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T O W A R D S A G E N E R A L ARCHITECTURE FOR A CO-learning OF BRAIN 
Computer Interfaces 

Nataliya Kos’myna, Franck Tarpin-Bernard and Bertrand Rivet 

ABSTRACT— In this article we propose a software architecture 
for asynchronous BCIs based on co-learning, where both the 
system and the user jointly learn by providing feedback to one 
another. We propose the use of recent filtering techniques such 
as Riemann Geometry and ICA followed by multiple 
classifications, by both incremental supervised classifiers and 
minimally supervised classifiers. The classifier outputs are then 
combined adaptively according to the feedback using recursive 
neural networks. 

I. INTRODUCTION 

Nowadays, Brain Computer Interfaces (BCIs) are 
promising but are still mostly limited [15] to the traditional 
supervised setting. In a supervised setting, a user needs to go 
through a long and rigorous training phase before the system 
can be used online. Increasingly, researchers are attempting 
to shift away from this setting and strive for the co-adaptive 
training of BCIs. For example, one can use neurofeedback to 
help the users to modulate their brain signals [8, 11]. 

Even with the use of neurofeedback, training phases 
remain long and tedious. Efforts have mostly been focused 
on improving the signal processing aspects of BCIs 
(filtering, feature selection and classification paradigms) 
[14], however, they do not focus on making the system more 
pleasant and less tiring for end-users. In general there aren’t 
enough efforts towards providing more interactive and 
shorter training phases. 

The recent shift towards adaptive/incremental learning-
based self-paced BCIs, is a good step towards a better 
experience [2, 9, 21]. However, while many research groups 
are working on the signal processing aspects, interfaces 
remain rudimentary and feedback is loosely integrated (e.g. 
a bar showing the level of the “feedback” [1]). With an 
asynchronous system (users chose when to perform an 
action rather than waiting for system instructions), the 
quality of the classification and of the interaction is even 
more closely related to the precise understanding the user 
has of his or her performance and of what to do at any given 
moment. This is true when the system is being calibrated or 
trained and when the user is learning to use the system 
subsequently. 
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All the work on signal processing is paramount to 
obtaining usable B C I systems that are robust to noise and to 
inter-trial variability. However, the quality of the interaction 
and of the feedback impact two very important aspects of 
usability. First, they help users to get their mind into the best 
possible state so as to reduce noise and variability as much 
as possible and thus to improve the classification accuracy. 
Secondly, it optimizes the learning pace of the users and 
speeds up the operationalization of B C I interfaces. 

Feedback strategies are one way to guide the user towards 
a state of mind compatible with a good B C I performance, as 
seamlessly and transparently as possible. We are of the 
opinion that two directions should be explored. 

On the one hand, the system must provide feedback to the 
users on their performance, what they are doing right and 
what they are doing wrong, what to imagine, how to 
improve and so on. On the other hand, we do not want to 
require a separate training phase, but instead want to 
incrementally train the classifier by using continuous 
affirmative feedback from the user to the system. 

This combination of mutual learning and training between 
the user and the system is what is often referred to as co-
learning. 

In this article we aim at proposing a general architecture 
that integrates all the aspects involved in the co-learning 
process that we just described. The training of the classifiers 
and all aspects of the system will adapt depending on this 
feedback and on the outcome of the classifications. 

We will first present some related research, both in terms 
of BCIs and of feedback strategies in general so as to give an 
idea of the current state of the art. Then, we will describe in 
more details all the aspects pertaining to the architecture and 
provide some insights as to what led us to make those 
choices. Finally, we will conclude and present perspectives 
for the improvement of the architecture and then give an 
account of our ongoing experiments towards the validation 
of this model. 

I I . RELATED WORK 

There are mainly two directions in related works, one in 
terms of BCIs (Section II-A) and the other in terms of 
feedback (as in feedback used in education) and especially 
formative feedback (Section II-B). 

A. Brain Computer Interfaces 
As introduced previously, the use of feedback is limited. 

However, one of the requirements for developing effective 
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feedback strategies in BCIs, namely asynchronous BCIs, in 
an incremental reinforcement learning setting [15] with 
single trial classification, is of active interest to researchers 
[11, 13, 14]. 

More recently, Barachant et al. [2] have proposed a 
method specifically aimed towards self-paced BCIs and that 
makes use of Riemann Geometry. This measure offers good 
performance on some datasets, even compared to other state 
of the art filtering techniques such as Common Spatial 
Pattern (CSP) filters (e.g. for the I V B C I Campaign, 71% vs. 
64.8% for CSP) . 

