) = (A+ µmBC)x(t)+ B

∑
j≥1

cjwj(t) (8b)

or i ≥ 1. The adopted stability analysis procedure relies now
n the introduction of a finite dimensional model that captures
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he dynamics of the ODE (8b) along with the N ≥ 1 first modes
i of the PDE plant, described by (8a), while bounding the effect
f the residue of measurement R(t) =

∑
i≥N+1 ciwi(t) by using

yapunov’s direct method. To do so, we define

(t) =
[
w1(t) . . . wN (t)

]⊤
∈ RN ,

AN = diag(−λ1 + qc, . . . ,−λN + qc) ∈ RN×N ,

Ba,N =
[
a1 . . . aN

]⊤
∈ RN ,

Bb,N =
[
b1 . . . bN

]⊤
∈ RN ,

CN =
[
c1 . . . cN

]
∈ R1×N .

We infer from (8a) that

Ẇ (t) = (AN + Bb,NCBCN )W (t)+ Bb,NCBR(t)
+ (Ba,NC + Bb,NC(A+ µmBC))x(t).

Combining this latter identity with (8b) while defining

X(t) =
[
W (t)
x(t)

]
∈ RN+n,

we infer that

Ẋ(t) = FX(t)+ GR(t) (9)

where

F =
[
AN + Bb,NCBCN Ba,NC + Bb,NC(A+ µmBC)

BCN A+ µmBC

]
and

G =
[
Bb,NCB

B

]
.

Hence, the ODE (9) describes the dynamics of the ODE and of
the N first modes wi of the PDE plant while taking as an input
the residue of measurement R(t) =

∑
i≥N+1 ciwi(t). The resid-

ual dynamics, which corresponds to the modes i ≥ N + 1, is
characterized by

ẇi(t) = (−λi + qc)wi(t)+ aiCx(t)+ biC(A+ µmBC)x(t)

+ biCBCNW (t)+ biCBR(t). (10)

In preparation of the stability analysis, we introduce the ma-
trix

H =
[
H1,1 0
0 H2,2

]
with H1,1 = ∥PNb∥2L2C

⊤

N B⊤C⊤CBCN and H2,2 = ∥PNa∥2L2C
⊤C +

∥PNb∥2L2 (A+ µmBC)⊤C⊤C(A+ µmBC). We finally define the con-

stant defined by M1,φ =
∑

i≥N+1
φi(ζm)2

λi
which is finite because

(1) along with φn(ζm) = O(1) as n→+∞.

3.3. Main result

We can now introduce the main result of this section.

Theorem 4. Let θ1, θ2 ∈ [0, π/2], p ∈ C2([0, 1]) with p > 0,
q̃ ∈ C0([0, 1]), ζm ∈ [0, 1], A ∈ Rn×n, B ∈ Rn, and C ∈ R1×n be
given. Let q ∈ C0([0, 1]) and qc ∈ R be such that (4) holds. Assume
that there exist N ≥ 1, P ≻ 0, α > 2, and β > 0 such that Θ1 ≺ 0
and Θ2 ≺ 0 where

Θ1 =

[
F⊤P + PF + αH PG

G⊤P α∥PNb∥2L2 (CB)
2
− β

]
,

Θ2 =

[
−λN+1 + qc +

βM1,φ
2

√
2λN+1√

2λN+1 −α

]
.

4

Then there exist constants η,M > 0 such that, for any initial
conditions z0 ∈ H2(0, 1) and x0 ∈ Rn such that cos(θ1)z0(0) −
in(θ1)z ′0(0) = 0 and cos(θ2)z0(1)+sin(θ2)z ′0(1) = Cx0, the classical
olution of (3) satisfies

z(t, ·)∥2H1 + ∥x(t)∥2 ≤ Me−2ηt (∥z0∥2H1 + ∥x0∥2) (11a)

with coupling channels such that

z(t, ζm)2 + y(t)2 ≤ Me−2ηt (∥z0∥2H1 + ∥x0∥2) (11b)

or all t > 0.

emark 5. The conclusions of Theorem 4 actually hold for any
nitial conditions such that w0 ∈ D(A1/2). For example the case
1 = π/2 and θ2 = 0 leads to D(A1/2) =

