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Abstract

Boundary feedback control design is studied for 1D hyperbolic systems with an in-domain disturbance and a boundary feedback
controller under the effect of actuator saturation. Nonlinear semigroup theory is used to prove well-posedness of mild solution
pairs to the closed-loop system. Sufficient conditions in the form of dissipation functional inequalities are derived to establish
global stability for the closed-loop system and L2-stability in presence of in-domain disturbances. The control design problem
is then recast as an optimization problem over linear matrix inequality constraints. Numerical results are shown to validate
the effectiveness of the proposed control design.
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1 Introduction

Partial differential equations are mathematical expres-
sions which are found to be of great importance in the
modeling of many physical systems that are described
simultaneously via spatial and temporal variables. Light
propagation in optic fibers, blood flow in the vessels,
plasma in laser, liquid metals in cooling systems, road
traffic, acoustic waves, and electromagnetic waves are
all examples of systems modeled via PDEs that can
be seen in civil, nuclear, mechanical, quantum, and
chemical engineering (see [6] and [19] for more exam-
ples). Thus, the importance of studying the analysis
and control of physical systems modeled via PDEs is
growing more and more in the community of automatic
control. In fact, what renders this topic challenging
is the infinite-dimensional nature of the application.
In the majority of the cases, actuators and sensors
are located in the boundaries of the system. In other
words, in-domain control, which while theoretically fa-
cilitates the stability analysis and control of PDEs, is
impractical in the real world. Thus, we can find a lot
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of research conducted on the topic of boundary con-
trol [19]. In particular, different control strategies, from
Lyapunov stability and stabilization methods [6], [32],
to backstepping control [25], [19] and frequency domain
approaches [20] have been applied on PDEs.

Another major problem that faces control engineers is
the presence of actuator saturation threatens the con-
trol system. Neglecting the presence of this saturation
can be a source of undesirable and dangerous behav-
iors in the closed-loop system [15]. That is why, if one
wishes to conclude a realistic, safe control design, it is
of utmost necessity to take into account this saturation
within the system modeling. Unfortunately, this means
that we are adding a nonlinearity to our model. Re-
searchers have been studying several methods to tackle
saturation problems in closed-loop systems as we can see
in [31], [35] or [29] and some examples of extensions of
those works are present in [26] and [22] . Stability analy-
sis of PDEs in the presence of saturation has been stud-
ied in the math community [13], [2], but it is still an
open research area, especially from an automatic control
viewpoint [34], [16]. To the best of our knowledge, the
particular problem of designing a boundary controller
under the effect of saturation to stabilize hyperbolic sys-
tems has not been studied in previous works. As we have
seen in [24], a natural approach to study the stability
problem is to combine both Lyapunov theory and cone-

Preprint submitted to Automatica 23 August 2021



bounded sector conditions (see more about sector con-
ditions in [18], [31], [8]).
Studies on the well-posedness of infinite dimensional sys-
tems in the presence of nonlinearities have been pre-
sented in [5] [33], and [4] based on semigroup theory.
In [14], the authors make use of infinite dimensional lin-
ear systems theory to rewrite a linear PDE and intercon-
nect it with a static nonlinearity. Only few papers study
the well-posedness of hyperbolic PDEs in the presence of
saturated boundary nonlinearity. More specifically, [24]
considers the wave equation, whereas [10] analyses the
stability of BV solutions.
In this work, we focus on systems of one-dimensional
conservation laws modeled as a system of linear hyper-
bolic PDEs. The aim of this article is to study the class
of hyperbolic systems in the presence of nonlinear con-
trol laws [28] as well as an in-domain exogenous distur-
bance [11]. In this paper, we consider a classical satura-
tion function and we present a systematic approach to
design static boundary controllers to ensure closed-loop
exponential stability and robustness with quantifiable
margins with respect to in-domain energy bounded dis-
turbances. To achieve this goal, we first prove the exis-
tence and uniqueness of solution to our closed-loop sys-
tem. Then, we prove the global exponential stability by
using a sector condition and a suitable Lyapunov func-
tional. The proposed conditions are embedded into a
convex optimization setup to enable the design of a con-
troller minimizing the effect of the disturbance on the
closed-loop system.
The paper is organized as follows. Section 2 illustrates
the problem we solve and defines the notion of solu-
tion we use. Section 3 tackles the well-posedness of the
closed-loop system using properties of non-accretive op-
erators. Section 4 is dedicated to Lyapunov analysis and
provides the sufficient conditions for stability. Further-
more, it presents the control design problem in the sense
of an optimization problem which gives an optimal con-
trol gain. Section 5 validates the effectiveness of the pro-
posed design algorithm through a numerical example.

