
Comparison between Adjar and xDawn algorithms to estimate
Eye-Fixation Related Potentials distorded by overlapping

Emmanuelle Kristensen1, Anne Guerin-Dugué1 and Bertrand Rivet1

Abstract— Eye-Fixation Related Potentials technique is a
joint analysis of both electrical brain activities and ocular
movements. It permits to extract neural components synchro-
nized with ocular fixations. But, the brain responses elicited
by adjacent fixations can be distorted by overlapping process
due to short inter fixations intervals. Two algorithms, Adjar
and xDawn, are studied to correct these distortions. The Adjar
performance is based on assumptions concerning the temporal
distributions which become too restrictive for EFRP studies. On
the contrary, the xDawn algorithm is based on a more general
and flexible model which is well adapted to EFRP studies.

I. INTRODUCTION

Event Related Potential (ERP) extraction is a very popular
technique to study neural activities in response to specific
events like stimulus presentation. Electroencephalographic
(EEG) signals are time locked on specific events and then
averaged. Thanks to ERP studies, a lot of neural potentials
have been identified and associated to cognitive mechanisms.
See [1] for a review at this date. But in order to avoid
artifacts, during classical ERP experiments, participants must
not move (muscular artifacts) and also have to fixate a given
location on the screen to not move the eyes (ocular artifacts).
For example, for reading studies, participants read word by
word, a word at a time is displayed in the screen. This
experimental context is far from natural reading ( [2], [3]).
The same observation is also for visual perception to study
visual exploration of natural scenes ([4], [5], [6], [7]).

Recently, new techniques based on joint EEG and eye
tracking (ET) acquisition, have been developed to allow a
more ecological experimental framework. In one hand, the
joint analysis of both electrical brain activities and ocular
movements allows to study cognitive processes and their
timeline, in ecological situations with more complex stimuli.
The extracted Eye-Fixation Related Potentials (EFRP) are
neural components synchronized with ocular fixations.

In other hand, EFRP technique has an important limitation
to isolate time locked neural potentials. In fact, in most of
the ERP experiments, inter stimuli intervals (ISI) can be
managed to avoid overlapping between different time locked
neural responses (the ISI are greater than the larger latency
of the expected potentials). But in EFRP experiments, inter
fixations intervals (IFI) depend on the temporal oculomotor
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patterns of the participants. For example, the latency of the
well-known P300 potential (around 300ms after the time
locked trigger) is of the same order of magnitude as usual
IFI (fixation plus saccade durations). Consequently, studying
such potentials, in these natural experimental conditions, re-
quires careful methodology to interpret the observed EFRPs.

To address this issue for ERP experiments, a first algo-
rithm has been previously introduced: Adjacent Response
Algorithm (“Adjar”) by Woldorff [8]. In the context of Brain
Computer Interfaces, the “xDawn” algorithm [9] has been
proposed for designing adapted spatial filters. We will show
how this algorithm can be used as a new and flexible method
to cope with overlapped EFRP waveforms.

In the following, both algorithms are introduced. Then,
their performances are compared on different simulated
realistic signals.

II. ALGORITHMS FOR OVERLAPPING ISSUE

In this section, the overlapping issue is explained then both
algorithms, Adjar and xDawn, are described.

A. Overlapping issue

In the context of EFRP, most of the studies concern early
potentials with latency less or about the average IFI (between
200 and 300ms depending on the task): P1 (latency between
80 and 100ms after the eye-fixations onset), N1 (latency
between 130 and 250ms), P2 (latency between 200 and 300
ms), N2 (latency between 250 and 350ms) and P3 (latency
between 300 and 500ms) [10]. In these conditions, with short
latencies, overlapping distortions are neglected. For studies
concerning late potentials: P3 (latency between 300 and
500ms), N400 (latency between 300 and 600ms), precautions
are taken to avoid overlaps. For example, participants are
trained to make longer fixations when exploring the visual
scenes [7]. In these particular conditions, it might be
objected that the experimental conditions are not natural.

