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Introduction

Thesis
defense .
Optimal control:
Alexandre . . . . . .
Vieira control the way a system is changing/moving/transformed with time, while
Introduction maXImlzmg/mmlmlzmg a quantity.
Quadratic

PPN Cxample: Goddard's Rocket Problem (1910) /\

Numerical o . . .
results How to send a rocket as high up in the air as possible
in tr seconds?

Minimal time

Conclusion

Maximize height at time tr: h(tf). Mass
You control: the evolution of the velocity, the mass,
using: the force of the motor (and some gas), Velocity

but the force of the motor and the gas are limited!
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Introduction

; T , C
sl Example: Circuit with ideal diode -

n
Alexandre  One wants to control this kind of electrical
Vieira

system via the inputs, where the diode is supposed 1
Introduction to be |dea| up __T)\
Quadratic A h b . X h . X h d d
cost t the beginning, the capacitor 1s charged, an 5
Stationarity . g g P . g R
Numerical there is no current through the inductance. One =
Minimal ime  Wants, in 1 second, to run flat the capacitor. p

1

Condusion How can one do this while minimizing the input L

energy?

This problem is hardly solved.
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Introduction

min Energy(x, u)

s.t.

a(t) = Réxl(r)m( )= EMO) + e
Salt) = Tox(t) = AR) + i(uz(r) ~ (1)),
0<A(t) L Ricxl(t) ~x(t)

1

R
x(0) = (200C, 0A)
x(1) = (50C, 0A)

+ I - %@(t) >0,

C
X1 }7
g AL
— (R
u
L

X2
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Introduction

Thesis
defense

Alezrle Optimal control of Linear Complementarity Systems

Vieira
Minimize C(T,x, u)

Introduction

CLcilnis subject to:

Stationarity X(t) = AX(t) + Bv(t) + Fu(t)

Numerical

Mo 0 < v(t) L w(t) = Cx(t) + Dv(t) + Eu(t) > 0

Minimal time

Some boundary conditions on x(0), x(T).

Conclusion

Two problems presented in this talk:
@ the quadratic optimal control problem,

@ the minimal time problem.
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1) Introduction

@ Quadratic cost
o Stationarity
o Numerical results

3) Minimal time

4) Conclusion
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Stationarity
Numer; ical

Minimal time

Conclusion

Quadratic cost

Problem:

-
il /O (x(8)T Qx(£) + ()T Uu(t) + v(£)T Vin(t)) dt
such that:
x(t) = Ax(t) + Bv(t) + Fu(t)
0 <v(t) L w(t)= Cx(t)+ Dv(t)+ Eu(t) >0
x(0) = xg, x(T) free
where T >0, x : [0, T] — R" absolutely continuous, v : [0, T] — R™,

u:[0,T] = R™, A B, C,D, E, F, Q V and U matrices of according dimensions,
U supposed symmetric positive definite, Q and V positive semi-definite.

7/43



A difficult problem

Thesis
defense

Algiandre 0 < v(t) L Cx(t) + Dv(t) + Eu(t) > 0

Introduction

Quadratic

Qo o Existence of optimal solution not proved (classical Fillipov theory does not
Stationarity apply here due to lack of convexity). Cesari (2012), Theorem 9.2i and onwards

Numerical
results

o Special cases arise when E = 0 and D P-matrix : switching modes are
activated when the state reaches some threshold defined by the
complementarity conditions. Georgescu et al. (2012), Passenberg et al. (2013)

Minimal time

Conclusion
o Since u is also involved = mixed constraints; relies on some Constraint

Qualifications (CQ). Complementarity constraints violate most classical
qualifications. Clarke and De Pinho (2010)
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How can one find stationarity results, a.k.a. first order necessary optimality
conditions?

Two reasons for that:
o Useful for analyzing the solution (continuity, sensitivity...)

o Useful for designing numerical methods.
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Stationarity

A first hint comes with a method to compute numerically an approximate solution:

the direct method.

