Brief paper

Semi-global stabilization by an output feedback law from a hybrid state controller

Swann Marx, Vincent Andrieu, Christophe Prieur

1. Introduction

In recent years, many techniques for designing a stabilizing control law for nonlinear dynamical systems have been developed. It is now possible to achieve stabilization of equilibria for a large class of models. However, due to Brockett’s necessary condition for stabilizability, it is well known that some systems cannot be stabilized by a continuous controller. Some of these systems can however be stabilized with a hybrid state feedback law, i.e. a discrete/continuous controller (see e.g. Priure and Trélat, 2006), where the Brockett integrator is stabilized with a quasi optimal hybrid control). Moreover, the use of hybrid control laws may be interesting to address performance issues (see e.g. Prieur, 2001). This explains the great interest of the control community in the synthesis of hybrid control laws (see Fichera, Prieur, Tabouriech, & Zacarian, 2013; Goebel, Sanfelice, & Teel, 2012; Hespanha, Liberzon, & Teel, 2008; Hetel, Daafouz, Tabouriech, & Prieur, 2013; Yuan & Wu, 2014).

The output feedback stabilization problem has also attracted the attention of numerous researchers. Indeed, employing a state feedback law in most of the cases is impossible, since the sensors can only access partial measurements of the state. Output feedback laws may be designed from a separation principle. More precisely, two tools are designed separately: a stabilizing state feedback law and an asymptotic state observer. However, if this approach is fruitful for linear systems, the separation principle does not hold in general for nonlinear systems. For instance, there exist stabilizable and observable systems for which the global asymptotic stabilization by output feedback is impossible (Mazenc, Praly, & Dayawansa, 1994). Nevertheless, from weak stabilizability and observability assumptions, some semi-global results may be obtained (see e.g. Teel & Praly, 1994 or Isidori, 1995, Pages 125–172). However, in this case the observer and the state feedback have to be jointly designed (not separately) (see also Andrieu and Praly, 2009) for some global results.

The aim of this paper is to address the stabilization by hybrid output feedback law. In Teel (2010), a local separation principle is stated. However, the construction of the observer is not explicit. Here, from a hybrid state feedback controller and an observability property, an algorithm is provided to build hybrid output feedback laws which stabilize semi-globally the equilibrium plant. If moreover a robust Lyapunov function is known, the feedback law design becomes explicit.

This article is organized as follows. Section 2 introduces the problem together with a hybrid stabilizability and an observability
assumption. The main result is given in Section 3.1. An equivalent stabilizability assumption in terms of Lyapunov function is considered in Section 3.2. This allows to give a more explicit theorem. Section 4 explains how to prove the first theorem from the second theorem. In Section 5 technical lemmas are stated in order to construct the suggested output feedback law. An illustrative example is given in Section 6. Finally, Section 7 collects some concluding remarks.

Note that this paper is an extension of the conference paper Marx, Andrieu, and Prieur (2014). It includes a missing part (the observer design), proofs and a new illustration.

Notation: Given λ ∈ N, R_{≥ 0} = [λ, +∞). Given n ∈ N, I_n ∈ R^{n×n} denotes the identity matrix, i.e. I_n = diag(1, . . . , 1). • states for symmetric terms. Given n ∈ N, L^∞_c(R^n) denotes the set of measurable locally bounded functions u : R → R^n. A function α : R_{≥ 0} → R_{≥ 0} belongs to class-K (for short α ∈ K) if it is continuous, zero at zero, and strictly increasing. A function β : R_{≥ 0} × R_{≥ 0} → R_{≥ 0} belongs to class-KL (for short β ∈ KL) if it satisfies (i) for each t ≥ 0, β(. , t) is nondecreasing and lim_{s→∞} β(s, t) = 0, and (ii) for each s ≥ 0, β(s , .) is nonincreasing and lim_{s→∞} β(s, t) = 0.

2. Problem statement

2.1. Hybrid state feedback law for a continuous time plant

The system under consideration is described by the following single-input single-output continuous dynamics:

\[\dot{x}_p = f_p(x_p) + g_p(x_p)u, \quad y = h_p(x_p), \quad (1) \]

where x_p ∈ R^n, y ∈ R, u ∈ U ⊂ R. Note that f_p : R^n → R^n and g_p : R^n → R^n, h_p : R^n → R are n_p + 1 times continuously differentiable. U can be bounded (it yields a saturated control problem). Inspired by Prieur and Trélat (2006) and Sontag (1999), the origin, which is an equilibrium point for (1), is assumed to be stabilizable by a hybrid state feedback.

Assumption 1 (Persistent Flow Stabilizability). There exists a hybrid controller defined by (F_c, g_c, f_c, g_c, θ_c), where F_c and g_c are closed sets, F_c × g_c = R^{n_p+n_c}, f_c : R^{n_p+n_c} → R^{n_c}, g_c : R^{n_p+n_c} → R^{n_p+n_c} and θ_c : R^{n_p+n_c} → U are continuous functions and a positive value λ in (0, 1) such that the set [0] × [0, 1] in R^{n_p+n_c} × R is asymptotically stable for the system:

\[\begin{align*}
\dot{x}_p^c &= f_c(x_p^c, x_c^c)h_c(x_p^c, x_c^c) \\
\dot{x}_c^c &= f_c(x_p^c, x_c^c) \\
\sigma^c &= 1 - \sigma \end{align*} \quad (2a) \]

\[\begin{align*}
x_p^c &= g_c(x_p^c, x_c^c) \\
x_c^c &= g_c(x_p^c, x_c^c) \\
\sigma^c &= 0 \end{align*} \quad (2b) \]

with basin of attraction \(B \times R_{≥ 0} \), where \(B \) is an open subset of R^{n_p+n_c}.

