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Abstract—Taking into account subject variability in data

mining is one of the great challenges of modern biomedical

engineering. In EEG recordings, the assumption that time sources

are exactly shared by multiple subjects, multiple recordings of

the same subject, or even multiples instances of the sources in one

recording is especially wrong. In this paper, we propose to deal

with shared underlying sources expressed through time warping

in multiple EEG recordings, in the context of ocular artifact

removal. Diffeomorphisms are used to model the time warping

operators. We derive an algorithm that extracts all sources and

diffeomorphism in the model and show successful simulations,

giving a proof of concept that subject variability can be tackled

with tensor modeling.

I. INTRODUCTION

Electroencephalographic (EEG) recordings of a single sub-
ject’s neural activity are data sets with two dimensions, namely
time and sensors. A wide variety of multilinear methods have
been developed in the recent years that try to extract meaning-
ful sources from these data that describe patterns of neurons
or systematic responses to certain stimuli. In particular, to
perform source separation in a blind context where no a priori
knowledge on the cortex nor on the sources is available, tensor
decomposition techniques applied on tensorization of two way
arrays or multiple recordings of the same subject have proven
a powerful tool in EEG [1]. Indeed the approximate multi-
linearity assumption made in tensor decompositions seems to
fit with underlying complex physical models of brain electrical
activity. However a major obstacle to source separation in EEG
is the poor signal to noise ratio due to numerous artifacts in the
signal. Notably, eye movement is known to generate a signal
more powerful than the signal emitted by sources of interest. In
this work, source separation is used to estimate these artifacts
in the EEG recordings.

For signal generated by eye-movements, it is assumed that
the signal xik(t) recorded by the ith sensor at the kth trial
is the summation of R source signals br(t) up to scaling
factors air that are independent of the trial. However, this is
not necessarily the case since temporal changes can occur due
to time shift inherent to differences in speed and amplitude
of saccades. The same issue of variability between several
measurements of the same phenomenon can be encountered
when quantifying the concentration of a chemical substance
by measuring a chromatographic signal. In this case, tempo-
ral responses of certain chemicals may have various shapes
depending on temperature and injection of the mixture which
is done by hand. Another example is audio data, where the
Doppler effect can cause time-warping.

In this paper, we tackle the problem of tensor factorization
when the underlying profiles change shape from trial to trial.
In this case, the canonical polyadic (CP) decomposition model
is no longer valid and leads to poor estimation results [2]. We

introduce a registered CP (rCP) decomposition model which
assumes that the second mode is not only shifted from trial
to trial as in [3] but can be any time warping modeled by an
orientation-preserving diffeomorphism.

The paper is structured as follows. In Section II, the used
notations are introduces. Section III briefly recalls the CP de-
composition and related methods to deal with profiles change
in one mode. The proposed registered CP decomposition is
derived in Section IV, next we validate the usefulness of our
rCP decomposition (Section V). Finally, Section VI concludes
this paper.

II. NOTATIONS

In the following, X 2 RM⇥L⇥K denotes a third order
tensor (here a three way array) whose (m, l, k)th entry is xmlk.
The kth matrix slice of X is denoted by Xk = X (:, :, k) (i.e. it
contains all xmlk by keeping k constant). The column vector
yr is the rth column of the matrix Y and yr is the rth element
of y. The transposition operator is denoted by ·0, the pseudo-
inverse matrix is denoted by ·† and ⌦ and ⇥ are the outer
and Kronecker products, respectively. k · k2 and k · kF are the
`2 and Frobenius norms, respectively. Diag(·) is the diagonal
operator that only keeps the diagonal element of the matrix
input. Finally, � is the composition operator: x�y(t) = x

�
y(t)

�

and ˙

f is the derivative of f .