1.1 Notation

The sets R≥0 and R>0 represent the set of nonnegative
and positive real scalars, respectively. The symbols Snp
and Dn

p denote, respectively, the set of real n × n sym-
metric positive definite matrices and the set of diago-
nal positive definite matrices. For a matrix A ∈ Rn×m,
A> denotes the transpose of A and ‖A‖ denotes the
2-induced matrix-norm of A. For a symmetric matrix
A, positive definiteness (negative definiteness) and posi-
tive semidefiniteness (negative semidefiniteness) are de-
noted, respectively, by A > 0 (A < 0) and A ≥ 0
(A ≤ 0). In partitioned symmetric matrices, the sym-
bol ∗ stands for symmetric blocks. For a vector x ∈ Rn,
|x| denotes its Euclidean norm. Let X and Y be normed
linear spaces, the symbol L(X,Y ) denotes the space of
all bounded linear operators from X to Y . For U ⊂ R,

we denote by ‖f‖L2(U) = (
∫
U
|f(z)|2dz) 1

2 , the L2-norm

of f 1 . For an open U ⊂ R and a normed linear space
V ⊂ Rn, H1(U, V ) := {f ∈ L2(U, V ) : f is locally
absolutely continuous on U, d

dz f ∈ L
2(U, V )} where d

dz

stands for the weak derivative of f . The symbol C1(U, V )
denotes the set of functions f : U −→ V that are continu-
ously differentiable. Moreover, the symbol C∞c (U, V ) de-
notes the set of smooth compactly supported functions
f : U −→ V . Given f : U ⊂ R −→ V , we say that f ∈ L2

if ‖f‖L2 is finite.

2 Problem Statement

2.1 Problem setup

We consider the boundary feedback control of the fol-
lowing n linear 1-D hyperbolic PDEs formally written
as:

Xt(t, z) + ΛXz(t, z) = Nd(t, z) ∀(t, z) ∈ R≥0 × (0, 1)

X(t, 0) = HX(t, 1) +Bσ(u(t)) ∀t ∈ R≥0
X(0, z) = X0(z) ∀z ∈ (0, 1)

(1)
where t ∈ R≥0 and z ∈ (0, 1) are the two independent
variables, respectively, time and space, z 7→ X(., z) ∈ Rn

is the state, and z 7→ d(., z) ∈ Rq is an exogenous in-
domain disturbance. We assume also that the matrices
Λ ∈ Dn

p , H ∈ Rn×n, B ∈ Rn×m and N ∈ Rn×q are
given and that the state X(·, z) is measurable only at
the boundary point z = 1. Specifically, the measurable
output of the system reads as y = X(·, 1).
Let u := KX(·, 1) where K ∈ Rm×n is the control gain
to be designed and the function u 7→ σ(u) is the sym-
metric decentralized saturation function with saturation
levels u1, u2, . . . , um ∈ R>0, whose components for each
u ∈ Rm are defined as:

σ(u)i = σ(ui) := min(|ui|, ui)sign(ui) i = 1, 2, . . . ,m

Our goal is to design the gain K to induce closed-loop
stability with quantifiable convergence rate and robust-
ness margins with respect to the exogenous input d. For
convenience, we define the function u 7→ φ(u) which
is the symmetric decentralized dead-zone nonlinearity
function given by the following expression (see [31, page
40]):

φ(ui) := σ(ui)− ui (2)

where φ : Rm −→ Rm. By setting Hcl := H + BK, the
closed-loop system turns into:

1 In this paper, we only consider Lebesegue measurable func-
tions.
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Xt(t, z) + ΛXz(t, z) = Nd(t, z) ∀(t, z) ∈ R>0 × (0, 1)

X(t, 0) = HclX(t, 1) +Bφ(KX(t, 1)) ∀t ∈ R≥0

X(0, z) = X0(z) ∀z ∈ (0, 1)

(3)

Remark 1 Even though we only study the homodirectional
case with Λ ∈ Dnp , the results can be directly extended to

a heterodirectional case with Λ =

Λ+

Λ−

 where Λ+ ∈ Drp,

Λ− ∈ Dsp and s + r = n. This is done through a change in
variable. ◦

2.2 Notion of solution

Similarly as in [5], we focus on mild solution pairs to (1).
As in [9], we start by reformulating the closed-loop system
as an abstract differential equation. Consider now the fol-
lowing operators defined, respectively, on the Hilbert spaces
L2(0, 1;Rn) and L2(0, 1;Rq) equipped with their respective
standard inner products:

A :D(A) −→ L2(0, 1;Rn)

X 7→ −ΛXz(z)

N :L2(0, 1;Rq) −→ L2(0, 1;Rn)

d 7→ Nd

(4)

where

D(A) := {X ∈ H1(0, 1;Rn);X(0) = HclX(1)+Bφ(KX(1))}

Then, the closed-loop dynamics can be formally written as
the following abstract system with state X ∈ L2(0, 1;Rn)
and exogenous input d ∈ L2(0, 1;Rq)

Ẋ = AX +Nd (5)

In particular, we use the following notion of a mild solution
pair for (5). We recall the definition introduced in [5, Defi-
nition 4.3, page 120]:

Definition 1 A mild solution pair for the system (5), with
the initial condition X(0, z) = X0 is a pair (X, d) satisfy-
ing the following: functions X ∈ C(domX;L2(0, 1;Rn)) and
d ∈ L1(domd,L2(0, 1;Rq)) where domX = domd is an inter-
val of R≥0 including zero and for each ε > 0, there exists
an ε-approximate solution z (using the terminology of [5,

Definition 4.2, page 129]) of Ẋ = AX + Nd such that
‖X(t)− z(t)‖ ≤ ε for all t ∈ domX.

