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ABSTRACT

Usually, source separation in Post-Nonlinear (PNL) modelsis
achieved via one-stage methods, i.e. the two parts (linear and
nonlinear) of a PNL model are dealt with at the same time.
However, recent works have shown that the development of
two-stage techniques may simplify the problem. Indeed, if
the nonlinear stage can be compensated separately, then, in
a second moment, one can make use of the well-established
source separation algorithms for the linear case. Motivated by
that, we propose in this work a novel two-stage PNL method
relying on the assumption that the sources are bandlimited
signals. In the development of our method, special care is
taken in order to make it as robust as possible to noise. Simu-
lation results attest the effectiveness of the proposal.

1. INTRODUCTION

The objective of blind source separation (BSS) methods is to
estimate an unknown set of source signals by using only sam-
ples that are mixtures of these original signals. This problem
has been extensively studied for the case in which the mixing
process is modeled as a linear system. In such case, the inde-
pendent component analysis (ICA) is the standard tool to sep-
arate the sources. However, when the mixing process is non-
linear, BSS becomes a more complex task. For instance, non-
linear models are, as a rule, not separable. Put differently, the
recovery of the condition of statistical independence, which is
the very essence of ICA, does not always ensure proper source
separation in nonlinear models [1]. In view of this problem,
a more reasonable approach in nonlinear BSS is to focus on
constrained systems, for which the sound separability proper-
ties still hold.

The most studied examples of separable nonlinear mod-
els belong to the class of Post-Nonlinear (PNL) models [2].
In PNL models, the sources firstly undergo a linear mixing
process. Then, the resulting outputs are submitted to a sec-
ond stage composed of component-wise nonlinear functions.
The usual approach to recover the sources in a PNL model
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tries to deal with these both stages at the same time by min-
imizing the mutual information between the outputs of the
separating system [2]. Despite the theoretical soundness of
such an approach, there are several drawbacks regarding its
applicability. For example, the evaluation of the mutual in-
formation demands estimation of marginal entropies, which
results in a complex task. Also, given the difficulty in defin-
ing a MISO (multiple-input single-output) contrast based on
the mutual information, it would not be possible to perform
source extraction in such a case.

In order to overcome practical problems like these, alter-
native methods, like the gaussianization [3] and the geometri-
cal [4] approaches, rely on additional assumptions about the
sources in order to obtain a two-stage solution, in which the
nonlinear and linear stages of the PNL model are treated sep-
arately. Indeed, if the nonlinear effects introduced in a PNL
model are counterbalanced in a first stage, then the remain-
ing task becomes essentially of linear nature and, thus, canbe
accomplished in a very efficient way by linear source separa-
tion or source extraction methods. Yet, despite the encourag-
ing results provided by the two-stage PNL methods presently
available, there are still some limitations that make theirap-
plication difficult in a practical scenario. For instance, the ge-
ometrical method [4] is restricted to scenarios with only two
sources, whereas the gaussianization approach [3] may fail
when there is a small number of sources.

We propose in this work a novel two-stage PNL method
that employs a certain degree of prior knowledge about the
spectral content of the sources. More specifically, we assume
that the signals of interest are bandlimited, which allows us
to formulate a simple yet solid criterion for the estimation
of the PNL nonlinear stage. The core of our idea is based
on a well-known result from the nonlinear signal processing
theory [5, 6], namely: when a signal is submitted to a non-
linear function, the spectrum of the resulting signal becomes
wider. Therefore, a natural approach to counterbalance non-
linear distortions is to search for a function that gives again a
bandlimited signal. We shall show that the application of this
result gives a simple PNL source separation method.

In order to present the details of our method, the paper is
divided as follows. Firstly, in Section 2, we review the PNL



mixing model. Then, in Section 3 we describe the main as-
pects of our approach. In Section 4, we perform a set of sim-
ulations with the aim of assessing the validity of our method.
Finally, the concluding remarks are present in Section 5.