III. RELATED TENSOR FACTORIZATIONS

Let X be the three way array of the recorded data such
that Xk is the kth trial or sample. More precisely, on EEG
data, the raw recordings are split according to the saccades so
that only one saccade is present in each trial, providing a data
matrix Xk which are then stacked to form X , where M is the
number of sensors, L the number of time samples and K the
number of trials. Assuming an additive gaussian i.i.d. noise,
the recordings are expressed as

X = T + E , (1)

where T and E are the signal and noise arrays, respectively.
The signal array T can be factorized to reveal the underlying
latent factors. It is assumed that the shapes of sources in the
second mode can change from sample to sample. The goal
of this paper is to incorporate a priori knowledge on the
variations among the shapes into tensor decomposition models,
and to pave the way for further research in modeling subject
variability in tensor decomposition.

Differences between shapes of second mode sources are
modeled as a shape warping from a latent set of ‘original’
sources br(t):

˜

bkr(t) = br

�
�rk(t)

�
, (2)

where �rk(t) is an orientation-preserving diffeomorphism (see
Fig. 1).



In addition to X , a set of P others signals Y(p) 2 RM⇥K

are simultaneously recorded that allows additional a priori
information on the latent sources of the second mode to be
obtained. In the case of EEG ocular artifacts removal, GAZE
signals (i.e. eye motions) are simultaneously recorded. The
fusion of these data sets will be the topic of further research,
since here the second data set serves only to be used as an a
priori on the latent sources br or diffeomorphisms �kr.
A. Canonical polyadic decomposition

The CP decomposition represents an array T by a sum of
rank-one tensors as

T =

RX

r=1

�rar ⌦ br ⌦ cr. (3)

Equivalently, the kth matrix slice is expressed as

Tk = ADkB
0
, (4)

where Dk is a diagonal matrix whose entries are the kth row
of C⇤, with ⇤ the diagonal matrix whose entries are �r. The
loading matrices A, B and C and the scaling factors � are
estimated as

ˆ�, ˆA,

ˆB,

ˆC = arg min

�,A,B,C

1

2

��X � T
��2
F

(5)

subject to 8r, kark2 = kbrk2 = kcrk2 = 1.

Consequently, the CP decomposition model assumes that
each trial can be factorized as a matrix product of spatial
map A and temporal shapes B up to scaling factors. An
underlying hypothesis of CP decomposition model is therefore
that the spatial maps and temporal shapes are the same for
each trial: i.e. �kr = �0, with �0 the delta Dirac distribution
at 0. However, this latter assumption is not always satisfied
if the trials are misaligned and/or if the temporal shapes
presents some time warping between them, like temporal shifts
or time contractions/dilatations. Especially for outliers among
time sources generated by eye movement, variability in eye
saccades leads to variability in the temporal responses that are
not taken into account by the CP decomposition. The issue
is similar to the time retention shift issue encountered with
chromatographic data [2].

B. PARAFAC2, SCREAM and Shift-PARAFAC models

To overcome these limitations of the CP decomposition, the
PARAFAC2 [4] model was introduced. It is usually defined by

8k, Tk = ADkB
0
k (6)

where Dk is a diagonal matrix with entries the kth row of
C⇤. This model differs from (4) only in the fact that the
second loading matrix can be different for each trial. To ensure
identifiability, the following constraints are added: B0

kBk = I,
for all k. This model thus assumes that the second loading
matrices share the same correlation between trials:

ˆA, { ˆBk}, ˆC =argmin

1

2

��X � T
��2
F
, (7)

s.t. 8k, B0
kBk = I,

with T defined by (6). This model better suits the assumed data
structure in (2) but it does not take into account the distortion
of the time axis. In other words, PARAFAC2 assumes a
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Fig. 1. Typical functions br , warping diffeomorphisms �kr and warped
factors b̃kr . Fig. 1(a) shows 3 latent factors. Fig. 1(b) shows 4 diffeomorphisms
�kr and Fig. 1(c) shows b1��k1, i.e. the application of the 4 diffeomorphisms
on the latent factor b1 in blue in Fig. 1(a).

constant autocorrelation of the sources in Bk which is a wrong
assumption if the variability among sources is due to time
warping.

Another closely related model is the SCREAM [5] model
which was introduced to model some data with shifts and
shape changes in one mode, but provided auxiliary matrix data
for which a linear regression model depending on the latent
sources is valid. It is computed as a PARAFAC2 model coupled
to a linear regression model with mixing matrix factor C.