�

Now we state the problem we solve in this paper:

Problem 1 Given H ∈ Rn×n, B ∈ Rn×m, N ∈ Rn×q, and
Λ ∈ Dnp . Design K such that for some κ, ω, γ ∈ R>0 and for
each mild solution pair (X,d) to (5) one has, for all t ∈ domX:

‖X(t)‖L2 ≤ κe−ωt ‖X0‖L2 + γ

√∫ t

0

‖d(θ)‖2L2 dθ (6)

�

Inequality (6) corresponds to a classical input-to-state-
stability (ISS) bound for the abstract closed-loop system (5).
Sufficient conditions to ensure ISS for infinite dimensional
systems are given in [17] and [23]. The main contribution
of this paper is to perform an optimal design of the control
design of the control gain K in order to minimize the ISS
gain γ. In Section 4, we provide sufficient conditions to get
an explicit estimate of the ISS gain γ.

3 Well-posedness of the Closed-Loop System

In this section, we state the well-posedness of the closed-
loop system (5). Let us start by defining the notion of non-
accretive operator inspired by [5, Definition 3.1, page 97]:

Definition 2 An operator A from D(A) to L2(0, 1;Rn) is
said to be non-accretive with respect to an inner product 〈·, ·〉
if for every pair (X1, X2) ∈ D(A) × D(A), the following
inequality holds:

〈AX1 −AX2, X1 −X2〉 ≤ 0 (7)

�

Inspired by [6, Appendix A, page 224], let us introduce the
following inner product on L2(0, 1;Rn):

〈X1, X2〉µ :=

∫ 1

0

eµzX>1 X2dz (8)

where µ > 0 will be selected later. It is noted that this inner
product is equivalent to the standard inner product in L2

since the function z 7→ e−µz is bounded from below and
above on [0, 1]. We now use the previous definition to apply
it on a suitable operator which will be vital in proving the
uniqueness and existence of mild solution pairs to (5).

Proposition 1 There exist µ > 0 and ρ ∈ R such that the
operator A + ρI is non-accretive (with respect to the scalar
product 〈·, ·〉µ). �

Proof. Let X1, X2 ∈ D(A), X̃ = X1 − X2 ∈ D(A) and

φ̃ = φ(KX1(1))−φ(KX2(1)) ∈ Rm. Let us prove (7) for the
operator A+ρI for a suitable choice of µ. First we can write
the following:

〈(A+ ρI)X̃, X̃〉µ = 〈AX̃, X̃〉µ + ρ〈X̃, X̃〉µ

where

〈AX̃, X̃〉µ = −
∫ 1

0

eµzX̃>ΛX̃zdz

Using an integration by parts, we have:

〈AX̃, X̃〉µ = −1

2
eµzX̃>ΛX̃

∣∣∣1
0

+
1

2
µ

∫ 1

0

eµzX̃>ΛX̃dz

Thanks to the boundary condition in (3), we have:

〈AX̃, X̃〉µ = −1

2

(
eµX̃(1)>ΛX̃(1)− (HclX̃(1) +Bφ̃)>

Λ(HclX̃(1) +Bφ̃)
)

+
1

2
µ〈X̃, X̃〉µ

(9)
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We can rewrite the previous equation as:

〈AX̃, X̃〉µ =
1

2
X>

H>clΛHcl − eµΛ H>clΛB

∗ B>ΛB

X
+

1

2
µ〈X̃, X̃〉µ

(10)

where X :=

X̃(1)

φ̃

. Hence, recalling that φ is 1-Lipschitz

continuous 2 , one has:

X>
−K>K 0

∗ I

X ≤ 0

which by using, (10) gives:

〈AX̃, X̃〉µ ≤
1

2
X>

H>clΛHcl − eµΛ + τK>K H>clΛB

∗ B>ΛB − τI

X
+

1

2
µ〈X̃, X̃〉µ

(11)

for any τ > 0. Pick τ such that B>ΛB− τI ≤ −I. Thus, we
can write

〈AX̃, X̃〉µ ≤
1

2
X>

H>clΛHcl − eµΛ + τK>K H>clΛB

∗ −I

X
+

1

2
µ〈X̃, X̃〉µ

(12)

Now, consider the following matrix:

Ω :=

H>clΛHcl − eµΛ + τK>K H>clΛB

∗ −I


From the Schur-complement lemma (see [36, page 34, The-
orem 1.12]), one has that Ω < 0 if and only if the following
conditions hold

H>clΛHcl − eµΛ + τK>K < 0

−I − (B>ΛHcl)(H
>
clΛHcl − eµΛ + τK>K)−1(H>clΛB) < 0

(13)
Pick µ such that:

µ > ln

(∥∥∥∥H>clΛHclΛ−1 + τK>KΛ−1 +
∥∥∥H>clΛB∥∥∥2

Λ−1

∥∥∥∥)
(14)

Thus, both conditions of (13) hold and Ω < 0. Finally, choose
ρ < − 1

2
µ and thus, (7) holds and the proof is concluded. 2

Following the work of [5, page 97], we now prove that the
non-accretive operator A+ρI enjoys the following property:

2 This follows from the fact φ is continuous and piecewise
linear with a slope bounded by 1.

Proposition 2 There exists ρ ∈ R such that for all λ > 0,
the following range property holds