As for feedback strategies, research is mostly confined to 
a few domains [8, 10]. Vidaurre et al. [20] have had good 
success in using a feedback strategy based on what is used in 
education. They introduce a bias in the nature of the 
feedback so as to boost the performance of novice users. 
Their work is presented as a potential cure for B C I Illiteracy, 
which is backed by interesting results. They showed through 
experiments, that people, who would normally be considered 
as B C I illiterate, could manage to attain usable B C I 
performance. 

B. Some insights from education: Formative feedback 
“I'm trying to free your mind, Neo. But I can only show you 
the door. You're the one who must walk through it” —The 
Matrix (1999) [18]. 

There is currently a lot of research on the topic of 
formative feedback, as it is a core issue in traditional 
education. There have been, thus far, many attempts at 
classifying feedback strategies so as to offer ways of easily 
determining which is the right feedback strategy for a given 
pedagogical objective and for a given student demographic. 

However, it remains essential for the involvement of users 
that they retain the possibility to provide feedback to the 
system of their own initiative, that is, only when they deem 
the feedback will be beneficial for the system. This implies 
that users need to understand how the system utilises the 
feedback for training and to know about some of the internal 
mechanics of the classifier. 

In addition to the present work on a general architecture 
for co-learning, we are also actively exploring feedback 
strategies from education and more specifically formative 
feedback. 

III . ARCHITECTURE OVERVIEW 

The idea behind the architecture (Figure 1) is to put the 
user in a more prominent position so as to achieve a co-
learning setting, where both the system and the user learn. 
Co-learning, is actively related with the notions of active 
learning and reinforcement learning. Indeed, instead of 
having labelled training data, the system uses unlabelled data 
and subsequently queries the user to label the data online, 
following certain schemes that depend on the desired 
qualities [18] of the training labels. 

Furthermore, co-learning should not be confused with co-
training, where several classifiers are trained jointly for a 
better joint classification, even though we do exploit both 

co-learning and co-training aspects as will be described in 
the dedicated section. 

Co-learning as we mean it here, corresponds to the 
training of the classifier by the user by providing labels and 
affirmative feedback (was it classified correctly?). It also 
corresponds to the training of users by the system, so they 
can learn to modulate their brain signals and use BCIs in 
general. 

Our hypothesis is that users who are considered BCI 
illiterate, misunderstand how to modulate their signals in the 
appropriate way or simply have a slightly different 
modulation in their brains and thus cannot improve on their 
own without feedback. However, when guided they would 
be able to understand (even though subconsciously) how to 
modulate their signals properly and more importantly to 
devise a self-tailored strategy that works best for them. 

In the architecture, in order of appearance, there are 
several steps in the closed classification loop. The first step 
is the acquisition of Electroencephalography (EEG) data and 
a preliminary signal processing step, where the signals are 
referenced and normalized in some way. 

Then, in the training step, features are extracted from the 
filtered signals and are classified by a set of classifiers that 
are chosen so as to be as complementary as possible. The 
output of the classifiers is then combined through a classifier 
fusion operation (depending the feedback from the user 
during the operations of the system). 

Subsequently, during the feedback adaptation step, the 
system incorporates the outcome of the classification, the 
outcome of the task at hand and provides an adapted form of 
feedback for that specific user. The feedback depends on the 
experience of the user, the nature of the task, the delivery 
timing of the feedback and other factors. 

The last step of the process is when the user provides 
affirmative feedback to the system by indicating how the 
classification performed. Thus, a label is produced for the 
current feature vector. In turn it is used to individually train 
the classifiers, but also for the adaptation of the classifier 
fusion step. 

A. Signal Acquisition and Processing 
In the state of the art of Independent Component Analysis 

(ICA) for BCIs [20], it is apparent that systems based on 
ICA offer a very good performance and more readily enable 
single-trial classification and the implementation of adaptive 
online classifiers. 

Another very promising technique results from the use of 
Riemann Geometry both as a spatial filter for extracting 
features and selecting electrodes [2]. This approach has 
mainly been applied in the context of single trial 
asynchronous BCI system for motor imagery. 

B. Classification and Classifier Fusion 
The main idea behind the multiple classifiers is to exploit 

the potentially complementary features in order to build a 
more robust classifier. 
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However, given that we also want to have classifiers that 
are fully incremental, without any explicit training phase, we 
cannot directly use supervised algorithms from the start, 
which is why we have also integrated minimally supervised 
classifiers. 

Indeed, when a user first starts to use the system, we have 
no training on the supervised classifiers, which means that 
system would start off with a random classification 
performance and thus not be very useful for a while. This 
issue undermines the usefulness of incremental learning in 
the first place. 