The sets F_c × R_{≥ 0} and g_c × R_{≥ λ} are called respectively the flow and jump sets associated to the continuous and discrete dynamics. The notion of solutions and of asymptotic stability discussed all along the paper are borrowed from Goebel et al. (2012).

Remark 1. An important feature of the hybrid state feedback control law is that its dynamics include a timer \(σ \). It implies that there exists a dwell time between two consecutive jumps and consequently it prevents the existence of Zeno solutions. In the case in which this property is not satisfied for the state feedback, a timer can be added as presented in Cai, Teel, and Goebel (2008, Part V, C.). Such a technique is called a temporal regularization. However, in this case, only semi-global practical stability is obtained.

The problem under consideration in this paper is to design a stabilizing output feedback law based on this hybrid state feedback. The design presented in this paper requires an observability property for system (1) as described in the following section.

2.2. Observability notions

Following Gauthier, Hammouri, and Othman (1992), define the C^1 mapping \(φ : R^n → R^n \) as follows

\[\phi(x_p) = \left[h_p(x_p) \quad L_{i_p}h_p(x_p) \quad \ldots \quad L_{i_p}^{n_p-1}h_p(x_p) \right]^T, \quad (3) \]

where \(L_{i_p}h_p(x) \) denotes the \(i \)-th Lie derivative of \(h_p \) along \(f_p \). The observability assumption employed all along the paper can be now stated.

Assumption 2 ((Global) Complete Uniform Observability (Gauthier et al., 1992)). System (1) is completely uniformly observable, that is

(i) the mapping \(φ : R^n → φ(R^n) = R^n \) is a diffeomorphism;

(ii) System (1) is observable for any input \(u(t) \), i.e. on any finite time interval [0, T], for any measurable bounded input \(u(t) \) defined on [0, T], the initial state is uniquely determined on the basis of the output \(y(t) \) and the input \(u(t) \).

Remark 2. In Marx et al. (2014), from a weaker observability assumption, i.e. an observability property holding for just one control, a finite-time convergent observer and a hybrid state feedback controller have been used to design an output feedback law. Such a strategy does not need a persistent flow stabilizability assumption. However only a weak stability property is obtained for the closed-loop system.

3. Semi-global output feedback result

3.1. First main result

Inspired by the approach of Teel and Praly (1994), from Assumptions 1 and 2, a semi-global output feedback result may be obtained.

Theorem 1 (Semi-global Asymptotic Stability). Assume Assumptions 1 and 2 hold. Assume moreover that \(g_c \) satisfies that, for all \((x_p, x_c) \) in \(B \cap g_c \), the set

\[\{(x_p, g_c(w, x_c)) \mid w ∈ R^{n_p}\} \quad (4) \]

is a compact subset of \(B \), then the origin of system (1) is semi-globally asymptotically stabilizable by a hybrid output feedback. In other words, for all compact sets \(Γ \) contained in \(B^p := \{x_p ∈ R^n, (x_p, 0) ∈ B\} \), there exist a C^1 function \(Ψ_p : R^{n_p} × R × R → R \) and a positive real number \(c_0 \) such that the set \(\{0\} × [0, 1] \) in \(R^{2n_p+n_c} × [0, 1] \) is asymptotically stable for the system

\[\begin{align*}
\dot{x}_p &= f_p(x_p) + g_p(x_p)u \\
\dot{x}_p &= Ψ_p(x_p, y, u) \\
x_c &= f_c(x_p, x_c) \\
\dot{σ} &= 1 - σ \\
y &= h_p(x_p), \quad u = θ_c(\tilde{x}_p, x_c) \end{align*} \quad (5a) \]

1 These mappings are sufficiently smooth so that the mapping \(φ \) defined in (3) is C^1 and so that the function \(θ \) defined in (12) is locally Lipschitz.
\((\tilde{x}_p, x_c, \sigma) \in \mathcal{F}_c \times \mathbb{R}_{\geq 0} \)

\[
\begin{align*}
\dot{x}_p^1 &= x_p \\
\dot{x}_p^2 &= \tilde{x}_p \\
\dot{x}_c &= g_c(\tilde{x}_p, x_c) \\
\sigma^+ &= 0
\end{align*}
\] \tag{5b}

where \(\tilde{x}_p \) is defined by

\[
\tilde{x}_p = \text{sat}_{c_i}(x_p),
\]

with basin of attraction containing \(\Gamma \times \{0\} \times \{0\} \times \mathbb{R}_{\geq 0} \) (which is a subset of \(\mathbb{R}^p \times \mathbb{R}^p \times \mathbb{R}^n \times \mathbb{R}_{\geq 0} \)).

The design of the output feedback law which proves this theorem is based on a Lyapunov inverse theorem. However, two data miss in the output feedback law given in Theorem 1: the positive real number \(c_i \), the saturation level for the feedback law, and the observer dynamics \(\psi_p \). In order to give an explicit result, the existence of a robust Lyapunov function is assumed, in the next section.

An important feature of this theorem is that an assumption needs to be imposed on the function \(g_c \) (see Eq. (4)). This is due to a design of a set in which the solution should stay for a suitable duration. In the particular case in which \(\mathcal{B} \) is \(\mathbb{R}^{p+q+n} \), the previous condition is trivially satisfied if \(g_c \) is such that

\[|g_c(u, x_c)| \leq \gamma(|x_c|), \quad \forall (u, x_c) \in \mathbb{R}^{p+q+n} \cap \mathcal{B} \]

where \(\gamma \in \mathcal{K} \). Moreover, note that there is a large class of systems that satisfy such a condition. For instance, switch systems or reset systems, as the one considered in Section 6.

3.2. Second main result

In this section an explicit result is introduced. It is based on the following assumption, where it is denoted \(X = \{ x_p^T, x_c^T, \sigma^T \} \).