Let xi(t) denotes the response time-locked on the target
fixation in the trial i:

xi(t) = si(t) + sp,i(t− τp,i) + ss,i(t− τs,i) + ni(t), (1)

where si(t) denotes the response time-locked on target
fixation for the trial i, at time index t and sp,i(t) (resp.
ss,i(t)) denotes the responses time-locked on immediately
previous (resp. subsequent) fixation with τp,i (resp. τs,i)
the previous (resp. subsequent) fixation onset. Let ni(t)
denotes the ongoing brain activity which is not related to
the fixations. The estimation ŝ(t) of the EFRP time-locked



on target fixations is defined as the average on all trials (I)
for a given subject:

ŝ(t) =
1

I

I∑
i=1

xi(t). (2)

Considering 1, ŝ(t) can then be rewritten as:

ŝ(t) = s(t) +Dp(t) ∗ sp(t) +Ds(t) ∗ ss(t) + n(t) (3)

with ∗ the convolutive product and s(t), sp(t) and ss(t)
the average time-locked response elicited respectively on
target fixations, on previous fixations and on the subsequent
fixations. n(t) is the average of ongoing brain activity which
is not related to fixations. Let Dp(t) and Ds(t) denote the
normalized distributions of the IFIs (τp,i and τs,i) with the
previous and subsequent fixations, respectively.

So, if the IFIs are lower than latencies, ŝ(t) is addi-
tively noisy distorted by the previous overlapping response
ovp(t) = Dp(t)∗ sp(t), the subsequent overlapping response
ovs(t) = Ds(t) ∗ ss(t) and in all the cases, the remaining
noise n(t).

Two existing algorithms are applied to correct the EFRPs
distortions: “Adjar” [8] and “xDawn” [9], [11].

B. Adjar: general description

The Adjar algorithm iteratively estimates the average of
previous and subsequent responses which are then subtracted
to the target response, for the new iteration, and so on. The
complete “Level 2 procedure”, detailed in [8], is applied.

There are four main assumptions:
1) all stimuli elicit the same pattern sp(t) = ss(t) = s(t),
2) the model does not consider other ongoing brain ac-

tivity n(t), but only previous (ovp(t)) and subsequent
responses (ovs(t)),

3) the principal causes of overlaps during the iterative
process are due to the immediately adjacent responses
(named first-order adjacent responses), and then,

4) the higher-order adjacent responses are considered as
negligible, already from the second order (Ds(t) ∗
Ds(t) ∗ s(t), Dp(t) ∗Dp(t) ∗ s(t)).

At first sight, the first assumption seems to be the most
restrictive one in the EFRP context, but it can be relaxed as
done in the case of a Stop-Signal experiment [12]. For these
experiments, ERPs elicited by the Stop event are distorted by
responses elicited by the previous Go stimuli. Then, thanks
to such straightforward adaptations, this procedure can be
applied even when two different successive responses are
overlapping. However, the overlap of three or more different
responses, in a given observation interval, is not addressed
by the Adjar algorithm. Here, the study will be focused on
the two last assumptions.

The Adjar algorithm iteratively estimates the overlapping
responses ovp(t) and ovs(t) from the evoked potential ŝ(t).
The kth iteration of the Adjar algorithm is described as:

ôv
(k)
s (t) = Ds(t) ∗

(
ŝ(t)− ôv(k−1)p (t)

)
,

ôv
(k)
p (t) = Dp(t) ∗

(
ŝ(t)− ôv(k)s (t)

)
,

with ôv
(0)
p (t) = 0 and the estimation of s(t) after this

iteration is given by :

ŝ(k)(t) = ŝ(t)− ôv(k)s (t)− ôv(k)p (t). (4)

At the last iteration, the remaining overlap in ŝAdjar(t) =
ŝ(∞)(t) (4) contains two second order terms equal to Ds(t)∗
Ds(t) ∗ s(t) and Dp(t) ∗Dp(t) ∗ s(t) . These terms may not
be necessarily neglected, depending on the temporal ranges
of the distributions Ds(t) and Dp(t) as shown in Section IV.

C. xDawn: general description

The objective of the xDawn method, described in [9],
extended and theoretically analyzed in [11], was the design
of adapted spatial filters to maximize the signal-to-noise ratio
before classification.