2. POST-NONLINEAR MIXING MODEL

The PNL model, depicted in Fig. 1, consists of a linear mixing
stage followed by a set of invertible nonlinearities, each one
applied to a single linearly mixed signal. In mathematical
terms, the vector containing the mixed signals in a PNL model
can be expressed as

x(t) = f(As(t))

= f(z(t))
, (1)

wheres(t) = [s1(t), s2(t), . . . , sn(t)]T is the vector contain-
ing the source signals andf(·) = [f1(·), f2(·), . . . , fn(·)]T

denotes the nonlinearities applied to each output of the linear
mixing stage, described by the matrixA.
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Fig. 1. The PNL problem structure.

Still in Fig. 1, we show the PNL separating system, which
is basically a mirrored version of the mixing system. The
estimated sources are thus given by

y(t) = Wg(x(t))

= Wq(t)
(2)

whereg(·) = [g1(·), g2(·), . . . , gn(·)]T is a set of nonlinear
functions that must be carefully adjusted to invert the action
of f(·), andW corresponds to the linear separating matrix.

3. SEPARATION OF BANDLIMITED SIGNALS IN A
PNL MODEL

The peculiar structure of the PNL mixture, with a clear di-
vision between the linear and the nonlinear sections, sug-
gests that one could treat each stage separately. If that is the
case, after canceling the nonlinear distortion introducedby
the functionsfi(·), the problem is reduced to the one of lin-
ear BSS, for which efficient tools are available. Our approach
follows this idea and, in the sequel, we will discuss how it
becomes possible to deal with the nonlinear stage when the
sources are bandlimited signals. In our development, we also
assume that the sources are mutually independent and that
the number of mixtures is, at least, equal to the number of

sources. In fact, these two additional assumptions are nec-
essary if one wishes to use the standard BSS methods in the
linear mixing stage.

3.1. Compensating the nonlinear functions

Let us assume that each sourcesi(t) is a bandlimited sig-
nal with maximum frequency given byBsi(t). Then, given
that the Fourier transform is a linear operator, the signals
zi(t), which correspond to linear mixtures of the sources, are
also bandlimited signals with maximum frequency given by
Bzi(t) = max(Bs1(t), · · · , Bsn(t)). Based on a well-known
result from the nonlinear signal processing theory (see [5,6]
for instance), we know that if the bandlimited signalzi(t) is
submitted to a nonlinear functionf(·), then the spectrum of
the resulting signalxi(t) = f(zi(t)) will be wider than the
spectrum of the original signal.

In order to show why1 spectral spreading takes place in
nonlinear systems, let us assume thatfi(·) admits a power
series expansion, i.e.,

xi(t) = fi (zi(t)) =

∞
∑

k=1

f
(k)
i zi(t)

k. (3)

Denoting byZi(ω) the Fourier transform ofzi(t), the Fourier
transform of (3) is given by

Xi(ω) = f
(1)
i Zi(ω) + f

(2)
i Zi(ω) ∗ Zi(ω)+

f
(3)
i Zi(ω) ∗ Zi(ω) ∗ Zi(ω) + · · · ,

(4)

where the symbol ‘∗’ stands for the convolution operator. A
basic property of the convolution states that ifR1(ω) and
R2(ω) denote the Fourier transform of two signals bandlim-
ited toB1 andB2, respectively, thenR1(ω) ∗ R2(ω) is ban-
dlimited toB1 + B2 [6]. Therefore, in Eq. (4), sinceZi(ω) is
bandlimited toBzi(t), thenZi(ω)∗Zi(ω) will be bandlimited
to 2Bzi(t), Zi(ω) ∗Zi(ω) ∗Zi(ω) to 3Bzi(t), and so forth. As
a consequence, it is expected that the maximum frequency of
Xi(ω) be larger thanBzi(t).

In view of the spectral spreading phenomenon described
above, the nonlinear effects introduced byfi(·) can be coun-
terbalanced by a functiongi(·) that gives a signalqi(t) ban-
dlimited to the original bandwidth of the input signalzi(t).
Indeed, in view of Eq. (4), this condition is satisfied when
qi(t) = gi(fi(zi(t))) = αzi(t) + β, whereα, β ∈ R, that is,
when the composition of the two functions becomes a linear
function. In the sequel, we shall discuss how this idea can be
put into practice.