Thus, minimally supervised classifiers can have the effect 
of allowing a better classification at the start than we would 
have otherwise. In terms of such techniques, a very trivial 
approach is to record a reference signal of the resting phase 
(no action) and of action phases corresponding to each class 
and then to proceed on to using distance measures on the 
filtered signals to discriminate between the classes. 

Possible measures include classical distance measures 
(Minkowski-based), correlation coefficients; the distance 
between n' derivatives; distances based on differential 
geometry (Riemann, Kullbach-Leibner) [3] and so forth. 

In terms of supervised classifiers, we are restricted to 
incremental learning algorithms, several of which have been 
proposed for BCIs. Those include: Recursive Partial Neural 
Networks [5]; Back propagation and Radial Basis Function 
Neural Networks (RBF-NN) [9]; Discriminative temporal 
Bayesian models such as Input Output HMMs (IOHMMs) or 
classifiers directly based on a modification of ICA 
(Generative ICA) [6]; Incremental Random Tree Forest [3]. 

For each classifier, the output of the algorithm is a vector 
the length of which is the number of classes. Each index of 
the vector corresponds to one class and contains the 

normalized likelihood value of the occurrence of that class. 
Therefore a necessary condition for a classifier to be 

compatible with the proposed architecture is that it has the 
possibility of outputting a normalized likelihood distribution. 
An additional challenge when dealing with more than two 
classes (resting state and one action) is the case of binary 
classifiers, where an additional step to render them able to 
handle all the classes, would be required. This is the case for 
very classical algorithms, such as Linear Discriminant 
Analysis (LDA) or Support Vector Machine (SVM) but also 
our distance based minimally supervised algorithm. 

Finally, for the fusion of the classifiers, we propose to use 
an incremental model based on RBF-NN and Evidence 
theory neural networks as described in [4]. Indeed, they 
correspond well to our incremental model and allow us to 
estimate adaptive weights for classifier fusion step. More 
specifically the input vector to the fusion neural network is 
the concatenation of the normalized output vectors from the 
individual classifiers. The output vector to the classifier 
fusion neural network is a vector identical to the output of 
the individual classifiers. The labels for the training of the 
fusion come from positive user feedback. A value of the one 
at the index corresponding to that class (zeroes elsewhere) 
represents a positively labelled problem instance for a given 
class. 

C. Feedback, Training and Adaptation 
The feedback from the system to the user takes various 

forms depending the skill of the user. We will include 
classical feedback techniques for BCIs, such as 
neurofeedback [10], as well as techniques adopted from the 
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Figure 1. General overview of the proposed architecture 
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educational domain; especially, formative feedback in the 
context of computerized feedback [12]. 

For the training of the classifier, the user is enabled to 
voluntarily tell the system if the classification at a given time 
was successful or not, thus generating positive and negative 
labelled instances. However, a very important element is 
how the feedback is communicated to the system. While 
pressing a key is something we are using as a starting point, 
it is not suitable for a real usage. One of the directions for 
ongoing tests we envision is the use of facial 
Electromyography (EMG) electrodes on the user’s brow and 
cheek to detect two actions (frown and smile) that would 
respectively correspond to negative and positive feedback. 
We have already performed some experiments involving 
E M G for feedback. 

The adaptation for supervised algorithms corresponds to 
the incremental training of the algorithm, as feedback is fed 
into the system. The main issue to resolve, however, is that 
some classifiers may become over fitted if the training from 
the feedback is not constrained. 

For the minimally supervised classifiers, the adaptation has 
to be implemented in an ad-hoc fashion for each specific 
method. For example, in the case of a simple distance based 
classifier, a positive example could be used as a new sample 
in the average used as a state reference to compute distances 
from. 

IV . CONCLUSION 

In this article we propose an architecture for asynchronous 
BCIs based on co-learning, where both the system and the 
user jointly learn by providing feedback to one another. We 
propose the use of recent filtering techniques, such as 
Riemann Geometry and I C A followed by multiple 
classifications with both incremental supervised classifiers 
as well as minimally supervised classifiers that are combined 
using a fusion based adaptive neural networks. 

Along with our work on feedback strategies, we are 
currently performing the first preliminary experiments with 
20 subjects towards the evaluation of the architecture with 
standard evaluation metrics for asynchronous BCIs. We 
already have a partial implementation of the architecture that 
includes the distance based minimally supervised classifier 
and a supervised neural network classifier. Furthermore, we 
have already attempted using E M G with two electrodes on 
the user’s face as the feedback strategy. 
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