Finally when sources in Bk are identical but shifted in time
with delays ⌧kr, i.e. �kr = �⌧kr , parametrization of the delay
in the indexes of columns Br leads to a model called Shift-
PARAFAC [3]. For EEG and eye artifact extraction, again this
model cannot be applied since a simple time shift between
sources is not a satisfactory model.

IV. PROPOSED REGISTERED CP DECOMPOSITION

In this paper, it is assumed that the second loading factors
br come from the sampling of functions br and are equal from
trial to trial up to orientation-preserving diffeomorphisms �·r:
i.e. 8r and 8(l, k), bkr � ��1

kr = blr � ��1
lr . Consequently, the

kth trial Tk is expressed as

8k, Tk = ADkB̃
0
k, (8)

where B̃k = [�k1b1, · · · ,�k,RbR]. The matrices �kr are
the warping matrices (i.e. matrix representations of diffeomor-
phism operators).

A. Registered CP algorithm

The registered CP (rCP) decomposition aims at optimizing
the following criterion:

ˆA,

ˆB,

ˆC,

�
�̂rk

 
r,k

= arg min

A,B,C,{�rk}r,k

1

2

��X � T
��2
F
, (9)

with T defined by (8). To optimize this criterion, an alternative
least square (ALS) algorithm is used [6]: it aims at estimating
sequentially each parameter with all the other parameters fixed.
Consequently, we propose the following step:

1) Update A given ˆB, ˆC,
�
�̂kr

 

ˆA 
 

KX

k=1

Xk
ˆ

˜Bk
ˆDk

! 
KX

k=1

ˆDk
ˆ

˜B0
k
ˆ

˜Bk
ˆDk

!�1

.

(10)



2) Update C given ˆA, ˆB,
�
�̂kr

 

ˆDk  Diag

⇣
ˆA†Xk

ˆ

˜B†0
k

⌘
. (11)

3) i) Estimate ˜Bk, for all k, given ˆA, ˆC,
�
�̂kr

 

ˆ

˜Bk  X0
k
ˆA†

ˆD†
k. (12)

ii) Factorize each matrix
h
ˆ

˜b1r, · · · , ˆ˜bKr

i
as �r(IK⇥

br), where �r = [�1r, · · · ,�Kr] is the concatenation
of warping matrices for the rth component of the
second loading factor, by

ˆbr,
�
�̂kr

 
k
= arg min

br,
�
�kr

 
k

KX

k=1

d

�
�krbr,

˜bkr

�2
,

(13)
where d(·) is a distance defined in the next paragraph.
iii) Then, ˆ

˜Bk is updated as

8k, ˆ

˜Bk =

⇥
ˆ

�k1
ˆb1, · · · , ˆ�kR

ˆbR

⇤
. (14)

B. Factorization of warped loadings

The underlying structure of the warped loadings ˜Bk is
recovered by estimating both the generating function br and
the warping diffeomorphisms �kr [7]. Let F be the set of
absolutely continuous functions defined on [0, 1] and G be
the set of orientation-preserving diffeomorphisms of the unit
interval [0, 1] to [0, 1].

The aim of step 3) defined by (13) is to find a function
br 2 F so that it is the best approximation of all functions ˜bkr
up to warping functions �kr 2 G. To do this, let us use
an elastic distance between functions, i.e. a distance in the
quotient space F/G which is the set of orbits of the type
[f ] = {f � � | 8� 2 G}, for any f 2 F. The used elastic
distance between two functions f1 and f2 of F is defined by
the Fisher-Rao Riemannian metric [8], [9]:

d(f1, f2) = inf

�2G
dFR(f1, f2 � �).