3.2. Implementation issues

Since we are interested in finding a functiongi(·,wi),
parametrized bywi, that gives a signalqi(t) whose energy

1We refer the reader to [6] for a more complete explication of this phe-
nomenon.



beyond the frequencyBzi(t) is as low as possible, we can
formulate this task as the following minimization problem

min
wi

J1(wi) =
E

f>Bzi(t)

qi(t)

Eqi(t)
, (5)

whereEqi(t) denotes the total energy ofqi(t) andE
f>Bzi(t)

qi(t)
the energy associated with the frequency components greater
thanBzi(t). The purpose of the termEqi(t) is to avoid a trivial
solution where the signalqi(t) has null energy.

The cost function defined in (5), which is the basis of the
approach developed in [6], works with the strong assumption
thatBzi(t) is known in advance. As a consequence, its appli-
cation is not possible in a blind source separation context,as
such an information is usually not available. Yet, it would be
possible to extendJ1(wi) to a complete blind scenario with
unknownBzi(t). In fact, we could replace, in Eq. (5),Bzi(t)

by a valueB̂zi(t) that satisfieŝBzi(t) > Bzi(t) (for instance,

this can be achieved by selectinĝBzi(t) closer to one2). In
this new situation, we are thus trying to minimize the spectral
spreading in the band[B̂zi(t) > Bzi(t), 1]. Evidently, since
this is only a necessary condition, there is no theoretical guar-
antee that such a procedure will lead to a proper compensation
of fi(·). On the other hand, this procedure usually performs
well in practice, at least in noiseless situations.

When the mixtures are corrupted by noise, it turns out
that the complete blind strategy described in the last para-
graph may become rather suboptimal. For example, suppose
that B̂zi(t) >> Bzi(t), i.e. our guess is much more higher
that the actual bandwidth ofzi(t). Then, the criterion (5) will
consider only a few high-frequency components, whereas all
the information available in the band[Bzi(t), B̂zi(t)] will be
discarded. Therefore, the resulting estimator in this casewill
be much less robust to noise than the estimator considering
the actual valueBzi(t). This is particularly undesirable in our
problem given that even a low-power noise can become sig-
nificant after the nonlinear functions.

In view of the limitations associated with the blind exten-
sion of the paradigm introduced by Eq. (5), a more reasonable
approach is to define a cost function in whichBzi(t) is also
considered as an unknown parameter. For instance, this can
be done through the following minimization problem

min
w,B̂zi(t)

J2(w, B̂zi(t)) =
E

f>B̂zi(t)

qi(t)

E
f>B̂zi(t)−b

qi(t)

, (6)

where the parameterb lies inside]0, 1[ and should be assigned
in advance. Later, we will discuss how this can be done.

2In this work, we consider that the signals are already in a discrete-time
representation. Given that, we always refer to the normalized frequency,
whereB = 1 corresponds, in the analog domain, toFs/2, whereFs is
the sampling frequency.

It is interesting to note that the cost function (6) attains a
small value whenever there is a great variation between the
energies ofqi(t) in the bands[B̂zi(t), 1] and [B̂zi(t) − b, 1].
This situation is expected for the desired solution to our prob-
lem, i.e., when(w = wd, B̂zi(t) = Bzi(t)), wherewd rep-
resents the parameters that provide the inversion offi(·). In-
deed, whengi ◦ fi is almost linear, one expects a very low

energyE
f>Bzi(t)

qi(t)
, given that the high-frequency components

introduced byfi(·) into qi(t) are quite reduced. Concerning

the termE
f>Bzi(t)−b

qi(t)
, it includes the energyE

f>Bzi(t)

qi(t)
but

also the energyE
Bzi(t)−b<f<Bzi(t)

qi(t)
. This last term lies within

the bandwidth ofzi(t), and, as a consequence, is expected

to be much larger thanE
f>Bzi(t)

qi(t)
, which thus explains why

J2(wd, Bzi(t)) is expected to be quite small.
It is worth noting that significant variations between

E
f>B̂zi(t)

qi(t)
andE

f>B̂zi(t)−b

qi(t)
may also happen if the spectrum

of qi(t) presents energy variations as, for instance, an atten-
uated band. As a consequence, the cost function (6) tends
to present local modes around the pointsB̂zi(t) where these
variations occur. A practical consequence of this observa-
tion regards the definition of the optimization algorithm: as
J2(w, B̂zi(t)) may be multimodal, the application of methods
based only on local search mechanisms, such as the pure
gradient-based techniques, is not recommended since they
may converge to local minima.