{
f ∈ H1(0, 1) : f (1) =

0
}
. In this setting the conclusions of Theorem 4 hold for any

0 ∈ H1(0, 1) and x0 ∈ Rn such that z0(1) = Cx0. Similarly, the
ase θ1 = θ2 = π/2 gives D(A1/2) = H1(0, 1), implying that the
onclusions of Theorem 4 hold for any z0 ∈ H1(0, 1) and x0 ∈ Rn.

roof. Let N ≥ 1, P ≻ 0, α > 2, and β > 0 such that Θ1 ≺ 0
nd Θ2 ≺ 0. Hence, there exists η > 0 such that Θ1,η ⪯ 0 and
2,η ⪯ 0 where

1,η =

[
F⊤P + PF + 2ηP + αH PG

G⊤P α∥PNb∥2L2 (CB)
2
− β

]
,

2,η =

[
−λN+1 + qc + η +

βM1,φ
2

√
2λN+1√

2λN+1 −α

]
.

Define the Lyapunov functional candidate

V (X, w) = X⊤PX +
∑

i≥N+1

λi ⟨w, φi⟩
2 (12)

with X ∈ RN+n and w ∈ D(A). The first term of the above
functional accounts for the finite-dimensional truncated model
(9) while the series is used to study the stability of the residual
dynamics described by (10) and to bound the effect of the residue
of measurement R(t) =

∑
i≥N+1 ciwi(t) which is acting as an in-

put of (9). With the slight abuse of notation V (t) = V (X(t), w(t)),
the computation of the time derivative of V along the system
trajectories (9) and (10) gives for t > 0

V̇ (t) = 2X(t)⊤PẊ(t)+ 2
∑

i≥N+1

λiwi(t)ẇi(t)

= X(t)⊤(F⊤P + PF )X(t)+ 2X(t)⊤PGR(t)

+ 2
∑

i≥N+1

λi(−λi + qc)wi(t)2

+ 2
∑

i≥N+1

λiwi(t)aiCx(t)

+ 2
∑

i≥N+1

λiwi(t)biC(A+ µmBC)x(t)

+ 2
∑

i≥N+1

λiwi(t)biCBCNW (t)

+ 2
∑

i≥N+1

λiwi(t)biCBR(t).
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e estimate the four latter series by using Young’s inequality. For
nstance, the first term is estimated as∑
i≥N+1

λiwi(t)aiCx(t)

≤

∑
i≥N+1

{
1
α

λ2
i wi(t)2 + αa2i (Cx(t))

2
}

≤
1
α

∑
i≥N+1

λ2
i wi(t)2 + α∥PNa∥2L2x(t)

⊤C⊤Cx(t).

Similarly, we obtain that

2
∑

i≥N+1

λiwi(t)biC(A+ µmBC)x(t) ≤
1
α

∑
i≥N+1

λ2
i wi(t)2

+ α∥PNb∥2L2x(t)
⊤(A+ µmBC)⊤C⊤C(A+ µmBC)x(t),

2
∑

i≥N+1

λiwi(t)biCBCNW (t) ≤
1
α

∑
i≥N+1

λ2
i wi(t)2

+ α∥PNb∥2L2W (t)⊤C⊤N B⊤C⊤CBCNW (t),

nd∑
i≥N+1

λiwi(t)biCBR(t)

≤
1
α

∑
i≥N+1

λ2
i wi(t)2 + α∥PNb∥2L2 (CB)

2R(t)2.

The use of the four latter estimates implies that

V̇ (t) ≤[
X(t)
R(t)

]⊤ [
F⊤P + PF + αH PG

G⊤P α∥PNb∥2L2 (CB)
2

][
X(t)
R(t)

]
+ 2

∑
i≥N+1

λi

(
−λi + qc +

2λi

α

)
wi(t)2 (13)

or t > 0. Since R(t) =
∑

i≥N+1 ciwi(t) with ci = φi(ζm), we infer
hat R(t)2 ≤ M1,φ

∑
i≥N+1 λiwi(t)2. This implies for t > 0 that

˙ (t)+ 2ηV (t) (14)

≤

[
X(t)
R(t)

]⊤
Θ1,η

[
X(t)
R(t)