Assumption 3 (Robust Lyapunov Function) Let \(\mathcal{B} \) be an open subset of \(\mathbb{R}^p \times \mathbb{R}^n \) and let us denote \(A := \{0\} \times [0, 1] \subset \mathbb{B} \times \mathbb{R}_{\geq 0} \). There exists a hybrid controller defined by \((F_c, g_c, f_c, g_c, \theta_c) \), where \(F_c \) and \(g_c \) are closed sets, \(F_c \cup \mathcal{B} = \mathbb{R}^{p+q+n} \), \(g_c : \mathbb{R}^{p+q+n} \to \mathbb{R}^{n+q} \), \(f_c : \mathbb{R}^{p+q+n} \to \mathbb{R}^p \), \(g_c \) and \(\theta_c : \mathbb{R}^{p+q+n} \to \mathbb{R} \) are continuous functions, a positive value \(\lambda \in (0, 1) \), positive values \(\alpha_1 \) and \(\alpha_2 \in (0, 1) \) and a \(C^0 \) proper function \(V : \mathbb{B} \times \mathbb{R} \to \mathbb{R}_{\geq 0} \) satisfying

\[
[X \in \mathbb{B} \times \mathbb{R} : V(X) = 0] \neq \emptyset
\]

for all positive real numbers \(l \), the level set of \(V \) defined as

\[
D_l := \{ (x_p, x_c, \sigma) \in \mathbb{B} \times \mathbb{R}_{\geq 0} : V(x_p, x_c, \sigma) \leq l \}
\]

is a compact subset of \(\mathbb{B} \times \mathbb{R} \).

Moreover, there exist a positive real number \(\varepsilon_r \) and an increasing \(C^0 \) function \(\rho : [0, \varepsilon_r] \rightarrow \mathbb{R}_+ \) with \(\rho(0) = 0 \) such that for all \((X, e) \in D_l \times \mathbb{R}^p \) such that \(|e| \leq \varepsilon_r \), the following inequalities hold.

- If \((x_p + e, x_c, \sigma) \in (\mathbb{B} \cap F_c) \times \mathbb{R}_{\geq 0} \)

\[
\frac{\partial V}{\partial X}(X)F(X, x_p + e) \leq -\alpha_1 V(x_p, x_c, \sigma) + \rho(|e|).
\]

- If \((x_p + e, x_c, \sigma) \in (\mathbb{B} \cap \mathcal{F}_c) \times \mathbb{R}_{\geq 0} \)

\[
V(G(X, x_p + e)) - V(X) \leq -\alpha_2 V(x_p, x_c, \sigma) + \rho(|e|).
\] \tag{8}

where \(F \) is defined by

\[
F(X, \cdot) := \left[v_p(x_p) + g_p(x_p) \theta_c(\cdot, x_c) \right]^T f_c(\cdot, x_c)^T \left(1 - \sigma \right)^T
\]

and \(G \) is defined by \(G(X, \cdot) := [x_p^T \quad g_c(x_p, \cdot) \quad 0]^T \).

This assumption allows to obtain an explicit result.

Theorem 2 (Design of an Output Feedback Law) Under Assumptions 2 and 3, assume that the set defined by \(\mathcal{B} \) is a compact subset of \(\mathbb{B} \). Then the set \(\{0\} \times [0, 1] \subset \mathbb{R}^{p+q+n} \times \mathbb{R} \) is semi-globally asymptotically stable. In other words, the conclusion of Theorem 1 holds. Moreover, \(c_i \) is computed in Section 5.1 and \(\psi_p \) is computed in Section 5.2 from the Lyapunov function \(V \) together with the robustness margin \(\varepsilon \) and the positive value \(\lambda \) of Assumption 3, and from the function \(\phi \) of Assumption 2.

Let us note that it is difficult to be more explicit since the derivations of \(c_i \) and \(\psi_p \) are quite long and require several steps. This is already the case in Teel and Praly (1994). Moreover, continuing what has been stated in Remark 1, it is crucial to have a Persistent-Flow Stabilizability in order to design explicitly our observer.

In a first step, \(c_i \) is computed in (11) in order to force the solutions to remain in a compact set for a certain amount of (flow) time. The function \(\psi_p \) is a high-gain observer which is tuned in Lemma 2. It forces the error to reach the robustness margin obtained from Assumption 3 before the solution escapes the compact set.

The explicit construction of these two data and the proof that this output feedback law is a solution to Theorem 2 are reported in Section 5.

4. Proof of Theorem 1 from Theorem 2

In order to prove Theorem 1 from Theorem 2 it is sufficient to prove that Assumption 1 implies Assumption 3. This can be obtained from an inverse Lyapunov result. First, from Goebel et al. (2012, Corollary 7.32) there exist a positive value \(\alpha \in (0, 1) \) and a smooth proper function \(V : \mathbb{B} \times \mathbb{R} \to \mathbb{R}_{\geq 0} \) satisfying

\[
[X \in \mathbb{B} \times \mathbb{R} : V(X) = 0] \neq \emptyset
\]

\[
\frac{\partial V}{\partial X}(X)F(X, x_p) \leq -V(X),
\]

\[
V(G(X, x_p)) - V(X) \leq -\alpha V(X),
\]

\[
V(x_p, x_c, \sigma) \in (\mathbb{B} \cap \mathcal{F}_c) \times \mathbb{R}_{\geq 0}
\]

Let \(l \) be a positive real number such that the level set \(D_l \) is a compact subset of \(\mathbb{B} \times \mathbb{R} \). Consider the two functions \(r_1 \) and \(r_2 \) defined as

\[
r_1(s) := \max_{|e| \leq \varepsilon_r} \frac{\partial V(X)}{\partial X}(X)F(X, x_p) + \frac{1}{2} V(X)
\]

\[
r_2(s) := \max_{|e| \leq \varepsilon_r} V(G(X, x_p)) - \left(1 - \frac{1}{\alpha} \right) V(X).
\]

Since \(F, G \) is continuous and \(V \) is smooth, \(r_1 \) and \(r_2 \) are also continuous functions. Moreover, \(r_1(0) < 0 \) and \(r_2(0) < 0 \) Therefore there exist \(\varepsilon_1 \) and \(\varepsilon_2 \) such that \(r_1(s) < 0 \) for all \(s \leq \varepsilon_1 \) and \(r_2(s) < 0 \) for all \(s \leq \varepsilon_2 \). Then \(\varepsilon_1 = \min(\varepsilon_1^1, \varepsilon_1^2) \). For all \(|e| \leq \varepsilon \) and \((x_p, x_c, \sigma) \in D \) it yields the following.