Another important practical point regards the role ofb in
J2(w, B̂zi(t)). This parameter acts as a sort of frequency res-
olution. For example, if the input signal is periodic (pure har-
monics), thenb should be small as the energy variations are
high concentrated in the spectrum. Conversely, for aperiodic
signals, the energy is less concentrated in the spectrum and,
thus, a greater value forb must be defined. In practice, we
observed that a good rule of thumb is to selectb = 0.01 for
periodic signals andb = 0.1 for aperiodic signals.

3.2.1. Summary of the final algorithm for PNL source sepa-
ration

Having discussed how the nonlinear inversion offi(·) can be
carried out, the complete algorithm for PNL source separation
can be summarized as follows:

1. First stage. For each mixturexi(t), find gi(xi(t),wi)
by minimizing the cost functionJ2(wi, B̂zi(t)) (Eq. (6));

2. Second stage. The estimated sourcesyi(t) are obtained
by applying a linear source separation or extraction
method to the signalsqi(t) = gi(xi(t)).

As it was discussed before, due to the existence of local
optima inJ2(wi, B̂zi(t)), care must be taken in the definition
of an optimization method adopted in the first stage. In this
work, we adopted the opt-aiNet algorithm [7], an evolution-
ary method that has been proved to be very efficient in solving



multimodal optimization problems. As explained in [7], the
opt-aiNet requires exclusively the evaluation of the cost func-
tion to be optimized. Therefore, in view of Eq. (6), it becomes
necessary to evaluate the energy ofqi(t) in a given frequency
band. This can be done by calculating the frequency con-
tent of qi(t) via, for instance, the discrete cosine transform
(DCT)3. Then, the energy is given by the Euclidean norm of
the DCT coefficients associated with the desired band.

4. RESULTS

We present in this section a set of simulations performed in
order to check the effectiveness of the procedure proposed in
Section 3.2.1. Firstly, we focus on the initial stage, which
concerns the nonlinear compensation of a PNL model. After
that, we present an example that shows the usefulness of our
proposal in a complete PNL source separation framework.

4.1. Inversion of the nonlinear stage

In order to illustrate the applicability of the cost function (6),
let us consider an example of PNL mixing model with2
sources and2 mixtures. The two sources, whose bandwidths
are given byBs1(t) = 0.2 andBs2(t) = 0.5, were obtained
from low-pass FIR filters (100 taps) driven by white Gaussian
noise. The linear part of the PNL mixing system is given
by the matrixA = [1 0.5; 0.6 1]. Concerning the nonlinear
component-wise functionsfi(·), our analysis encompassed
two representative cases: the Nicolsky-Eisenman (NE) model
and the situation where the inverting functionsgi(·) are poly-
nomials. We will discuss these models in the sequel.

4.1.1. Nicolsky-Eisenman model

One of the applications of PNL models is related to the use
of ion-selective electrodes (ISEs) array in the problem of es-
timating the concentrations of several ions in aqueous solu-
tion [8]. Typically, an ISE lacks total selectivity, that is, it
may respond to a given target but also to other interfering ions
within the solution. As a result of this phenomenon, the out-
puts of an ISE array become mixed versions of a set of source
signals, i.e., the concentrations of each ion within the solu-
tion. This mixing process can be modeled according to the
classical formalism of the Nicolsky-Eisenman (NE) equation,
which states that, if the ions under analysis have the same
valences, which is indeed very common in practice, then the
response of each ISE within the array is given by

xi(t) = ei + di log
(

ns
∑

j=1

aijsj(t)
)

, (7)

3We could equally adopt the discrete Fourier transform (DFT). However,
the DCT has the advantage of being a real-valued transform. Furthermore,
we checked through preliminary simulations that the DCT givesbetter results
for aperiodic signals.

whereei, di andaij denote unknown mixing coefficients.
From Eq. (7), it becomes clear that the NE model is an ex-

ample of PNL model. The inversion of the nonlinear stage in
this case can be achieved by means of the following functions

qi(t) = gi(xi(t), d̂i) = exp

(

xi(t)

d̂i

)

= zi(t)
di

d̂i . (8)

If, and only if, d̂i = di, the compositiongi ◦ fi is linear and,
thus, this situation corresponds to the desired solution.