Ran(I + λ(A+ ρI)) = L2(0, 1;Rn) (15)

where Ran stands for the range. �

Proof. We know that

Ran(I + λ(A+ ρI)) ⊂ L2(0, 1;Rn)

Let us prove that

Ran(I + λ(A+ ρI)) ⊃ L2(0, 1;Rn) (16)

Pick any f ∈ L2(0, 1;Rn), we show that there exists X ∈
D(A) such that

(I + λ(A+ ρI))X = f

The above statement is equivalent to checking the existence
of solution to the following boundary value problem:

IρX(z)−λΛXz(z) = f(z) ∀z ∈ (0, 1)

X(0) = HclX(1) +Bφ(KX(1))
(17)

where Iρ := (1 + λρ)I. The solution for the first line of (17)
is given by:

X(z) = e
1
λ

Λ−1IρzX(0) +

∫ z

0

e
1
λ

Λ−1(z−s) 1

λ
Λ−1f(s)ds

∀z ∈ (0, 1)

(18)

In particular, one has:

X(1) =e
1
λ

Λ−1IρX(0) +

∫ 1

0

e
1
λ

Λ−1(1−s) 1

λ
Λ−1f(s)ds

=: gλ(X(0))

Then, the boundary condition is rewritten as:

X(0) = Hclgλ(X(0)) +Bφ(Kgλ(X(0)) (19)

Therefore, (17) has a solution if and only if there exists X(0)
satisfying (19). Let us introduce the following map:

T : Rn −→ Rn

c 7→ Hclgλ(c) +Bφ(Kgλ(c))
(20)

Now, we show that this is the case by using Banach fixed
point theorem [7, page 138] to T . In order to show that T
is a contraction, let us first write that

gλ(c1)− gλ(c2) = e
1
λ

Λ−1Iρ(c1 − c2) ∀c1, c2 ∈ Rn (21)

Since φ is a 1-Lipschitz continuous function, it follows that
for all c1, c2 ∈ Rn:

|φ(Kgλ(c1))− φ(Kgλ(c2))| ≤ |K(gλ(c1)− gλ(c2))|
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which, using (21), gives:

|φ(Kgλ(c1))− φ(Kgλ(c2))| ≤ |K(e
1
λ

Λ−1Iρ(c1 − c2))| (22)

Using (20), (21), and (22), we get:

|T (c1)− T (c2)|
= |Hclgλ(c1) +Bφ(Kgλ(c1))−Hclgλ(c2)−Bφ(Kgλ(c2))|
≤ |Hcl(gλ(c1)− gλ(c2))|+ |Bφ((Kgλ(c1))− φ(Kgλ(c2)))|

≤ |Hcl(e
1
λ

Λ−1Iρ(c1 − c2))|+ |BK(e
1
λ

Λ−1Iρ(c1 − c2))|

≤
(∥∥∥Hcle 1

λ
Λ−1Iρ

∥∥∥+
∥∥∥BKe 1

λ
Λ−1Iρ

∥∥∥) |c1 − c2|

Let α =
∥∥∥Hcle 1

λ
Λ−1Iρ

∥∥∥+
∥∥∥BKe 1

λ
Λ−1Iρ

∥∥∥. We have:

α ≤(‖Hcl‖+ ‖BK‖)
∥∥∥e 1

λ
Λ−1Iρ

∥∥∥
≤e

λρ
λmax(Λ)λ (‖Hcl‖+ ‖BK‖)

(23)

where λmax(Λ) is the largest eigen value of the matrix Λ. Pick

ρ ∈ R small enough, such that e
ρ

λmax(Λ) (‖Hcl‖+‖BK‖) < 1.
Then, we have that 0 < α < 1. The proof is concluded 2

The main result of this section is presented in the following
theorem where we show that the system is well-posed.

Theorem 1 For every initial state X0 ∈ L2(0, 1;Rn), d ∈
L1(domd;L2(0, 1;Rq)), the closed-loop system (3) admits a
unique mild solution pair (X, d) ∈ C(domX;L2(0, 1;Rn)) ×
L1(domd;L2(0, 1;Rq)) such that X(0, z) = X0. �

Proof. The choice of X0 ∈ L2
µ(0, 1;Rn) is equivalent to

X0 ∈ L2(0, 1;Rn) where L2
µ is defined by the norm induced

by the scalar product in (8). By means of Propositions 1
and 2, the operator A+ ρI is m-non-accretive and thus, the
Cauchy problem (3) has a unique mild solution pair, (see [3,
Theorem A.26, page 286] and [5, page 97]). 2

Definition 3 In [5, page 127], a strong solution pair to (5)
is defined as a pair (X, d) ∈ (W 1,1(domX;L2(0, 1;Rn)) ∩
C(domX;L2(0, 1;Rn)))× L1(domd;L2(0, 1;Rq)) such that

dX

dt
(t) +AX(t) = Nd(t) t ∈ domX,

X(z, 0) = X0

where X0 ∈ L2(0, 1;Rn). �

In the remaining part of this section, we restrict the focus
on the perturbation d ∈ L2(domd;L2(0, 1;Rn)) which is in-
strumental for the derivation of stability results of Section 4.
The following proposition is crucial for the stability analy-
sis Section 4.1, in which the mild solution pair (X, d) can be
approximated point-wise via a sequence of strong solution
pairs (5).