- If \((x_p + e, x_c, \sigma) \in (\mathbb{B} \cap \mathcal{F}_c) \times \mathbb{R}_{\geq 0} \)

\[
\frac{\partial V}{\partial X}(X)F(X, x_p) \leq -\frac{1}{2} V(X), \forall X \in \mathbb{B} \cap \mathcal{F}_c \times \mathbb{R}_{\geq 0}
\]

- If \((x_p + e, x_c, \sigma) \in (\mathbb{B} \cap \mathcal{F}_c) \times \mathbb{R}_{\geq 0} \)

\[
V(G(X, x_p)) - V(X) \leq -\frac{1}{\alpha} V(X), \forall X \in \mathbb{B} \cap \mathcal{F}_c \times \mathbb{R}_{\geq 0}.
\]
Hence this Lyapunov function is the same as the one introduced in Assumption 3 with $\sigma_1 = \frac{1}{2}$ and $\sigma_2 = \frac{1}{2}$.

Consider now the increasing function $\rho : [0, \varepsilon_t] \rightarrow [0, +\infty)$ defined as follows.\footnote{This function is well defined due to the fact that F_e and g_e are closed sets.}

$$
\rho(s) \geq \max \left\{ \frac{\max_{(x_p + e, x_e, \sigma) \in (D_{t_2} \cap \mathbb{F}_e \times \mathbb{R}_{\geq 0})} v_1(X, e)}{\varepsilon_t}, v_2(X, e) \right\},
$$

where

$$
v_1(X, e) = \left| \frac{\partial V}{\partial X}(X) \left(F(X, x_p + e) - F(X, x_p) \right) \right|,
$$

and

$$
v_2(X, e) = \left| [V(G(X, x_p + e)) - V(G(X, x_p))] \right|. \tag{11}
$$

With this function, Assumption 3 is satisfied. This ends the proof of Assumption 3 from Assumption 1. Therefore, as soon as Theorem 2 is valid, Theorem 1 holds under Assumptions 1 and 2.

5. Construction of the output feedback law

In the next sections, we follow a similar approach to Teel and Praly (1994). We first compute a saturation level c_x, a time of existence T_{min} and a compact subset of $\mathbb{F} \times \mathbb{R}_{\geq 0}$ denoted by D_{t_1} such that, when saturating the controller with c_x, the solution starting from $\mathbb{F} \times \mathbb{R}_{\geq 0}$ remains in D_{t_1} for all time less than T_{min}. Then, with T_{min} and the margin of robustness c_x from Assumption 3, we design an observer such that the error dynamics converges to 0 asymptotically and such that, for all time higher than T_{min}, the error dynamics belong to the margin of robustness. Finally, we prove the attractiveness and the stability of the closed-loop system with the output feedback law.

5.1. Selection of c_x and minimal time of existence of solutions

This section differs from the strategy employed in Teel and Praly (1994). Indeed, since we have a hybrid dynamics, the solution of the closed-loop system can jump. Therefore, the computation of T_{min} becomes difficult. However, thanks to the timer dynamics, we can assert that between two jumps the solution of the closed-loop system belongs to the flow set. This allows us to compute T_{min} and thus c_x.

In the remaining part of this subsection, we consider the system defined by

$$
\begin{align}
\dot{x}_p &= f_p(x_p) + g_p(x_p)\theta(t)(\omega, x_e) \\
\dot{x}_e &= f_e(\omega, x_e) \\
\sigma &= 1 - \sigma \\
(\omega, x_e, \sigma) &\in \mathcal{F}_e \times \mathbb{R}_{\geq 0}, \tag{10a}
\end{align}
$$

and

$$
\begin{align}
\dot{x}_p^0 &= x_p \\
\dot{x}_e^0 &= \sigma_1(\omega, x_e) \\
\sigma_1 &= 0 \\
(\omega, x_e, \sigma) &\in \mathcal{F}_e \times \mathbb{R}_{\geq 0}, \tag{10b}
\end{align}
$$

where ω is an external perturbation function in \mathbb{R}^n. Such a system is not a classical hybrid system as the ones introduced in Goebel et al. (2012) since the flow and jump sets are defined with an external disturbance. Note that in the particular case in which $\omega = \tilde{\omega}$ defined in (6), the solution to system (10) by adding the dynamics of \tilde{x}_p is also solution to system (5). Hence, this implies the well-posedness of the closed-loop system as considered in Goebel et al. (2012, Chapter 2).