Here for the overlapping issue, only the first part of this
algorithm is adapted and used. For this, recorded signals (1)
can be rewritten, using matrix notations to express the
convolution, as:

∀i ∈ {1, · · · , I}, xi = Qisi +Qp,isp,i +Qs,iss,i, (5)

where xi = [xi(1), . . . , xi(Ti)]
† ∈ RTi , with Ti the number

of time samples of the ith trial and ·† the transpose operator.
si ∈ RTt , sp,i ∈ RTp and ss,i ∈ RTs are the vectors of the
response time-locked on the target fixation, on the previous
fixation and on the subsequent fixation, respectively. Tt, Tp
and Ts are the lengths of the responses si(t), sp,i(t) and
ss,i(t), respectively. Finally, Qi, Qp,i and Qs,i are Toeplitz
matrices defined by their first column whose all entries are
zero but the entries related to t = 0, t = τp,i and t = τs,i
equal to one, respectively. Consequently, all the trials can be
concatenated to obtain:

x = Qs+Qpsp +Qsss, (6)

with x = [x†1, . . . ,x
†
I ]
† and Q = [Q†1, . . . , Q

†
I ]
†, Qp =

[Q†p,1, . . . , Q
†
p,I ]
† and Qs = [Q†s,1, . . . , Q

†
s,I ]
†. By least

square minimization, one can estimate in a close form the
average responses time-locked on respectively the target, the
previous, and the subsequent fixations (ŝ, ŝp, ŝs) by:

[ŝ†, ŝ†p, ŝ
†
s]
† =

(
B†B

)−1
B†x, (7)

with B = [Q,Qp, Qs].

III. METHODOLOGY

This section presents the methodology to simulate the
database used for the application and the comparison of the
two algorithms.

A. General principles

The final aim of this study is to apply both algorithms in
realistic EFRP contexts. The simplest case of overlapping is
considered, as described in (1), and under the first assumption
(sp(t) = ss(t) = s(t)). In a first step, the Ds and Dp
distributions are completly controlled in order to have a base
line for the comparison. In a second step, the Ds and Dp
distributions are extracted from a real experiment to be in
realistic conditions for EFRPs extraction. Moreover, to obtain



a “ground truth” for comparison, the algorithms are applied
on the same simulated waveforms, generated to be similar
to EEG signals.

B. Parameters for simulated data

1) Different distributions: In order to evaluate the impact
of the temporal range of the Dp and Ds distributions on
the algorithms’ effectiveness, two groups of simulation were
realized.

For the first group, the Dp and Ds distributions were uni-
form distributions between -950ms and -800ms and between
800ms and 950ms, respectively. The time, t=0ms, is the time
locked on the target fixation, the fixation of interest in each
trial. Let “Case 1” denote this group of distributions.

For the second group, the Dp and Ds distributions were
directly extracted from an experiment of visual search. EEG
and eye-tracking signals were jointly recorded for ten healthy
participants. The goal of the experiment was to detect if
there was or not one or more target stimuli among the four
stimuli displayed on the screen. The participants were asked
to follow a given pattern during 2.7 sec for each trial. The
scanpath (figure 1(a)) shows the path of an eye during a
trial. In this figure, the stimuli are overlapped by circles
which represent eye-fixations. The green and red rectangles
around the stimuli define the regions of interest (ROI). In
this example, there was one target stimulus (inside the green
ROI) and three no-target stimuli inside the red ROI. For
the analysis, all fixations with a duration shorter than 90ms
were supressed. If more than one fixation were landed on
a target stimulus, the fixation with longest duration was
chosen, the mean duration was 350ms. After pre-proccesing
(trial segmentation, artifacts and noisy trials rejection), the
mean number of trials was 242 by subject. The Dp and
Ds distributions were then extracted from eye-tracking data
(figure 1(b)). The time was locked on the target fixation’s
onset. The mean latency of immediately previous (resp.
subsequent) fixation was -207ms (resp. 376ms). The Dp

distribution was mainly explained by the duration of the
previous fixations whose a major proportion was landed
between two ROIs and was very short (in average 151ms).
To obtain the IFI distribution, the duration of the output
saccade was added (stable delay). For the Ds distribution,
the duration of the target fixations was longer. That explains
the different aspects of Dp and Ds distributions. Let “Case
2” denote this group of distributions.

The validity of the fourth assumption for Adjar (i.e: the
second-order adjacent responses are negligible) depends on
the temporal range of distributions. For Case 1, Dp(t) ∗
Dp(t)∗s(t) was between -1800ms and -1700ms and Ds(t)∗
Ds(t) ∗ s(t) between 1700ms and 1900ms. So, in this
case, the second-order responses were really outside the
observation windows defined on [0; 1000]ms. In Case 2,
Dp(t)∗Dp(t)∗s(t) (resp. Ds(t)∗Ds(t)∗s(t)) was between
-2134ms and -212ms (resp. between 232ms and 2026ms).
A part of the second-order responses were inclued in the
observation windows. Thanks to these two cases, we were

(a) Eye scanpath during a trial.
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(b) Dp and Ds distributions from the
target fixation onset

Fig. 1. Scanpath and distributions from real joint EEG and ET acquisitions.
In (a), the circles represent the fixation positions, the radius and their
duration. The boxes are the ROIs including the target or the non target
stimulus.