Proposition 3 Let (X, d) be a mild solution pair to (5) and
t ∈ domX. There exists a sequence of strong solution pair
{(Xk, dk)}k∈N such that:

Xk(t)
L2(0,1;Rn)−−−−−−−→
k−→∞ X(t) (24)

dk
L2(0,t;L2(0,1;Rq))−−−−−−−−−−−−→

k−→∞ d (25)

with domXk =]0, t] and for all k ∈ N. �

Proof. Let (X, d) ∈ L2(0, t,L2(0, 1;Rn))×L2(0, t,L2(0, 1;Rq))
be a mild solution pair to (5). Pick {dk}k∈N ⊂ C∞c (0, t,L2(0, 1;Rq))
such that, one has:

dk
L2(0,t;L2(0,1;Rq))−−−−−−−−−−−−→

k−→∞ d (26)

Since D(A) is dense in L2(0, 1;Rn), then there exists a
sequence {Xk

0 }k∈N ⊂ D(A) such that

Xk
0
L2(0,1;Rn)−−−−−−−→
k−→∞ X0 (27)

We know that a strong solution pair to (3) is also a mild

solution pair. Moreover, A is ρ-non-accretive, X0 ∈ D(A),
and since (X, d), {(Xk, dk)}k∈N are mild solutions to (3).
Therefore, from [5, Theorem 4.1, page 130], it holds:∥∥∥X(t)−Xk(t)

∥∥∥
L2

= eρt
∥∥∥X0 −Xk

0

∥∥∥
L2

+

∫ t

0

eρ(t−τ)[X(τ)−Xk(τ), d(τ)− dk(τ)]sdτ

where for functions x, y in real Banach spaces, [·, ·]s is the di-
rectional derivative of the function x −→ ‖x‖ in the direction
y, defined by

[x, y]s := lim
λ−→0

‖x+ λy‖ − ‖x‖
λ

Using [5, Proposition 3.7, (iv)], one has

−
∥∥∥d(τ)− dk(τ)

∥∥∥
L2
≤ [X(τ)−Xk(τ), d(τ)− dk(τ)]s

≤
∥∥∥d(τ)− dk(τ)

∥∥∥
L2

(28)

Then using the previous statement, one has:∥∥∥X(t)−Xk(t)
∥∥∥
L2
≤eρt

∥∥∥X0 −Xk
0

∥∥∥
L2

+

∫ t

0

eρ(t−τ)
∥∥∥d(τ)− dk(τ)

∥∥∥
L2
dτ

(29)

Since the term
∥∥d(τ)− dk(τ)

∥∥
L2 is convergent as we can see

in (26-(27), we have:

lim
k−→∞

∫ t

0

eρ(t−τ)
∥∥∥d(τ)− dk(τ)

∥∥∥
L2
dτ

≤
∫ t

0

eρ(t−τ) lim
k−→∞

∥∥∥d(τ)− dk(τ)
∥∥∥
L2
dτ

(30)
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So taking the limit as k −→∞ in (29), one has:

lim
k−→∞

∥∥∥X(t)−Xk(t)
∥∥∥
L2
≤ eρt lim

k−→∞

∥∥∥X0 −Xk
0

∥∥∥
L2

+

∫ t

0

eρ(t−τ) lim
k−→∞

∥∥∥d(τ)− dk(τ)
∥∥∥
L2
dτ

(31)

Thus, from (26), (27), (30) and (31), we can infer that

lim
k−→∞X

k(t)
L2(0,1;Rn)

= X(t) (32)

and the proof is concluded. 2

4 Stability Analysis and Control Design

This section contains results on the L2-stability analysis to
achieve closed-loop exponential stability. This is done first
by proposing sufficient conditions and then constructing a
Lyapunov functional to derive those sufficient conditions in
the form of functional inequalities.

4.1 Sufficient Conditions

The following section presents the sufficient conditions for
the solution to Problem 1 using a dissipation inequality. This
is done by proving the following proposition:

Proposition 4 Assume that there exists a Fréchet differen-
tiable functional V : L2(0, 1;Rn) −→ R≥0 and c1, c2, c3, χ ∈
R>0 such that for each d ∈ L2(0, 1;Rq) and ζ ∈ D(A).

c1 ‖ζ‖2L2 ≤ V (ζ) ≤ c2 ‖ζ‖2L2 (33)

DV (ζ)(Aζ +Nd) ≤ −c3V (ζ) + χ2 ‖d‖2L2 (34)

Let (X, d) be a mild solution pair to (5). Then, for all t ∈
domX, one has:

‖X(t)‖ L2(0,1;Rn) ≤e
− c3

2
t

(
c2
c1

) 1
2

‖X0‖ L2(0,1;Rn)

+
χ√
c1

√∫ t

0

‖d(θ)‖2 L2(0,1;Rq)dθ

(35)