]
+ 2

∑
i≥N+1

λiΓiwi(t)2

here Γi = −
(
1− 2

α

)
λi + qc + η +

βM1,φ
2 . Now, since α > 2,

we have Γi ≤ ΓN+1 for all i ≥ N + 1. Moreover, combining
Θ2,η ⪯ 0 and the Schur complement, we infer that ΓN+1 ≤ 0.
Using also Θ1,η ⪯ 0, we obtain that V̇ (t) + 2ηV (t) ≤ 0 for all
t > 0. Since A1/2w ∈ C0([0,∞); L2(0, 1)), the mapping t ↦→ V (t)
is continuous for t ≥ 0, implying that V (t) ≤ e−2ηtV (0) for all
t ≥ 0. We now note from (12) that V (0) ≤ λM (P)∥X(0)∥2 +

i≥N+1 λi ⟨w0, φi⟩
2. Noting that ∥X(0)∥2 ≤ ∥x0∥2 + ∥w0∥

2
L2

and
using (2), we infer the existence of a constant M1 > 0 such that
V (0) ≤ M1

(
∥x0∥2 + ∥w0∥

2
H1

)
. Using now (2) and (12), we have

the existence of a constant M2 > 0 such that ∥w(t, ·)∥2
H1 ≤

M2V (t). Hence, we infer the existence of a constant M3 > 0
such that ∥w(t, ·)∥2

H1 + ∥x(t)∥2 ≤ M3e−2ηt
(
∥w0∥

2
H1 + ∥x0∥2

)
. The

claimed conclusion follows from the change of variable (5) and
the continuous embedding H1(0, 1) ⊂ L∞([0, 1]). □

From the above proof we deduce the following corollary.

Corollary 6. In the context of Theorem 4, the decay rate η > 0 of
the stability estimate (11) is guaranteed provided the LMI conditions
Θ ⪯ 0 and Θ ⪯ 0 are feasible.
1,η 2,η

5

Remark 7. For a given order N , the implementation of the
conditions Θ1 ≺ 0 and Θ2 ≺ 0 from Theorem 4 require the
computation of the eigenstructures λn and φn for 1 ≤ n ≤ N
as well as (an upper estimate of) M1,φ =

∑
i≥N+1

φi(ζm)2

λi
. In the

ase that the eigenstructures cannot be computed analytically,
umerical methods can be used to estimate the N first eigen-
tructures. Moreover, an upper bound of M1,φ =

∑
i≥N+1

φi(ζm)2

λi
an be obtained using (1) and by computing an upper bound of
upn≥N+1 maxx∈[0,1] φn(x) by proceeding as in Orlov (2017).

3.4. Numerical illustration

We illustrate the results of Theorem 4 and Corollary 6 for the
coupled PDE–ODE system described by (3) with θ1 = π/2, θ2 = 0,
p = 1, q̃ = −3, ζm = 1/4,

A =

⎡⎢⎢⎢⎣
0 −1/4 −1/5 1/5 1/6

1/2 1 −4 9/2 7/2
−9/4 −1/2 −14 23 16
−1/5 −1/2 −11/4 1/10 5/4
−4/3 −4/3 −9 9 5/2

⎤⎥⎥⎥⎦ ,

B =
[
−7/2 −3/2 −1/10 1/2 1

]⊤
,

C =
[
−1/10 −1/3 −4 7/8 7/8

]
.

In this case, both PDE and ODE systems are open-loop unsta-
ble. Indeed, the dominant eigenvalue of the PDE is located ap-
proximately at +0.533 while the matrix A has two unstable
eigenvalues located approximately at +1.046 and +0.247.

We select q = 1 and qc = 4 which satisfy (4). Hence, we obtain
that λn = p(n − 1/2)2π2

+ q and φn(ξ ) =
√
2 cos((n − 1/2)πξ ).

Using the integral test for convergence, we infer that M1,φ ≤
2

pπ2(N−1/2)
. The application of Theorem 4 with N = 3 shows

the exponential stability of the coupled PDE–ODE system (3).
Moreover, the application of Corollary 6 with N = 9 shows the
exponential stability of the coupled PDE–ODE system with decay
rate η = 0.5. We illustrate this result with a numerical simula-
tion. The numerical scheme consists in the modal approximation
of the PDE plant by its 100 dominant modes. The initial condition
is set as w0(ξ ) = −1 + ξ 2 and x0 =

[
−2 1 2 1 3

]⊤. The
obtained results are depicted in Fig. 1, confirming the theoretical
predictions of Theorem 4 and Corollary 6.