N
min E xT Qx;i + ul Uu;i + v Wy
i=0

xit1 = xi + h(Ax; + Bv; + Eu;)
s.t. 0<v; L Cxj+Dv;j+ Eu; >0, Vie {O, ceey N}
xo fixed

= Mathematical Program with Equilibrium Constraints (MPEC).
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Stationarity

Thesis
defense . . R . . .
Ao How can one find stationarity results, a.k.a. first order necessary optimality
Vieira conditions?
introduction — Mathematical Program with Equilibrium Constraints (MPEC).
Quadratic
cost '
Stationarity
areries! MPEC have their own tailored CQ, and several concepts of stationarity (while
minimal ime  classical optimisation problems know only one stationary characterisation). Two of
Conclusion them will be important in this presentation:

o W(eak) stationarity
o S(trong) stationarity
Knowing the type of stationarity = good numerical approach.
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Stationarity

Thesis
defense

Alexandre
Vieira

Introduction

Really general necessary conditions were obtained in [1]. But as such, they are not
Ruedtedie really practical (complicated hypothesis, really general equations...).
cost

Stationarity
Numerical
results

‘Can it be enhanced in the case of LCS?‘

Minimal time

Conclusion

[1] L. Guo and J. J. Ye. Necessary optimality conditions for optimal control problems with equilibrium
constraints (2016).
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Weak stationarity

Thesis Define S = {(x, u,v)|0 < v L Cx+ Dv + Eu > 0} and the partition of {1, ..., m}:

defense

Alexandre

Vieira /t0+(x, u,v) ={i| vi(t) =0 < (Cx(t) + Dv(t) + Eu(t));}

Introduction

(Cx(t) + Dv(t) + Eu(t));}
= (Cx(t) + Dv(t) + Eu(t))i}

Quadratic

177%(x, u,v) = {i | vi(t) >0
cost _ 0

Stationarity I,_E)O(X, u, V) = {I ‘ V,'(t)

uuuuuuuuu

Minimal time

Conclusion Theorem

Let (x*, u*, v*) be a local minimizer of radius R. Suppose Im(C) C Im(E). Then
there exist an absolutely continuous function p: [0, T] — R” and measurable
functions A : R — R™, A" : R — R™ such that the following conditions hold:

@ the transversality condition: p(T) =0
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Weak stationarity

@ the Weierstrass condition for radius R: for almost every t € [to, t1],

() - G <=0

= (p(t), Ax*(t) + Bv + Fu)) — % (x*(t)TQx*(t) + uTUu + vT W)
< (p(t), Ax*(t) + Bv*(t) + Fu*(t)))
- % (A ()T Qx7(t) + u(8)TU" (t) + v ()T W (1))

(x*(t),u,v) €S,
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Weak stationarity

Thesis
defense

Alexandre Theorem

Vieira
@ the Euler adjoint equation: for almost every t € [0, T],

Introduction

Quadratic p(t) = —ATp(t) + Qx*(t) — CT)\H(t)
it 0= FTp(t) — Uu*(t) + ETAM(t)
Minimal time 0 = BTP(t) + AG(t) + DT)\H(t)

S 0= AS(2), Vi € IFO(x*(t), u*(2), v¥(t))
0= (1), Wi € 19 (x*(2), u*(2), v¥(t))

1

Remark : These are called W(eak) stationary conditions.
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Sufficiency of weak stationarity

Definition

Let (x, u,v) and (x*, u*, v*) be two admissible trajectories (associated with
w = Cx + Dv + Eu and w*, defined the same way). We say that they have the
same history on [0, T] if the following condition holds for almost every t € [0, T]

and for all i € {1,..., m}:
[vi(t) =0 <= v/(t) =0] and [w;(t) =0 <= w;(t) =0]

Theorem

Suppose that (x*, u*, v*) is an admissible W-stationary trajectory. Then,
(x*, u*, v*) is a minimizer among all admissible trajectories having the same history.
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How can one solve the following BVP?

x=Ax+ Bv+ Fu

p=—ATp+Qx—CT\

0=FTp— Uu+ ETA"

0=BTp+A°+ DTN\

0=AC(t), Vi e IFO(x(t), u(t), v(t))

0=M(t), Vi € 12 (x(t), u(t), v(t))
xo = x(0),

0=p(T)
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How can we solve the following BVP?

x=Ax+ Bv+ Fu
p=—ATp+Qx— CT\"

0=FTp— Uu+ ETA" = isolate u
0=BTp+ A+ DTA" — isolate \®

0= AP (1), Vi € IFO(x(t), u(t), v(1))
0= M(t), Vi e 12 (x(t), u(t), v(t))

X0 = X(0)7
0=p(T)
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Strong stationarity
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defense
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Vieira

0= AS(t), Vi e I0(x(t), u(t), v(t))
0= MA(t), Vi e I2F(x(t), u(t), v(t))

Introduction

Quadratic
cost

Stationarity We miss a piece of information: what happens on /90 ?