However, as pointed out by [7], it has been shown [10]
that this distance can be efficiently computed by transform-
ing the functional space F into L2, the set of square inte-
grable functions, using the square-root slope function (SRSF):
q = sign

�
˙

f

�q�� ˙
f

��, with sign(·) the sign function. Indeed, in
L2, the Fisher-Rao distance becomes the Euclidian distance:
dFR(f1, f2) = kq1 � q2k. Consequently, the latent loading br

is estimated as the Karsher mean of {˜b1r, · · · ,˜bKr} defines
from its SRSF as

q̂r = arg min

q2L2

KX

k=1

✓
inf

�k2G

���q � (qk � �k)
p
�̇k

���
2
◆
, (15)

where qk is the SRSF associated with ˜

bkr. The set of warping
diffeomorphisms �kr are then estimated as

�̂kr = arg inf

�

���q̃kr � (q̂r � �)
p
�̇

���
2
, (16)

by dynamical programming [11]. Finally, br is expressed as

ˆbr =

 
KX

k=1

c

2
kr(a

0
rar)ˆ�

0
kr
ˆ

�kr

!�1

⇥
KX

k=1

 
ckr

ˆ

�

0
kr

✓
X0

k �
X

l 6=r

ckl
ˆ

�klbla
0
l

◆
ar

!
. (17)

It is worth noting that some trivial underdetermination are
inherent to the assumption (2). Indeed, one can blindly only
recover the latent sources br and the diffeomorphisms �kr up
to diffeomorphisms �̃kr since

˜

bkr = br � �kr =

�
br � �̃�1

kr

�
�
�
�̃kr � �kr

�
.

C. Using priors on br or �kr

The above scheme assumes that no prior information is
known about neither the latent factor shapes br nor the warping
diffeomorphisms �kr. However, in some experiments, such
prior information can be available. This is for instance the case
if GAZE&EEG data are recorded synchronously. Indeed, the
GAZE recordings can be used either to initialize the iterative
ALS algorithm or as prior on either br or �kr.

If all warping diffeomorphisms �kr are known, then the
third step (13) resumes to (17) by substituting ˆ

�kr by its actual
value �kr. Similarly, if latent factors br are known, then the
third step (13) resumes to (16) by substituting q̂r with qr, the
SRSF of br.

V. RESULTS

Both numerical simulations and an illustration on actual
GAZE&EEG data are presented.

A. Numerical simulations

In each simulation, the number of components R is fixed
to 3. The length of the first, second and third loading factors
ar, br and cr are 10, 250 and 50, respectively. The first and
third loadings factors A and C are generated randomly from a
standard normal distribution. Each component br of the second
loading factor B is generated from a Gaussian process [12]
with a zero mean function and a covariance function kr(t, t

0
) =

exp

�
�(t�t0)2/2l2r

�
, with lr uniformly distributed in [.02; .22],

so that it is smooth enough with still some variations. The
warping diffeomorphisms are generated as

�kr(t) =

Z t

0
↵ exp

�
wkr(u)

�
du,

where ↵ is a normalisation factor so that �kr(1) = 1.
Functions wkr are randomly drawn as Gaussian processes
with a zero mean value function and a covariance function
k

(w)
kr (t, t

0
) = �

2
exp

�
�(t � t

0
)

2
/2�

2

kr

�
, with � = .8 and

�kr uniformly distributed in [.1; .4]. Typical functions br and
warping diffeomorphisms �kr are plotted in Fig. 1. Entries of
tensor E are drawn from a zero mean normal distribution with a
standard deviation equal to .5. For each numerical experiment,
50 configurations are randomly drawn by first regenerating
random parameters lr, �kr and all warping diffeomorphisms
�kr and then each factors A, B and C and additive noise E .



The quality of the tensor estimation is quantified by two
performance indexes. The overall signal-to-noise ratio im-
provement (⇧O) is defined as

⇧O

�
ˆT
�
= 10 log

 ��T
��2
F��T � ˆT
��2
F

!
� 10 log

 ��T
��2
F��T � ˆTinit
��2
F

!
,

where T , ˆT and ˆTinit are the true, estimated and initial
tensors, respectively. The higher, the better the results. The
factor performance index (⇧F ), which measures the quality
estimation of each factor, is defined as

⇧F =

8
><

>:

1�
��ˆd0

rdr

��

kˆdrk2 kdrk2
, if dr is a non warped factor,

inf

�2G
dFR(

ˆ

dr � �, dr), if dr is a warped factor.