4. Neumann Trace as an input of the ODE

4.1. Coupled PDE-ODE systems

We consider in this section the case of a reaction–diffusion
PDE entering into the ODE by means of a Neumann trace instead
of a Dirichlet trace.

zt (t, ξ ) = (pzξ )ξ (t, ξ )− q̃(ξ )z(t, ξ ) (15a)

cos(θ1)z(t, 0)− sin(θ1)zξ (t, 0) = 0 (15b)

cos(θ2)z(t, 1)+ sin(θ2)zξ (t, 1) = y(t) = Cx(t) (15c)

˙(t) = Ax(t)+ Bzξ (t, ζm) (15d)

(0, ξ ) = z0(ξ ), x(0) = x0 (15e)

for t > 0 and ξ ∈ (0, 1) where θ1, θ2 ∈ [0, π/2], p ∈ C2([0, 1])
with p > 0, q̃ ∈ C0([0, 1]), and ζm ∈ [0, 1]. Here A ∈ Rn×n, B ∈ Rn,
and C ∈ R1×n are matrices, z0 ∈ L2(0, 1) and x0 ∈ Rn are initial
conditions, and z(t, ·) ∈ L2(0, 1) and x(t) ∈ Rn are the state of the
reaction–diffusion PDE and of the ODE at time t , respectively.

Comparing to the PDE–ODE system (3) studied in the previous
section, the PDE–ODE system (15) differs by the fact that the
input of the ODE (15d) is now the pointwise Neumann trace
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Fig. 1. Time evolution of the coupled PDE–ODE system (3).

ξ (t, ζm). In this context, the objective of this section is also to
derive sufficient conditions ensuring the exponential stability of
the PDE–ODE system (15) when evaluating the PDE trajectory in
H1-norm.

As in the previous section, we introduce without loss of gen-
rality a function q ∈ C0([0, 1]) and a constant qc ∈ R such that
4) holds.

.2. Preliminary spectral reduction

Considering the change of variable (5), we infer that (15) is
quivalent to

t (t, ξ ) = (pwξ )ξ (t, ξ )+ (qc − q(ξ ))w(t, ξ ) (16a)
+ a(ξ )y(t)+ b(ξ )ẏ(t)

cos(θ1)w(t, 0)− sin(θ1)wξ (t, 0) = 0 (16b)

cos(θ2)w(t, 1)+ sin(θ2)wξ (t, 1) = 0 (16c)

y(t) = Cx(t) (16d)

ẋ(t) = Ax(t)+ B
(
wξ (t, ζm)+ µmy(t)

)
(16e)

w(0, ξ ) = w0(ξ ), x(0) = x0 (16f)

where a, b, and w0 are defined as in the previous section while
µm = −b′(ζm). Note that, after this change of variable, the well-
posedness in terms of classical solutions of the above PDE–ODE
systems for initial conditions w0 ∈ ∪α0∈(3/4,1)D(A

α0 ) and x0 ∈
Rn is a consequence of Pazy (2012, Thm. 6.3.1 and 6.3.3). More
precisely, for a given α0 ∈ (3/4, 1), we have for any w0 ∈ D(Aα0 )
and any x ∈ Rn the existence and uniqueness of a classical
0 h

6

solution (w, x) ∈ C0([0,∞); L2(0, 1)× Rn) ∩ C1((0,∞); L2(0, 1)×
Rn) with w(t, ·) ∈ D(A) for all t > 0. Moreover, from the proof of
Pazy (2012, Thm. 6.3.1), we have Aw ∈ C0((0,∞); L2(0, 1)) and
Aα0w ∈ C0([0,∞); L2(0, 1)) hence A1/2w ∈ C0([0,∞); L2(0, 1)).

Proceeding now as in the previous section while replacing
the definition of ci by ci = φ′i (ζm) for all i ≥ 1, we infer that
the truncated model (9) holds while the residual dynamics is
described by (10).

We finally define for any ϵ ∈ (0, 1/2] the constant M2,φ(ϵ) =∑
i≥N+1

φ′i (ζm)2

λ
3/2+ϵ
i

which is finite because (1) along with φ′n(ζm) =

(
√

λn) as n→+∞.

4.3. Main result

We can now introduce the main result of this section.