Numerical

Minimal time PI’OpOSItlon

el Let (x*, u*™, v*) be a local minimizer and suppose E invertible. Then (x*, u*, v*) is
strongly stationary, meaning:

AS(t) > 0, AH(1) > 0, Vi € 19(x(t), u(t), v(t))

19/43



0= \(t),
0= (1),
AF(t) > 0,M(t) >0,

Vi€ IF0(x(t), u(t), v(t))
Vi€ 127 (x(t), u(t), v(t))
Vi e 190(x(t), u(t), v(t))

Almost like a linear complementarity problem!
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Quadratic
cost

Stationarity

uuuuuuuuu

Minimal time

Conclusion

Strong stationarity

Theorem

Let (x*, u*™, v*) be a local minimizer and suppose E invertible. Fix an arbitrary
r > 0. Then there exist an arc p and measurable functions 5 : [0, T] — R™,
¢ : [0, T] — R such that, u*(t) = U~ (FTp(t) + ETB(t) — (¢(t) + r)ETv*(t)) and:

(0)-46)-+(2)
0<(2) i0(2) <) o

B=>rv
x(0) = x0, p(T) =0
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How to solve a BVP LCS

(G)=4() 5 (0)
0< (€)¢D<€>+c /Xa>2°

B> rv
[x(0) = 0. p(T) =0]

Numerically, we usually do shooting: find the good p(0) = pp such that the

computed solution p(t; po) complies with p(T; pg) = 0: nonsmooth Newton
method.

o Need for an initial guess close enough

o How to compute a sensitivity matrix for p(T;-) ?
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The hybrid method

Thesis

defense

Alexandre

Vieira

Since it is based on a Newton method: two steps.

Introduction
R @ One solves, roughly, the optimal control problem with the Direct method —
o rough idea of the solution.

tationarity
reanieriee! @ One refines the solution by solving the necessary conditions.

Minimal time

Conclusion Direct method + stationarity conditions = Hybrid method
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A 1D example

Thesis
defense X =ax+ bv + fu
Alexandre
Vieira OSVJ_dV+eUZO
Introduction X(O) = X0
o We can show that the (strong) stationary solution in this case is given by:
{uéi;afy [ a } sinh(/7t)
t) = |cosh t) — — sinh t 0) + x(0
P p(t) (V1) 7 (V1) | p(0) v (0)
Conclusion
sinh(\/~4T
p(0) = LT (0).
V7 cosh(y/4T) — asinh(,/7T)
(1) f efp(0) > 0,
u(t) = b :
(f— <) p(t) if efp(0) <O.

x(t) = p(t) + ap(t).
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A 1D example

Thesis
defense

0.2 1 1 1 1 2.0

Alexandre
Vieira

-- Analy. u
— Num. u

Introduction

Quadratic
cost
Stationarity

Numerical
results

Minimal time

Conclusion

Figure: Solution via indirect method : state x and control u, on [0, 10].
a=1,b=05,d=1,e=-2,f =3,x(0) = —1. Initial guess with direct method and 300
nodes. Hybrid method with 10 000 nodes and 20 intervals of shooting. Obtained in 54s.

(In order to have this same precision with the direct method : 453s.)
25 /43



@ Introduction

(@ Quadratic cost
@ Minimal time

(@ Conclusion
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Minimal time

Thesis

defense Let us review a different problem:

v

min T*

Introduction )
Quadratic X(t) = AX(t) + Bv(t) + Fu(t)
o ) 0= v(t) L Cx(t) + Dv(t) + Eu(t) 2 0,
i Y ue) cu
Minimal time
Conc|usi:n X(O) = X0, X( T*) = Xf.

where U is a finite union of polyhedral compact convex sets, and D is a P-matrix.