�

Proof. First we show that the above results hold for all
strong solution pairs to (5). More precisely, we consider so-
lution pair domX 3 t 7→ (X(t), d(t)) to (5) and assume that
X(0) ∈ D(A), d ∈ L1(domd;L2(0, 1;Rq)). Then, since, as
shown in the proof of Proposition 1, A is ρ-non-accretive,
one has that (X, d) is a strong solution pair (this is proved
in [5], Theorem 4.14). More precisely, one has that X ∈
C1(domX,L2(0, 1;Rn)), and for all t ∈ domX:

Ẋ(t) = AX(t) +Nd(t) (36)

where X(t) ∈ D(A). Now, consider the following function:

W : domX −→ R
t 7→ (V ◦X)(t)

(37)

Then, since V : L2(0, 1;Rn) −→ R≥0 is Fréchet differentiable
everywhere and X : domX −→ L2(0, 1;Rn) is differentiable
almost everywhere, it follows that for almost all t ∈ domX:

Ẇ(t) = DV (X)Ẋ(t)

which thanks to (36) yields for almost all t ≥ 0

W(t) = DV (X)(AX(t) +Nd(t))

Thus, using (34) one gets for almost all t ∈ domX

Ẇ(t) ≤ −c3W(t) + χ2 ‖d(t)‖2L2

which, knowing that W is locally absolutely continuous, for
all t ≥ 0 one has:

W(t) ≤ W(0)− c3
∫ t

0

W(s)ds+ χ2

∫ t

0

e−c3(t−θ) ‖d(θ)‖2L2 dθ

Therefore, since W is continuous on domX, from Grönwall’s
inequality we have:

W(t) ≤ e−c3tW(0) + χ2

∫ t

0

e−c3(t−θ) ‖d(θ)‖2L2 dθ

At this stage, notice that for all t ∈ domX, one has:∫ t

0

e−c3(t−θ) ‖d(θ)‖2L2 dθ ≤
∫ t

0

‖d(θ)‖2L2 dθ

which allows one to conclude that for all t ∈ domX

W(t) ≤ e−c3tW(0) + χ2

∫ t

0

‖d(θ)‖2L2 dθ

Finally by using (33), it follows that for almost all t ∈ domX

‖X(t)‖L2 ≤ e−
c3
2
t

√
c2
c1
‖X0‖L2 +

χ√
c1

√∫ t

0

‖d(θ)‖2L2 dθ

(38)
Now we conclude the proof by showing that the above bound
holds also for mild solution pairs to (5). Let (X, d) be any
solution pair. By applying Proposition 3, there exists a se-
quence of strong solution pairs {(Xk, dk)}k∈N such that (24)
and (25) hold. Then, for all k ∈ N, thanks to (38), one has
for all t ∈ domX

∥∥∥Xk(t)
∥∥∥
L2
≤ e−

c3
2
t

√
c2
c1

∥∥∥Xk
0

∥∥∥
L2

+
χ√
c1

√∫ t

0

‖dk(θ)‖2L2dθ

Taking the limit for k −→∞, due to (24)-(25), one has for all
t ∈ domX

‖X(t)‖L2 ≤ e−
c3
2
t

√
c2
c1
‖X0‖L2 +

χ√
c1

√∫ t

0

‖d(θ)‖2L2 dθ

This concludes the proof. 2
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Remark 2 Proposition 4 provides sufficient conditions for
input-to-state stability for the closed-loop system in the form
of a functional inequality. This provides an elegant general-
ization to abstract dynamical systems of the well-known ISS
dissipation inequality for finite-dimensional nonlinear sys-
tems; see, e.g [30]. It is interesting to observe that the gradi-
ent of V is replaced in (34) by the Fréchet derivative. ◦

4.2 Quadratic Conditions

Let us define the following global sector condition which will
be useful in the upcoming Lyapunov analysis computations.

Lemma 1 [31, page 41] For all ν ∈ Rm, the nonlinearity
φ(ν) satisfies the following inequality:

φ(ν)>T (φ(ν) + ν) ≤ 0 (39)

for any diagonal matrix T ∈ Dmp . �

The following theorem provides sufficient conditions in the
form of matrix inequalities under which Problem 1 admits a
feasible solution.

Theorem 2 If there exist P ∈ Dnp , T ∈ Dmp , µ, χ, α ∈ R>0,
and Γ ∈ Snp such that the following hold:H>clPΛHcl − e−µPΛ H>clPΛB −K>T

∗ B>PΛB − 2T

 ≤ 0 (40)

Γ PN

∗ χ2I

 ≥ 0 (41)

P (αI − µΛ) + Γ ≤ 0 (42)

Then, K solves Problem 1 and in particular (6) holds with

ω = α
2
, κ =

√
λmax(P )
λmin(P )

e
µ
2

γ = χ
λmin(P )

e
µ
2

(43)

�

Proof. Similarly as in [6], consider the following Lyapunov
functional

V :L2(0, 1;Rn) −→ R

X 7→
∫ 1

0

e−µz〈X(z), PX(z)〉Rndz
(44)

with the same µ defined in (8) and observe that for each
X ∈ L2(0, 1;Rn), one has

c1 ‖X‖2L2 ≤ V (X) ≤ c2 ‖X‖2L2 (45)

where c1 := e−µλmin(P ) and c2 := λmax(P ) are strictly
positive. As done in [12], for eachX ∈ D(A), d ∈ L2(0, 1;Rq)
one has