Theorem 8. Let θ1, θ2 ∈ [0, π/2], p ∈ C2([0, 1]) with p > 0,
q̃ ∈ C0([0, 1]), ζm ∈ [0, 1], A ∈ Rn×n, B ∈ Rn, and C ∈ R1×n be
given. Let q ∈ C0([0, 1]) and qc ∈ R be such that (4) holds. Assume
that there exist N ≥ 1, ϵ ∈ (0, 1/2], P ≻ 0, α > 2, and β > 0 such
that Θ1 ≺ 0, Θ2 ≺ 0, and Θ3 ≻ 0 where

Θ1 =

[
F⊤P + PF + αH PG

G⊤P α∥PNb∥2L2 (CB)
2
− β

]
,

Θ2 =

[
−λN+1 + qc +

βM2,φ (ϵ)
2 λ

1/2+ϵ

N+1
√
2λN+1

√
2λN+1 −α

]
,

Θ3 =

⎡⎣1− βM2,φ (ϵ)

2λ1/2−ϵ
N+1

√
2

√
2 α

⎤⎦ .

Then there exist constants η,M > 0 such that, for any initial
conditions z0 ∈ H2(0, 1) and x0 ∈ Rn such that cos(θ1)z0(0) −
in(θ1)z ′0(0) = 0 and cos(θ2)z0(1)+sin(θ2)z ′0(1) = Cx0, the classical
olution of (15) satisfies

z(t, ·)∥2H1 + ∥x(t)∥2 ≤ Me−2ηt (∥z0∥2H1 + ∥x0∥2) (17a)

with coupling channels such that

zξ (t, ζm)2 + y(t)2 ≤ Me−2ηt (∥z0∥2H1 + ∥Aw0∥
2
L2 + ∥x0∥

2) (17b)

or all t > 0.

emark 9. For any fixed α0 ∈ (3/4, 1), the estimate (17a) of
heorem 8 actually holds for any initial conditions such that w0 ∈

D(Aα0 ). In this case, the estimate regarding the coupling channels
also holds when replacing ∥Aw0∥

2
L2

by ∥Aα0w0∥
2
L2
.

Proof. Let N ≥ 1, ϵ ∈ (0, 1/2], P ≻ 0, α > 2, and β > 0 such
that Θ1 ≺ 0, Θ2 ≺ 0, and Θ3 ≻ 0. Hence, there exists η > 0 such
that Θ1,η ⪯ 0 and Θ2,η ⪯ 0 where

Θ1,η =

[
F⊤P + PF + 2ηP + αH PG

G⊤P α∥PNb∥2L2 (CB)
2
− β

]
,

Θ2,η =

[
−λN+1 + qc + η +

βM2,φ (ϵ)
2 λ

1/2+ϵ

N+1
√
2λN+1

√
2λN+1 −α

]
.

onsidering the Lyapunov functional candidate (12) with X ∈
RN+n and w ∈ D(A) and adopting the same approach as the
one reported in the previous section, the computation of the time
derivative along the system trajectories (9) and (10) gives (13) for
all t > 0. Since R(t) =

∑
i≥N+1 ciwi(t) with ci = φ′i (ζm), we infer

that R(t)2 ≤ M2,φ(ϵ)
∑

i≥N+1 λ
3/2+ϵ

i wi(t)2. This implies that (14)
olds for t > 0 with Γ = −

(
1− 2 )

λ + q + η +
βM2,φ (ϵ)λ

1/2+ϵ .
i α i c 2 i
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ince ϵ ∈ (0, 1/2], we observe for i ≥ N + 1 that λ
1/2+ϵ

i =

λi/λ
1/2−ϵ

i ≤ λi/λ
1/2−ϵ

N+1 hence Γi ≤ −

(
1− 2

α
−

βM2,φ (ϵ)

2λ1/2−ϵ
N+1

)
λi +

c + η. Using Θ3 ≻ 0 and Schur’s complement, we infer that
i ≤ −λN+1+qc+η+

βM2,φ (ϵ)
2 λ

1/2+ϵ

N+1 +
2λN+1

α
for all i ≥ N+1. Using

ow Θ2,η ⪯ 0 and Schur’s complement, we obtain that Γi ≤ 0 for
ll i ≥ N + 1. Combining this result with Θ1,η ⪯ 0, we deduce
rom (14) that V̇ (t)+ 2ηV (t) ≤ 0 for all t > 0. From now on, the
roof of (17a) follows from the same arguments than the ones
eported in the previous section. To complete the proof, we only
eed to establish the exponential decrease of the term zξ (t, ζm)
o obtain (17b). This is done in Appendix by invoking a small gain
rgument. □

orollary 10. In the context of Theorem 8, the decay rate η > 0 of
he stability estimate (17) is guaranteed provided the LMI conditions
1,η ⪯ 0, Θ2,η ⪯ 0, and Θ3 ≻ 0 are feasible.