Since u is now constrained: no more possibility to have strong stationarity and do

the same manipulations. One still could have a weaker result, but not really useful
as is.
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A bang-bang property

min T*
x(t) = Ax(t) + Bv(t) + Fu(t
0 < v(t) L Dv(t)+ Eu(t)>
u(t)eld
x(0) = xo, x(T*) = xr.
Denote by Q = {(u,v) e Y x R"|0 < v L Dv + Eu > 0}, and Accq(xo, t) the
accessible set at time t, starting from xg with controls having values in Q.

)
0,
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A bang-bang property

Notations: For an index set o C {1, ..., m},
RY={q9€R" | qa >0, gm\o <0}
E-IR™ = {ii € R™|Eii € R™} (E is not necessarily invertible)

Theorem

For a certain o C {1, ..., m}, denote by &, the set:

— 0, Daev + Enet =0,
Ea =4 (u,v) € Bxt (U N E-IR™) x R ® ool T Saell
v>0,Dv+ Eu>0

and by & the set & = E,. Then, for all t > 0 and all x; € R”,

aCm

Aceq(xo, t) = Acce(xo, t)
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A bang-bang property

detonse Example
Alexandre

Vieira min T*
Introduction X(t) = aX(t) —+ bV(t) + fu(t)
o 0 < v(t) Lv(t)+u(t)>0
Stationarity s.t.
Numerical U(t) eEU = [—1, 1]
Minimal time (X(O), X( T*)) = (X07 Xf)7 Q
Conclusion

In this case, b ‘1 %

&={(-1,1),(0,0),(1,0)}. We can
therefore search for the optimal

solution with controls (u, v) in €.
One can prove that, under complete controllability of the system:

(u*,v*)=(-1,1) or (1,0). .



Hamilton-Jacobi-Bellman

Thesis
defense

Alexandre

Vieira

S One can show that the optimal time T* is characterized by the HJB equation:

Quadratic

cost zZ + H(X7 VZ) =1 in Rn\{Xf},
Stationarit,

Numareal z=0 on {x},
Minimal time

Conclusion Where
H(x,p) = sup (—p,Ax+ Bv+ Fu).
(u,v)EQ
Further details can be found in the manuscript.
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Conclusion

Thesis
defense

Aloerhe o First stationarity results, that we can use analytically and numerically.
Vieira . . . . . ..
o Numerical algorithms working fast, even with high precision.

Introduction

o A code was developed for this and is available online

S (https://gitlab.inria.fr/avieira/optLCS).
Stationarity
rearieriee! What is left to be done: a thousand things!

Minimatsime o The stationarity LCS, even in this case, still is not entirely analysed.

Conclusion

o When the dimension of the complementarity becomes high: the numerical
resolution fails.

o Get rid of some assumptions (E invertible, D non P-matrix, C #0,...).

Qo ...
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https://gitlab.inria.fr/avieira/optLCS

There exists a positive measurable function ks such that for almost every t € [0, T],
the bounded slope condition holds:

(x, w) € SPR(t), (0, B) € Ng(yy(x, w) = [lal| < ks(1)]15].
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Define, for two scalars ¢ and r:

A FUTLFT
(o ")

g (FUET B—(C+nFUET
S\ =CT (C+r)CT

c_(C  EUT'FT
~\¢c ¢ceutFT BT

D EU-LET D — (C+r)EU-LET
~ \CEU'ET— DT (D+(C+7r) (DT — CEUTIET)
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How to solve a BVP LCS

Thesis

defense

M 7= Az + BA

. O<ALDA+Cz>0

Appendix
Bounded
SICE Denote Tp(z) a linear Newton Approximation to the solution A of the LCP. Then, a
defimition linear Newton approximation for the solution map z(T,-) can be obtained by
i solving the DI in matrix function:

Lavrentiev

J() € AJ(E) + (co Talz(6:E))U(2), J(0) = I
minimal time

... But it supposes that B SOL(D,Cz) is a singleton for all z € R?" (which we can
not prove).