Two cases may be distinguished to construct the sets: (i) Solution to (10) does not jump; (ii) Solution to (10) jumps at least one time. The first case is similar to the continuous case (and thus to Teel and Praly (1994)). The second case takes into account the hybrid behavior of the system under consideration. Under Assumption 3, let $I_1 = \max_{\omega \in \mathcal{U}, \sigma \in [0, 1]} V(x_p, 0, \sigma)$. Note that D_{t_1} is a compact subset of $\mathbb{F} \times \mathbb{R}_{\geq 0}$ (see the notation employed in Eq. (7)). Let $I_2 > I_1$ such that $D_{t_2} \subset \mathbb{F} \times \mathbb{R}_{\geq 0}$. To deal with the jump that can occur, we consider $D_{t_2}' = \bigcup\{x_p, x_e \in D_{t_2} \mid (x_p, G_e(x_p, \omega, x_e), 0, w) \in \mathbb{R}^n\}$. Since it is assumed that the set defined in (4) is a compact subset of $\mathbb{F} \times \mathbb{R}_{\geq 0}$, it yields that D_{t_2}' is also a compact subset of $\mathbb{F} \times \mathbb{R}_{\geq 0}$. Let I_3 be such that D_{t_3}' is a compact subset which satisfies $D_{t_3}' \subset D_{t_2} \subset \mathbb{F} \times \mathbb{R}_{\geq 0}$. Finally, let $I_4 > I_3$ be so that D_{t_4} is a compact subset which contains D_{t_3}'.

With these sets in hands, the positive real number c_x can be selected as

$$
c_x = \max_{(x_p, x_e, \sigma) \in D_{t_4}} \{ |x_p| \}. \tag{11}
$$

Let us now establish the following property for solutions to system (10) initiated from D_{t_1}.

Lemma 1 (Minimal Existence Time of Solution in D_{t_1}). There exists $T_{\text{min}} > 0$ such that for all $\omega \in L^\infty([0, +\infty); \mathbb{R}^n)$ with $|\omega(t)| \leq c_x$ for all $t \in [0, T_{\text{min}}]$ and all $\mathbf{x}_0 := (x^0_p, x^0_e, \sigma^0) \in D_{t_1}$, all solutions $x(\cdot, t_1)$ to (10) with $X(0, 0) = X^0$ and all $(t, j) \in \omega(\mathbb{X}, X)$ then $X(t, j) \in D_{t_4}$ for all $0 \leq t \leq T_{\text{min}}$.

Proof. Let \tilde{V} be the positive real number defined by

$$
\tilde{V} = \max_{\omega \in \mathcal{U}, \sigma \in [0, 1]} \left| \frac{\partial V}{\partial X}(X) F(X, \omega) \right|. \tag{11}
$$

In the remaining part of the Lemma 1 holds with T_{min} chosen as any positive real number satisfying

$$
T_{\text{min}} < \min \left\{ -\ln(1 - \lambda), \frac{l_2 - l_1}{V}, \frac{l_4 - l_3}{V} \right\}. \tag{11}
$$

Let X^0 be in D_{t_1} and let X be a solution to system (10) whose initial condition is X^0. For all (t, j) in $\omega(\mathbb{X}, X)$. To ease the notation we denote $V(t, j) = V(X(t, j))$.

Let (t, j) in $\omega(\mathbb{X}, X)$ be such that $0 \leq t \leq T_{\text{min}}$. To prove the Lemma 1 we need to show that $X(t, j)$ is in D_{t_4}. First of all, we show that $j \leq 1$. Indeed, assume $j \geq 2$. This implies that there exist t_0 and t_1 such that $0 \leq t_0 < t_1 \leq t$ such that $(t_0, 0), (t_1, 1), (t_1, 2)$ are in $\omega(\mathbb{X}, X)$. Note that $\sigma(t_0, 1) = 0$ and $\sigma(t_1, 1) = 1$. Moreover, for all s in $[t_0, t_1], (s, 1)$ is in $\omega(\mathbb{X}, X)$ and $\sigma(s, 1) = 1 - \sigma(s, 1)$. Hence, integrating this equation between t_0 and t_1, we get that $t \geq t_1 - t_0 > -\ln(1 - \lambda) \geq T_{\text{min}}$. This is impossible, and therefore $j \leq 1$.

So two cases may be distinguished.

-\hspace{1cm}j = 0 This case is illustrated by Fig. 1. $j = 0$ implies that $s \in [0, t]$ \(\mapsto x(s, 0)\) is a continuous mapping with $x(0, 0)$ in $D_{t_1} \subset D_{t_2}$. Hence we can define t^*, the largest time in $[0, t]$ such that $x(s, 0)$ is in D_{t_1} (i.e. $t^* = \max_{s \in [0, t]} x(s, 0) \in D_{t_1}$). Note that if $t^* = t$ then this implies that $x(t, 0)$ is in D_{t_1}, hence the result. Assume $t^* < t$. This implies that for all s in $[0, t^*]$ we have $V(s, 0) = \frac{\partial V}{\partial X}(X(0), 0) F(X(0), 0) \leq \tilde{V}$. This gives $V(t^*, 0) \leq \tilde{V}t^* + V(0, 0) \leq \tilde{V}T_{\text{min}} + l_1 < l_2$. Hence $x(t^*, 0)$ is in the interior of D_{t_4}. It yields that there exists $\varepsilon > 0$ such that $x(t^* + \varepsilon, 0)$ is in the interior of D_{t_4} which contradicts the fact that t^* is an extremum.