.4. Numerical illustration

We illustrate the results of Theorem 8 and Corollary 10 for
he coupled PDE–ODE system described by (15) with θ1 = 0,
2 = π/2, p = 1, q̃ = −3, ζm = 1/4,

A =

⎡⎢⎢⎢⎣
−1/4 −1/6 2 1 1/12
−3/2 −3/2 5 5 1/6
3/2 −4 −15/2 −5 −1/3
−13/2 22 22 −14 −1/2
1/7 −1/2 −1/2 1/5 −5/2

⎤⎥⎥⎥⎦ ,

B =
[
−5/4 2/3 1/6 −1/6 0

]⊤
,

=
[
−2/5 −5/4 3/2 1/3 1/40

]
.

oth PDE and ODE systems are open-loop unstable. Indeed, the
ominant eigenvalue of the PDE is located approximately at
0.533 while the matrix A has one unstable eigenvalue located
pproximately at +0.393.
We select q = 1 and qc = 4 which satisfy (4). Hence, we

btain that λn = p(n − 1/2)2π2
+ q and φn(ξ ) =

√
2 sin((n −

/2)πξ ). Using the integral test for convergence, we infer that
2,φ(ϵ) ≤ 1

ϵp3/2+ϵπ1+2ϵ (N−1/2)2ϵ
. The application of Theorem 4

with ϵ = 1/6 and N = 2 shows the exponential stability of
the coupled PDE–ODE system (3). Moreover, the application of
Corollary 6 with N = 10 shows the exponential stability of
the coupled PDE–ODE system with decay rate η = 0.4. We
illustrate this result with a numerical simulation. The numerical
scheme consists in the modal approximation of the PDE plant by
its 100 dominant modes. The initial condition is set as w0(ξ ) =

ξ (1 − ξ )2 cos(3πξ ) and x0 =
[
−1 1 −2 2 −1

]⊤. The
btained results are depicted in Fig. 2, confirming the theoretical
redictions of Theorem 8 and Corollary 10.

. Conclusion

This paper has addressed the topic of assessing the stability of
oupled systems composed of a reaction–diffusion equation and
finite-dimensional linear time-invariant ODE. The considered

oupling channels are located either at the boundaries or in the
omain of the PDE and consist of the input and output signals
f the ODE. The reported sufficient stability conditions take the
orm of tractable LMIs and have been derived by adopting a
pectral reduction-based method. Moreover, we have also as-
essed the exponential decrease to zero of the aforementioned
oupling channels, particularly in the case of Neumann boundary
ouplings. The drawback of the present Lyapunov function based
7

Fig. 2. Time evolution of the coupled PDE–ODE system (15).

approach is that the derived stability condition are only sufficient,
hence may be not satisfied by some stable reaction–diffusion
systems. Nevertheless, as illustrated via the reported numerical
examples, this method can be successfully applied to assess the
exponential stability of coupled PDE–ODE systems for which both
the open-loop PDE and ODE plants are exponentially unstable.

Appendix. End of the proof of Theorem 8

We investigate the exponential decrease of zξ (t, ζm) to zero.
Using the change of variable (5) and the identity y(t) = Cx(t),
we have zξ (t, ζm) = wξ (t, ζm) + µmCx(t) for t > 0. Hence,
based on (17a), we only need to study the term wξ (t, ζm) =∑

j≥1 φ′j (ζm)wj(t). Let α0 ∈ (3/4, 1) and w0 ∈ D(Aα0 ). Let N0 ≥ 1
and κ > 0 be such that −λn + qc ≤ −η − κ for all n ≥ N0 + 1.
onsider an arbitrary fixed integer M ≥ N0. Then we have

wξ (t, ζm)| ≤
∑
j≥1

|φ′j (ζm)||wj(t)|

≤ CM

√ M∑
j=1

wj(t)2 + Cφ

√ ∑
j≥M+1

λ
2α0
j wj(t)2

≤ CM∥w(t, ·)∥L2 + Cφ

√ ∑
j≥M+1

λ
2α0
j wj(t)2

where CM =

√∑M
j=1 φ′j (ζm)2 and Cφ =

√∑
j≥1

φ′j (ζm)2

λ
2α0
j

<∞. Based

again on (5) and (17a) we only need to study the term S (t) =
M
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j≥M+1 λ
2α0
j wj(t)2. To do so, we integrate (8a) for i ≥ N0+1 and

irect estimations give

λ
α0
i wi(t)| ≤ e(−λi+qc )t |λ

α0
i wi(0)|

+ (|ai|∥C∥ + |bi|∥CAe∥)