Based on the trivial underdetermination of the warped factor,
its performance is measured as the elastic distance in the
quotient space F/G, while the other ones are based on the
correlation coefficient between the true loading and its esti-
mate. For the factor performance index, the closer to zero, the
better the results.

The numerical results are shown on Fig. 2. As one can see,
the proposed rCP allows to estimate the underlying factors
(Fig. 2(b), 2(c), 2(d)). Indeed, the performance indexes ⇧F

after the estimation are lower than the ⇧F at the initial-
ization. Both methods rCP and rCP-B provide quite similar
performance but lower than rCP-G which assumes known the
diffeomorphisms. Quite surprisingly, rCP-B leads to a little bite
lower performance than rCP: such results will be more deeply
investigated in a future work. The proposed rCP outperforms
both the classical CP and PARAFAC2: after convergence, the
estimated tensors are worse than the initialized one (the ⇧O

is negative). Indeed, for these two methods, this result is
explained by a worse estimation on the second loading factor
(Fig. 2(c)). For the CP, one can explain this by the miss-
modeling which does not assume some shapes modifications
in any loadings. This is expected on the warped loading
(Fig. 2(c)). Consequently, the first one, which is theoretically
not affected by a miss-modeling, and the third one (Fig. 2(d))
which models the amplitude of factors are also less accu-
rately estimated (Fig. 2(b)) than using rCP. The more flexible
PARAFAC2 model also fails to estimate the underlying latent
factors B since the orthogonality constraint is not valid but
its flexibility leads to a better estimation of the first and third
loadings than CP.

B. Illustration on GAZE&EEG data

The Gaze&EEG data comes from experiments in visual
search where participants had to search a target from a
set of distractors [13]. GAZE and EEG data were recorded
synchronously. From these data, two tensors (space ⇥ time ⇥
trials) are built synchronized on the beginning of the saccades:
each tensor is the concatenation in the third dimension of the
matrices in which each column is the vector of channel signals
at a given time. The number of components is fixed to R = 2,
EEG tensor is of size 63 channels, 250 time samples and 47
trials. The initializations of �kr have been done from the GAZE
signals. As one can see (Fig. 3), after ocular removal by rCP,
the remaining EEG is much more stationary than using CP.
rCP removes almost all the artefacts while CP does not.
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Fig. 2. Performance of the proposed rCP. Comparison of performance indexes
for several assumptions from initialization (Init.), usual CP (CP), PARAFAC2
(PA), proposed registered CP (rCP), rCP with known latent factors B (rCP-B)
and rCP with known warping functions �kr (rCP-G). On each box, the red
mark is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to extreme values and the outliers are plotted individually
as red crosses.
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Fig. 3. Illustration on EEG data. Columns from left to right: GAZE signals,
Fp1 electrode and FC2 electrode raw EEG, ocular artefacts removal by CP
and by rCP.

VI. CONCLUSION

In this article, the factorization of a three-way array has
been proposed for the case that one mode presents shape
variations. The proposed registered-CP decomposition pro-
cesses the mode with shape variations as orientation-preserving
diffeomorphisms. It is thus a generalization of the Shift-
PARAFAC method since it considers a larger class of shape
variations and it is related to the PARAFAC2 model, but
different constraints are imposed. An ALS scheme has been
proposed to estimate the loadings and the latent shapes with the
associated diffeomorphisms. The numerical simulations show
the potential of the rCP which outperforms both the CP and
the PARAFAC2 decompositions.

The current algorithm suffers from its computational cost
due to the implementation using dynamic programming. Thus
some efficient algorithms must be proposed to increase the
efficient use of the rCP algorithm. In perspective, some appli-
cations like chromatographic data require additional assump-
tions on some loadings such as non-negativity, those cases will
be considered in the future. Finally, a theoretical study must
be made to provide some sufficient/necessary conditions of
identifiability of the proposed rCP model.
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