-\hspace{1cm}j > 0 The definition of $\omega(\mathbb{X}, X)$ is borrowed from Goebel et al. (2012, Definition 2.3).
This concludes the proof of Lemma 1. □

5.2. Construction of Ψ_p

In this subsection we design a high-gain observer for the system (1). Since only continuous time dynamics are considered in this subsection, to simplify the notation, only the flow components of the time domain are considered. The function Ψ_p is selected to ensure that \hat{x}_p estimates the state x_p along solutions initiated in the projection of D_{l_0} on \mathbb{R}^n_p that is

$$\Pi_p(D_{l_0}) = \{ x_p \in \mathbb{R}^n_p, \exists (x, \sigma) \in \mathbb{R}^n_x \times \mathbb{R}_{\geq 0} : (x_p, x, \sigma) \in D_{l_0} \}$$

and as long as these solutions remain in the projection of D_{l_0} on \mathbb{R}^n_p that is

$$\Pi_p(D_{l_0}) = \{ x_p \in \mathbb{R}^n_p, \exists (x, \sigma) \in \mathbb{R}^n_x \times \mathbb{R}_{\geq 0} : (x_p, x, \sigma) \in D_{l_0}, \}$$

The estimation property has to be obtained for all input $u(\cdot)$ taking values in $\mathcal{U} \cap [-\bar{u}, \bar{u}]$ with $\bar{u} = \max_{x_p|\ell(x_p)} \sup_{(x_p, x, \sigma) \in \Pi_p(D_{l_0})} \partial \ell(x_p, x, \sigma)$

$$\Pi_l(D_{l_0}) = \{ (x, \sigma) \in \mathbb{R}^{n_x+\ell}, \exists x_p \in \mathbb{R}^n_p : (x_p, x, \sigma) \in D_{l_0} \},$$

which is the projection of D_{l_0} on $\mathbb{R}^{n_x+\ell}$. Moreover, the observer has to be designed such that the estimation error is smaller than the stability margin of the controller after T_{\min}. More precisely, with Assumption 3, and letting $l = l_4$ yield the positive real number e_l and the increasing mapping ρ. The observer has to be designed such that the set $\{ (x_p, x) \in \mathbb{R}^{2n} : |x_p - x| < e_l \}$, where $e_l := \min \left\{ \rho^{-1} \left(\frac{\alpha_l}{2} \right), \rho^{-1} \left(\frac{\alpha_{l_4}}{2} \right), e_l \right\}$, is reached after T_{\min}.

A possible approach to design such observer is to use high-gain observer methodology. With Assumption 2, from Gauthier et al. (1992, Theorem 2), setting $z = \phi(x_p) \in \mathbb{R}^n_p$, the system (1) can be rewritten as follows:

$$\dot{z} = A(z) + B(z)u$$

with z in \mathbb{R}^n_p and

$$A(z) = \frac{\partial \phi(x_p)}{\partial x_p} f_p(x_p) = \begin{bmatrix} z_2 & \cdots & z_{n_p} \end{bmatrix}^T$$

$$B(z) = \frac{\partial \phi(x_p)}{\partial x_p} g_p(x_p)$$

$$= \begin{bmatrix} b_1(z_1) & \cdots & b_{n_p-1}(z_1, \ldots, z_{n_p-1}) & b_{n_p}(z_1, \ldots, z_{n_p}) \end{bmatrix}^T$$

where $\chi := l h(\phi^{-1}(z))$ and b_i are locally Lipschitz functions as soon as f_p is smooth enough. From there, the following lemma may be obtained.

Lemma 2 (Tunable Observer), Let $\Psi_p : \mathbb{R}^n_p \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^n_p$ be defined by

$$\Psi_p(\hat{x}_p, y, u) = \left(\frac{\partial \phi}{\partial x_p}(\hat{x}_p, u) \right)^{-1} \left[\hat{A}(\phi(\hat{x}_p)) + \hat{B}(\phi(\hat{x}_p))u + \mathcal{L}K[y - h(\hat{x}_p)] \right]$$

where $\hat{A} : \mathbb{R}^n_p \rightarrow \mathbb{R}^n_p$ and $\hat{B} : \mathbb{R}^n_p \rightarrow \mathbb{R}^n_p$ are functions

$$\hat{A}(z) = \begin{bmatrix} z_2 & \cdots & z_{n_p} \end{bmatrix}^T$$

$$\hat{B}(z) = \begin{bmatrix} b_1(z_1) & \cdots & b_{n_p-1}(z_1, \ldots, z_{n_p-1}) & b_{n_p}(z_1, \ldots, z_{n_p}) \end{bmatrix}^T$$

and

$$\mathcal{L} = \text{diag}(\ell, \ldots, \ell)$$

where ℓ is a positive real number larger than 1 and $K = [-k_1 \ldots -k_{n_p}]^T$ is such that the matrix

$$\mathcal{J} := \begin{bmatrix} -k_1 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ -k_{n_p} & \cdots & \cdots & \cdots & 1 \end{bmatrix}$$

is Hurwitz. Note that the functions $b_i : \mathbb{R}^i \rightarrow \mathbb{R}, i = 1, \ldots, n_p$ and $\hat{x} : \mathbb{R}^n_p \rightarrow \mathbb{R}$ are such that

1. For all z in $\phi(D_{l_0})$, $\hat{x}(z) = x(z)$ and $\hat{b}_i(z) = b_i(z)$ where $x(z)$ and $(b_i(z))$ are defined in (12);
2. x and b_i are globally Lipschitz functions.

Moreover there exists a class \mathcal{KL} function β such that for all solutions x_p to (1) and all solutions \hat{x}_p to

$$\hat{x}_p = \Psi_p(\hat{x}_p, y, u)$$

with initial condition $(x_p^0, \hat{x}_p^0) \in \Pi_p(D_{l_0}) \times \Pi_p(D_{l_0})$, input $u(\cdot)$ taking value in $\mathcal{U} \cap [-\bar{u}, \bar{u}]$, and for all t such that $x_p(s) \in \Pi_p(D_{l_0})$, where $s \in [0, t]$, the following hold:

6 These functions exist from the Kirschbraun extension theorem, see e.g. Federer (1969, Definition 2.10.43) and from the fact that $\phi(D_{l_0})$ is a compact subset of \mathbb{R}^n.
(1) $|x_p(s) - \tilde{x}_p(s)| \leq \beta((x_p^0 - \tilde{x}_p^0)^2, s)$, $\forall s \in [0, t]$;
(2) If $t \geq T_{\text{min}}$, $|x_p(s) - \tilde{x}_p(s)| \leq c_\epsilon$, $\forall s \in [T_{\text{min}}, t]$.