0 200 400 600 800 1000
−10

0

10

time [ms]

am
pl

itu
de

 [µ
V

]

(a) Example of an original wave-
form s(t)
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(b) First and second order previous
responses
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(c) First and second order subse-
quent responses
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(d) Part (%) of the energy of second
order responses in the observation
windows

Fig. 2. For Case 2 : Example of signals (original waveform, first and
second order responses), and importance (%) of second order response.

able to analyse the impact of the second-order adjacent
responses on the signal assessement.

2) Generation of simulated signals: The modelisation for
the observed signal is given by (3), with sp(t) = ss(t) =
s(t) to be in the best configuration for Adjar algorithm. A
waveform, s(t) was randomly generated (figure 2(a) for one
trial). White noise was added to the generated waveform to
simulate other ongoing brain activity as described in (1).
The mean SNR was -0.35dB. The observation windows was
between 0ms and 1000ms and the sampling frequency was
1000 Hz. Each configuration was repeated 1000 times, for a
statistical evaluation of the mean squared error on the final
estimation.

Figures 2(b) and 2(c) illustrate for Case 2, the second order
responses, but also the first order ones. And more precisely,
88% on average of the second-order previous responses
energy and 19% on average of the second-order subsequent
responses energy were in the observation windows (figure
2(d)). For reasons of space, similar graphs for Case 1 are
not presented here, the energy of second order previous
(resp. subsequent) response was null inside the observation
window. These results were in accordance with our remarks
on the second order distributions. In other terms, for Case
1, all the Adjar’s asumptions were verified, and for Case 2
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Fig. 3. Boxplot of the mean squared error for the three algorithms extracting
EFRP, in both cases.
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Fig. 4. For Case 2 : Comparison of EFRP estimation; for each method,
temporal evolution of the instantaneous estimation error s(t) − ŝ(t) from
the original signal illustrated at figure 2(a).

the Adjar’s fourth asumption was not verified. Nevertheless,
this last case is more encountered in the EFRPs studies.

IV. RESULTS AND DISCUSSION

The simple averaging, Adjar and xDawn estimations were
compared with the two types of Dp and Ds distributions.
The main difference between Case 1 and Case 2 concerns
their temporal range. Overall, the MSE is better for Case
1 than for Case 2 (figure 3). In fact for Case 1, the EFRP
at the target fixation onset is less distorded while previous
fixations occur earlier and subsequent fixations occur later
than for Case 2 (realistic distributions). In this Case 1,
the three technics have succeeded to correctly estimate the
signal, their performance is correct and similar. For Case 2,
where IFI are lower, the situation is different. There are more
overlaps. We observed an increasing MSE from Case 1 to
Case 2 more particularly when extracting neural potentials
by simple averaging or by applying Adjar (See figure 4
for the instantaneous error). This performance degradation
is due to the overlapping amount as it is expressed by a
significant part of the second order energy in the observation
window (figure 2(d)). In both cases, the xDawn performance
is better, and the performance enhancement compared to the
two others algorithms is significant for Case 2. Moreover the
xDawn performance remains stable and is not impacted by
the overlaping amount. This is in accordance with the general
model described by (6). These results show that xDawn is not
sensitive to the different types of distribution, unlike Adjar.

V. CONCLUSION AND PERSPECTIVES

In this paper, two algorithms are compared, Adjar and
xDawn, to correct distortions of Eye-Fixation Related Po-
tential due to overlap of adjacent fixations responses. The
algorithms were applied on simulated data but with realistic
distributions of fixations latencies. Our simulations show that
xDawn is more efficient and robust to correct distortions of

Eye-Fixation Related Potential. The Adjar performance is
based on assumptions concerning the temporal IFI distribu-
tions which become too restrictive for EFRP studies. On the
contrary, the xDawn algorithm is based on a more general
and flexible model which is well adapted to EFRP studies.
There is no assumption on the temporal IFI distributions and
on the similarity or not of the neural responses elicited by
the different fixations in the observation window. Works are
ongoing with the real EEG signals on this visual search
experiment to confirm these results. And very promising
results have been already obtained with real EEG signals
obtained during an exploration visual task [13].
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