DV (X)(AX +Nd) =

∫ 1

0

e−µz(− 2Xz(z)
>ΛPX(z)

+ 2d(z)>N>PX(z))dz

Since P,Λ ∈ Dnp , one has that∫ 1

0

−2e−µzXz(z)
>ΛPX(z)dz

= −
∫ 1

0

e−µz
d

dz

(
X(z)>PΛX(z)

)
dz

Using integration by parts, the following holds

DV (X)(AX +Nd) = −e−µzX(z)>PΛX(z)
∣∣∣1
0

− µ
∫ 1

0

e−µzX(z)>PΛX(z)dz +

∫ 1

0

2e−µzd(z)>N>PX(z)dz

Since X ∈ D(A), one gets

DV (X)(AX +Nd) =

X>
H>clPΛHcl − e−µPΛ H>clPΛB

∗ B>PΛB

X
+

∫ 1

0

e−µz

X(z)

d(z)

>−µPΛ PN

∗ 0

X(z)

d(z)

 dz

where X :=

 X(1)

φ(KX(1))

. Similarly as in [28], after we

introduce the global sector condition found in (39) one has

DV (X)(AX +Nd) ≤

X>
H>clPΛHcl − e−µPΛ H>clPΛB −K>T

∗ B>PΛB − 2T

X
+

∫ 1

0

e−µz

X(z)

d(z)

>−µPΛ PN

∗ 0

X(z)

d(z)

 dz

where T ∈ Dmp . From (41) one has

DV (X)(AX +Nd) ≤

X>
H>clPΛHcl − e−µPΛ H>clPΛB −K>T

∗ B>PΛB − 2T

X
+

∫ 1

0

e−µz

X(z)

d(z)

>−µPΛ + Γ 0

∗ χ2I

X(z)

d(z)

 dz

Finally, using (40) and (42) we have

DV (X)(AX +Nd) ≤ −αV (X) + χ2 ‖d‖2L2 (46)

which reads as (34). Hence, the proof is concluded. 2

4.3 Control Design

Theorem 2 enables to recast the solution to Problem 1 as the
feasibility problem of some matrix inequalities, i.e. (40)-(41)-
(42). However, those conditions are nonlinear in the variables
P,K, χ, µ and α. As such, Theorem 2 cannot be used directly
to get a numerically tractable solution to Problem 1. The
result given next, provides sufficient conditions in a form
that is more advantageous from a numerical standpoint.
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Corollary 1 If there exist Q ∈ Dnp , S ∈ Dmp , Γ̂ ∈ Snp , µ, α ∈
R>0 and W ∈ Rm×n such that

−QΛ−1 HQ+BW BS

∗ −e−µΛQ −W>

∗ ∗ −2S

 ≤ 0 (47)

Γ̂ N

∗ I

 ≥ 0 (48)

Q(αI − µΛ) + Γ̂ ≤ 0 (49)

Then, K = WQ−1 solves Problem 1. In particular, (6) holds
with ω and κ defined as in (43) and

γ =
√
λmax(Q)e

µ
2 (50)

�

Proof. Applying the Schur complement lemma to (40) gives
−Λ−1P PH + PBK PB

∗ −e−µPΛ −K>T
∗ ∗ −2T

 ≤ 0

which is equivalent to

C>


−Λ−1P PH + PBK PB

∗ −e−µPΛ −K>T
∗ ∗ −2T

C

where C =


P−1 0 0

∗ P−1 0

∗ ∗ T−1

 which gives


−P−1Λ−1 HP−1 +BKP−1 BT−1

∗ −e−µΛP−1 −P−1K>

∗ ∗ −2T−1

 ≤ 0

Then, by setting P−1 = Q, T−1 = S and W = KP−1, we
have that the previous inequality is equivalent to (47). In [12,
Corollary 1], it is shown that (41) and (42) are respectively
equivalent to the linear inequalities (48) and (49) with P−1 =

Q, Γ̂ = QΓQ, and χ = 1. 2

Remark 3 It can be easily shown that the conditions in
Corollary 1 are actually equivalent to those in Theorem 2 in
terms of feasibility. As such, Corollary 1 does not introduce
any additional conservatism. ◦

In the formulation of Problem 1, no specific requirements on
the scalar γ are considered. On the other hand, it is obvious
that to minimize the effect of the exogenous input d on the
closed-loop system, the controller gain K should be designed

so that (6) holds with a minimal γ. This goal can be achieved
by considering the following optimization problem

inf
Q,W,µ,α,c

c

s.t: (47), (48), (49), Q ∈ Dnpp , µ > 0, α > 0, Q− cI ≤ 0.

(51)
It can be seen through equation (50) that the variable γ is di-
rectly proportional to the square root of the maximum eigen
value of matrix Q. Therefore, minimizing c is equivalent to
minimizing λmax(Q). One can note that (47), (48) and (49)
are nonlinear in the decision variables µ and α. In fact, we
select the scalars µ and α via a grid search. In other words,we
set µ and α as arrays of appropriate values and resolution,
and then running the code to generate a 3-dimensional di-
agram representing the feasible regions of the solution with
respect to the pair (µ, α).