Proof. There exists c_ϵ such that, for all $(z^1, z^2) \in (R^{n_p})^2$, $|\chi(z^2) - \chi(z^1)| \leq c_\epsilon |z^1 - z^2|^2$. Note also that from the definition of ϕ we have $y = h_p(\phi(x_p)) = z_1$. With the Lipschitz property, the b_i terms satisfy, for all $(z^1, z^2) \in P_l(D_{l+1})$, $|b_i(z^1) - b_i(z^2)| \leq c_{b_i} \sum_{j=1}^{n_p} |z_j^1 - z_j^2|^2$. Moreover, setting $\tilde{z} := \phi(\tilde{x}_p)$, it yields along the solutions to (16):

$$\dot{\tilde{z}} = \tilde{A}(\tilde{z}) + \tilde{B}(\tilde{u}) + \tilde{d} + K[y - \tilde{z}_1]. \quad (17)$$

As standard in high-gain observer design, let \hat{e} be the scaled error components:

$$\hat{e}_i = \frac{\tilde{z}_i - (\phi(x_p))_i}{\ell_i^{-1}}. \quad (18)$$

Therefore, as soon as $x_p \in P_l(D_{l+1})$, it holds

$$\dot{\hat{e}} = \ell \hat{e} + \Delta(\tilde{z}, x_p, u). \quad (19)$$

where $\Delta(\tilde{z}, x_p, u)$ is obtained from $\hat{\chi}$ and \hat{b}_i for all $i = 1, \ldots, n_p$. From the structure of the observation error, there exists a positive real number c_ϵ such that for all (\tilde{z}, x_p, u) in $R^{n_p} \times P_l(D_{l+1}) \times U \cap [-\bar{u}, \bar{u}]$ and for all $\ell > 1$ satisfies the following inequalities.

$$\dot{U}(\hat{e}) \leq -\ell \dot{U}(\hat{e}) + 2\epsilon_\ell \Delta(\tilde{z}, x_p, u) \leq -\ell \dot{U}(\hat{e}) + 2c_\epsilon \Delta(\tilde{z}, x_p, u) \leq -\ell \dot{U}(\hat{e}) + 2c_\epsilon \lambda_{\text{max}}(P) \frac{\lambda_{\text{max}}(P)}{\lambda_{\text{min}}(P)} U(\hat{e}). \quad (20)$$

Consider a solution x_p to (1) and a solution \hat{x}_p to (16) with initial condition $(x_p^0, \hat{x}_p^0) \in P_l(D_{l+1})^2$, input $u(\cdot)$ taking value in $U \cap [-\bar{u}, \bar{u}]$, and t such that $x_p(s)$ is in $P_l(D_{l+1})$ for all $s \in [0, t]$. With Gröbner lemma, we get along this solution

$$U(\hat{e}(t)) \leq \exp \left(-\left(\ell \dot{U}(\hat{e}) - 2c_\epsilon \lambda_{\text{max}}(P) \frac{\lambda_{\text{max}}(P)}{\lambda_{\text{min}}(P)} \right) t\right) U(\hat{e}(0)). \quad (21)$$

Moreover, for all x_p, it holds that

$$|\phi(x_p) - \hat{\phi}(x_p)| \frac{\lambda_{\text{max}}(P)}{\lambda_{\text{min}}(P)} \leq U(\hat{e}) \leq \frac{\lambda_{\text{max}}(P)}{\lambda_{\text{min}}(P)} |\phi(x_p) - \hat{\phi}(x_p)|.$$

Note that $\Pi_p(D_{l+1})$ and $\phi(\Pi_p(D_{l+1}))$ are compact subsets of R^{n_p} and that the functions $\phi : R^{n_p} \rightarrow R^{n_p}$ and $\Phi^1 : R^{n_p} \rightarrow R^{n_p}$ are continuous. Hence, the two class K functions v and v^* can be defined as

$$v(s) = \max_{x_p \in \Pi_p(D_{l+1}), |x_p - x_p^0| \leq \bar{x}} |\phi(x_p) - \phi(x_p^0)|$$

$$v^*(s) = \max_{x_p \in \Pi_p(D_{l+1}), |x_p - x_p^0| \leq \bar{x}} |\Phi^1(z) - \Phi^1(x_p^0)|.$$
\(V(t_0, j_0) = I_4\). Note moreover, keeping in mind that |\(x_p(t_0, j_0) - \bar{x}_p(t_0, j_0)\)| \(\leq |x_p(t_0, j_0) - \hat{x}_p(t_0, j_0)| \leq c_r \leq \epsilon_t\), we get, from Assumption 3, \(V(t_0, j_0) \leq -\alpha_1 V(t_0, j_0) + \rho_c |x_p(t_0, j_0)| \leq -\frac{\alpha_1\epsilon_t}{2}\). This implies that the function \(s \mapsto V(t_0 + s, j_0)\) is strictly decreasing. It contradicts the existence of small \(\epsilon\).

- The solution escapes \(D_\epsilon\) when jumping. Hence, there exists \((t_0, j_0)\) in \(\text{dom}(X)\) such that \((x_p, x_c, \sigma)(t_0, j_0)\) is in \(D_\epsilon\) and \((x_c, x, \sigma)(t_0, j_0 + 1)\) is not in \(D_\epsilon\). Since \(|x_p(t_0, j_0) - \bar{x}_p(t_0, j_0)| \leq c_r \leq \epsilon_t\), with Assumption 3, it follows \(V(t_0, j_0 + 1) \leq (1 - \alpha_2) V(t_0, j_0) + \rho_c |x_p(t_0, j_0)| \leq (1 - \frac{1}{4} \epsilon_t) \leq \epsilon_t < \epsilon_t\). This is a contradiction with the escape of the solution from \(D_\epsilon\).