∫ t

0
λ

α0
i e(−λi+qc )(t−s)∥x(s)∥ ds

+ |bi||CB|
∫ t

0
λ

α0
i e(−λi+qc )(t−s)|wξ (s, ζm)| ds

with Ae = A+ µmBC . For any f ∈ L∞loc(R), we have∫ t

0
λ

α0
i e(−λi+qc )(t−s)|f (s)| ds

= e−ηt
∫ t

0
λ

α0
i e(−λi+qc+η)(t−s)

× eηs
|f (s)| ds

≤
λ

α0
i

λi − qc − η
e−ηtess sups∈[0,t]e

ηs
|f (s)|

ecause λi−qc−η ≥ κ > 0 for all i ≥ N0+1. Since α0 ∈ (3/4, 1)
e also have that λ

α0
i /(λi − qc − η) → 0 as i → +∞. Hence

there exists a constant σ = σ (α0) > 0, independent of M , so that
λ

α0
i /(λi − qc − η) ≤ σ for all i ≥ N0 + 1. Combining the latter

estimates, we infer that

|λ
α0
i wi(t)| ≤ e−ηt

|λ
α0
i wi(0)|

+ σ (|ai|∥C∥ + |bi|∥CAe∥) e−ηt sup
s∈[0,t]

eηs
∥x(s)∥

+ σCM |bi||CB|e−ηt sup
s∈[0,t]

eηs
∥w(s, ·)∥L2

+ σCφ |bi||CB|e−ηt sup
s∈[0,t]

eηs
√
SM (s)

or all i ≥ N0+ 1 and all t ≥ 0. The use of Young’s inequality and
umming for i ≥ M + 1 ≥ N0 + 1 we obtain that

M (t) ≤ 5e−2ηtSM (0)

+ 5σ 2 (
∥PMa∥2L2∥C∥

2
+ ∥PMb∥2L2∥CAe∥

2)
× e−2ηt sup

s∈[0,t]
e2ηs∥x(s)∥2

+ 5σ 2C2
M∥PMb∥2L2 |CB|

2e−2ηt sup
s∈[0,t]

e2ηs∥w(s, ·)∥2L2

+ 5σ 2C2
φ∥PMb∥2L2 |CB|

2e−2ηt sup
s∈[0,t]

e2ηsSM (s)

or all t ≥ 0, hence

sup
s∈[0,t]

e2ηsSM (s) ≤ 5SM (0)

+ 5σ 2 (
∥PMa∥2L2∥C∥

2
+ ∥PMb∥2L2∥CAe∥

2)
× sup

s∈[0,t]
e2ηs∥x(s)∥2

+ 5σ 2C2
M∥PMb∥2L2 |CB|

2 sup
s∈[0,t]

e2ηs∥w(s, ·)∥2L2

+ 5σ 2C2
φ∥PMb∥2L2 |CB|

2 sup
s∈[0,t]

e2ηsSM (s).

ince ∥PMb∥L2 → 0 when M → +∞, we infer the existence
f a large enough integer M ≥ N0 + 1, independent of the
nitial condition w0 ∈ D(Aα0 ), such that 5σ 2C2

φ∥PMb∥2
L2
|CB|2 < 1.

ixing such a M ≥ N0 + 1 and because all the supremums
ppearing in the latter estimate are finite (recall that Aα0w ∈
0([0,∞); L2(0, 1))), we obtain the existence of a constant M4 >

such that

sup
∈[0,t]

e2ηsSM (s) ≤ M4SM (0)+M4 sup
s∈[0,t]

e2ηs∥x(s)∥2

+M4 sup
s∈[0,t]

e2ηs∥w(s, ·)∥2L2
8

or all t ≥ 0. Noting that SM (0) ≤ ∥Aα0w0∥
2
L2
, the claimed

onclusion follows from (5) and (17a). In the case w0 ∈ D(A),
t can easily be seen that D(A) ⊂ D(Aα0 ) and ∥Aα0w0∥

2
L2
≤

w0∥
2
L2
+ ∥Aw0∥

2
L2
, which gives (17b) and concludes the proof.
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