5 Numerical Example

To solve initial-boundary value problem for (3), numerical
integration of hyperbolic PDEs is performed via the use of
the Lax-Friedrichs (Shampine’s two-step variant) scheme im-
plemented in Matlab by Shampine [27]. YALMIP package
in Matlab is used to solve the LMIs [21]. Consider the ex-
ample presented in [28] modified to account for the presence
of in-domain disturbances. Specifically, we consider the fol-
lowing system for all (t, z) ∈ R≥0 × (0, 1):

Xt(t, z) +

1 0

0
√

2

Xz(t, z) =

1

1

 d(t, z)

X(t, 0) =

0.25 0

−1 0.25

X(t, 1) +

1 0

0 1

u(t) ∀t ∈ R≥0

We consider the solution to Problem 1 obtained by solving
(51), via a line search on the scalars α and µ. Fig 1 represents
the set of feasible values of (51) of the pair (µ, α). As in [12],
we have that the feasible values of µ decreases as α increases.
Then, as seen in the figure, we choose µ = 1, α = 0.5 in
order to guarantee a feasible solution to our problem. For
this example, the solution to (51) yields:

Q =

12.45 0

0 81.94

 Γ =

4.07 0.19

0.19 36.24


K =

−0.24 0

0.33 −0.0845


Consider the following disturbance defined over t ∈ [0, 25]:

(t, z) 7→ d(t, z) := 5

sin(zt)

cos(zt)

 (52)

the initial condition:

(0, 1) 3 z 7→ X0(z) = 10

cos(4πz)− 1

cos(2πz)− 1
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Fig. 1. Feasible (diamond) pairs (µ, α)

Fig. 2. Time-evolution of the spatial norm L2 of X(t, ·) in
closed-loop (solid-line) and open-loop (dashed-line)

and the saturation level umax =

0.3

0.3

. In Fig 2, we report

the evolution of the L2-norm of the closed-loop system state
compared to that of the open-loop (K = 0) in response to the
disturbance (52). As expected, the gain K designed via the
proposed sufficient conditions provides better disturbance
reduction and convergence rate than that in the open-loop
case.

Remark 4 In Fig 3, one can see the saturation levels of
under which our controller perform. Thus, those results are
in fact reflecting the behavior of this stabilizing design for the
controller acting on the hyperbolic system (1). ◦

6 Conclusion

Well-posedness and the global exponential stability of a class
of 1D hyperbolic equations have been studied. The PDE un-
der consideration was the result of a perturbed hyperbolic

Fig. 3. Time-evolution of σ(K1X1(t, 1)) (solid-line) and
σ(K2X2(t, 1)) (dashed-line) with respect to time

system in the presence of an in-domain exogenous distur-
bance connected in a feedback loop with a saturated nonlin-
ear control law. The controller acted on the boundary con-
dition. The well-posedness was investigated under the tech-
niques of nonlinear semi-group theory proving the existence
and uniqueness of a mild solution pair. Then, the approxi-
mation of this solution to a strong solution pair was estab-
lished. Furthermore, sufficient conditions for the exponen-
tial stability have been derived in the form of linear matrix
inequalities using Lyapunov theory for infinite dimensional
systems. Semi-definite programming tools were used to de-
sign the controller to minimize the effect of the disturbance
and boundary nonlinearity on the L2 norm of the state. Nu-
merical simulations were used to illustrate the effectiveness
of the proposed control design strategy in an example.
This article opens the horizon for some interesting questions.
In particular, one can extend the research towards other
classes of Lyapunov functions, as those considered in [1] and
to compare the consequent constraints with those present in
Theorem 2. Considering the extension of this application to
the design of an observer is also a possible research track.

A Auxiliary Results

Definition 4 Let X and Y be linear normed spaces, U be
an open subset of X, f : U −→ Y , and x ∈ U . We say that f
is Fréchet differentiable at x if there exists L ∈ L(X,Y ) such
that

lim
h−→0

‖f(x+ h)− f(x)− Lh‖Y
‖h‖X

= 0 (A.1)

In particular, L is the Fréchet derivative of f at x and
is denoted by Df(x). When X = R, we denote ḟ(x) =

limh−→0
f(x+h)−f(x)

h
�

Lemma 2 Let Φ ∈ C0(0, 1;R), P ∈ Dnp and L2(0, 1;Rn)
be endowed with its standard inner product. Consider the
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following functional

V :L2(0, 1;Rn) −→ R

X 7→ V (X) :=

∫ 1

0

Φ(z)〈PX(z), X(z)〉dz

Then, V is Fréchet differentiable on L2(0, 1;Rn) and in par-
ticular, for each X,h ∈ L2(0, 1;Rn)

DV (X)h = 2〈ΦPX, h〉L2

�

Proof. For any X,h ∈ L2(0, 1;Rn), one has

V (X + h)− V (X) =

∫ 1

0

Φ(z)(〈h(z), Ph(z)〉Rn

+ 2〈X(z), Ph(z)〉Rn)dz

≤ λmax(P ) ‖Φ‖∞ ‖h‖
2

+ 2〈ΦPX, h〉L2

Thus, it follows that

lim
‖h‖L2−→0

|V (X + h)− V (X)− 2〈X,ΦPh〉L2 |
‖h‖L2

= 0

This concludes the proof. 2
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