Consequently, for all \((t, j)\) in \(\text{dom}(X)\), we have \(x(t, j)\) is in \(D_\epsilon\). Note that the timer forces the \(t\) direction of the time domain to be unbounded. Hence, thanks to Lemma 2, limit \(\lim_{t \to +}\left|\hat{x}_p(t, j) - x_p(t, j)\right| = 0\). We get the result employing the triangular structure of the system with the ISS property in \(D_\epsilon\) (i.e. Assumption 3) (see e.g. Cai and Teel (2009, Theorem 3.1).

Second Part: Stability. To conclude the proof, let us prove the stability property. Let \(S_j\) be defined as \(S_j = \{(x_p, x_c, \sigma) : \|\sigma\| + |\sigma| \leq \epsilon, \|x_p - \bar{x}_p\| \leq \epsilon\}\), where \(\epsilon < \epsilon_t\). Moreover, \(\lambda \psi_{\epsilon_t} = 0\). Also, \(\lambda \psi_{\epsilon_t} = 0\).

Let us show that this solution \(X\) remains in \(S_j\). Note that \(x_p(0, 0)\) and \(x_p(0)\) are in \(P_{\epsilon_t}(D_\epsilon)\). With Lemma 2, it yields that for all \((t, j)\) such that \(t, j \in \text{dom}(X)\),

\[
|x_p(t, j) - \bar{x}_p(t, j)| \leq \beta_1(t, j) \leq \epsilon,
\]

with \(\epsilon < \epsilon_t\).

Moreover, \((x_p(t, j), x_c(t, j), \sigma(t, j))\) is in \(D_\epsilon \subseteq D_\epsilon\), hence from the ISS inequalities that hold in \(D_\epsilon\) (see Assumption 3), we get for all \(t > t_1\) and \(j > 1\),

\[
|\alpha_1 x_p(t, j)| + \frac{\alpha_1^2}{4} |x_p(t, j)| = \frac{\alpha_1^2}{4} |x_p(t, j)| + \frac{\alpha_1^2}{4} |x_p(t, j)| = \epsilon,
\]

which implies with \(V(X(t_1, j)) \leq \frac{\epsilon}{4}\)

\[
V(x_c(t, j), x_c(t, j), \sigma(t, j)) \leq \epsilon,
\]

\(\epsilon < \epsilon_t\).

Hence, it cannot escape \(S_j\) by flowing since it does not reach the boundary of \(S_j\). Moreover, for all \((t, j)\) in \(\text{dom}(X)\) such that \((t, j + 1)\) is in \(\text{dom}(X)\), from the ISS inequalities of Assumption 3 once again, it yields, if \(V(X(t, j)) \leq \frac{\epsilon}{4}\),

\[
|\alpha_1 x_p(t, j) + 4 |x_p(t, j)| = \frac{\alpha_1^2}{4} |x_p(t, j)| + \frac{\alpha_1^2}{4} |x_p(t, j)| = \epsilon,
\]

Hence, \(X(t, j + 1) \in S_j\).

Thus, if the initial condition \(x_0^*\) is in \(S_j\), then the solution remains in \(S\). Since \(S\) can be made as closed as wanted from \(A\), this proves stability of the set \(A\) and concludes the proof of Theorem 1. □

6. Application to a First Order Reset Element (FORE) system

To illustrate Theorem 1, the following second order system is considered:

\[
\dot{x}_p = \begin{bmatrix}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} x_p + \begin{bmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} \text{sat}(\epsilon_t(v)), \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x_p.
\]

(27)

With \(u = \text{sat}_{|\epsilon_t|}(v), \quad \mathcal{U} = [-u_0, u_0]\) and \(u_0 = 3\), it is a system of the form (1). Note that the set of control \(\mathcal{U}\) is bounded and \(\gamma = x_p\). Consequently, despite the fact that the dynamics are linear, the stabilization problem for this system is not an easy task although recent works (Hw, Teel, & Zaccarian, 2006; Yuan & Wu, 2015) propose design methods for saturated actuator. The strategy presented in this paper can be also efficient for purely nonlinear systems as it is shown in Marx et al. (2014) where it is proven the existence of a hybrid output feedback for a chain of integrators with a nonlinearity from a state feedback unifying a global and a local controller. Following Loquet, Tarbouriech, and Prieur (2007), we compute the hybrid controller such that \(A = \{0\} \times \{0\} \times \{0\}\) is locally asymptotically stable for the FORE system.
stabilizing continuous state feedback exists? In Andrieu and Praly (2009), some output feedback laws are presented to achieve global stabilization of equilibrium point. Assuming stronger observability property, can such output feedback laws be achieved for hybrid case? Moreover, designing an observer that converges in finite time with a stability property, and thus adapting Andrieu, Praly, and Astolfi (2008) for the hybrid systems case, could be also an interesting research line.

References

Vincent Andrieu graduated in Applied Mathematics from “INSA de Rouen”, France, in 2001. After working in ONERA (French aerospace research company), he obtained a Ph.D. degree from “Ecole des Mines de Paris” in 2005. Since 2010, he has been working in LAGEP-CNRS, Université de Lyon 1, France. His main research interests are in the feedback stabilization of controlled dynamical nonlinear systems and state estimation problems.

Christophe Prieur graduated in Mathematics from the Ecole Normale Supérieure de Cachan, France in 2000. He received the Ph.D. degree in 2001 in Applied Mathematics from Paris-Sud University, France, and the “Habilitation à Diriger des Recherches” (HDR degree) in 2009 from Toulouse University. Currently he is a CNRS Senior Researcher at Gipsa-lab, Grenoble, France. His current research interests include nonlinear control theory, hybrid systems, and control of partial differential equations.