JS Pang, D. Stewart, Solution dependence on initial conditions in differential variational inequalities (2009)
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BVP LCS
2D Example
Lavren tiev

Example
minimal time

Compare direct and indirect method

Let us compare the time of computation using the Direct Method and the Hybrid
Approach (rough direct + refinements with indirect) in this example:

1
min. [ (b(6)13 + 250 (o)) o

«(t) = G f) x(t) + (j 1) v(t) + (; i’) u(t),

st 4 0<v(t) L <_2 _01> x(£) + v(t) + <_1 , ) u(t) >0, ae. on[0,1]
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Appendix
Bounded
Slans
Condition
Matrix
definition
BVP LCS
2D Example
Lavren tiev

mmmmmmmm

Compare direct and indirect method

hp | Time spent (s)
1072 1.31
103 37.50
10~ 400.65
107> 00
10-© 00

Parameters

Time spent (s)

Table: Time spent With
Direct Method

hp=10"1 h =102, ns =5

hp =107, hy =1073, ng =10
hp =1072, hy =107%, ng = 20
hp =1073, hy =1072, ng =50
hp = 1074 h; =107°, ng = 100

1.39
11.26
97.56

1 298.62
32 163.36

Table: Time spent with Hybrid approach
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Lavrentiev effect

et Some examples show that the set of absolutely continuous functions might be too
iefense
narrow.
Alexandre
Vieira

Appendix

Bounded
Slans
Condition

10
min [ (Ix(OI + u(e)?) .

0

Matrix
definition X(t) =10
BVP LCS
2D Example O
1

Lavrentiev

0) x(t) + u(t) >0, a.e. on [0,10]

Example s.t.

minimal | time 2
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Lavrentiev effect

Thesis 10
defense .
min [ (0] + u(e)?) o,
Alexandre 0
Vieira
010 0
S x(t)=10 0 1[x(t)+ 0 )
?Zloo:;ition 0 0 O V(t)+U(t) L
Matrix _ ; -
S 0<v(t) L(1 0 0)x(t)+u(t) >0, AN
2D Example s.t.
R —2 ol I R N T
= 1] o] o=
Example
minimal time —1 1200} : : . ]
1000
[ x(T) free, o
400
Resolution with Direct Method and relaxation of 200] . . , ]
the complementarity. Library used: IPOPT and % 2 & & 8 1o

CasADI. h = 1073, 39/43



Minimal time

Thesis
defense
Alexandre Theorem
Vieira
Suppose:
Appendix . _
Bounded o either C =0,
ope . . i . . .
i o or D is a diagonal matrix with positive entries.
definition
BveLes Let (x*, u*, v*) be a local minimizer for the minimal time problem. Then
et _ _ . :
[retheme e (x*, u*, v*) is W-stationary; i.e. there exist an arc p : [0, T*] — R", a scalar

ﬁs"t.:z"o:“i"g Ao € {0,1} and multipliers A®, A" : [0, T*] — R™ such that:

Example
minimal time

(N0, p(t)) # 0Vt € [0, T*]

and:
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Minimal time

Thesis
defense

Alexandre
Vieira
Theorem

Appendix . . T T H
Bounded p(t) = —ATp(t) — CTA"(t)

Slope
Condition
ikt I 0=BTp+ DTA" 4 AC
BVP LCS
e 0e —FTp— ETA + NS (u* (1))
Stationari
&

for i AP(t) =0, Vi€ IO(x*, u*, v*)

Example
M) =0, Vie 12 (x*, u*, v¥)

minimal time
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Appendix
Bounded
Slope
Condition
Matrix
definition
BVP LCS
2D Example
Lavrentiev
Stationarit{
for minimal
time
Example
minimal time

Minimal time

Also, since the system is linear, we know
there exist a second set of multipliers n®
and n* such that:

0=BTp+ DTy +n°

0e —FTp— E™p" + NS (u*(t))
ne(t) =0, Vie I;7O(x*, u*)
nf(t) =0, Vie 197 (x*, u*)
et =0o0rn® >0, nf >0, vie 19x*, u*)

... But they can be different from the
corresponding A¢ and A" on a subset of
[0, T*] of positive measure.

(a) W-stationarity

nf!

n;

(b) M-stationarity
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A bang-bang property

et This second example, close to the previous one, suggests that the hypothesis of D
Aleand P-matrix can possibly be relaxed.
Vidita
Appendix
S min T* !
Condition
Matrix .
defincion x(t) = Ax(t) + Bv(t) + Fu(t), L N
S ; 0<v(t) L —v(t)+u(t) =0
tationari S.T.
by u(t) eU = [-1,1]
Example
minim';l time (X(O), X( T*)) — (X07 Xf),
In this case, one can prove that
€ =1(0,0),(1,0),(1,1)} also works for . -
covering the entire accessibility set. 1
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