Since the functiongi(xi(t), d̂i) is parametrized by just
one parameter, it becomes possible to visualize the shape of
the cost function (6) in this case. For example, in a noiseless
situation in whichd1 = 0.059 andd2 = 0.040, the cost func-
tions for bothg1(·) andg2(·) are shown in Fig. 2. Note that
the valuesd̂i that minimizeJ2(d̂i, B̂zi(t)) coincide with the
actual values ofdi. Moreover, the proposed criterion is min-
imized for both cases when̂Bzi(t) = 0.54, which is close to
the bandwidth of the linear mixtures (Bzi(t) = 0.5).
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Fig. 2. Cost functionsJ2(d̂i, B̂zi(t)) for the NE model.

As discussed in Sec. 3.2, there may exist locally optimal
models if there are energy variations in the spectrum ofzi(t).
This phenomenon is clear in Fig. 2(a) where one can observe
a local mode around the frequencŷBzi(t) = 0.2. In this



Table 1. Effects of noise on the estimation ofd2.
d̂2 (SNR = 18 dB) d̂2 (SNR = 20 dB) d̂2 (noise free)

J1(d̂2)
(semi-blind) 0.0515 0.0455 0.0395

J1(d̂2, B̂z2(t))
(blind) 0.3336 0.1085 0.0398

J2(d̂2, B̂z2(t)) 0.0490 0.0457 0.0396

case, the energy variation around this frequency takes place
becausezi(t) is a linear combination of two bandlimited sig-
nals, one of them having a bandwidth equal toBs1(t) = 0.2.

A relevant point in nonlinear systems like the NE model
regards the effect of the noise. Indeed, even a low-energy
noise can be problematic in this case. For example, let us as-
sume that the observations are given byxi(t) + ni(t), where
ni(t) denotes a zero-mean additive white Gaussian (AWG)
noise. Due to the exponential functiongi(·), one haszi(t) ∝

xi(t)
di/d̂i exp(ni(t)), i.e. zi(t) is corrupted by a multiplica-

tive noise that follows a log-normal distribution. This may
result in a noise amplification, specially when the input val-
ues ofgi(·) are high.

We conducted a set of simulations to investigate the
effects of the noise on the estimations ofd̂2 obtained by
the following approaches: 1) the estimator associated with
J2(d̂2, B̂z2(t)), 2) the estimator associated withJ1(d̂Z) as-
suming the knowledge of the bandwidthBz2(t) (semi-blind

case), 3) the same cost functionJ1(d̂2) but now in a com-
plete blind situation, in whichBz2(t) is defined beforehand

(we setB̂z2(t) = 0.8). In Tab. 1, which represents the av-
erage of100 experiments, one can note that, in a noiseless
scenario, the three estimators give values closer to the actual
one (d2 = 0.040). When there is noise, the blind version
of J1(d̂2) gives poor estimations ford2, whereasJ1(d̂2) and
J2(d̂2, B̂z2(t)) still work properly. However, it worth re-

membering that, whileJ1(d̂2) assumes the knowledge of the
actual bandwidth of the input signal,J2(d̂2, B̂z2(t)) operates
in a completely blind fashion.

4.1.2. Polynomial model

In a second situation, we considered that the nonlinear mixing
functions are given byfi(zi(t)) = 3

√

zi(t). To compensate
them, we make use of polynomial functions given by:

qi(t) = gi(xi(t),wi) = aix
5
i (t) + bix

3
i (t) + cixi(t). (9)

The expected solution (in a noiseless case) is thus given by
ai = ci = 0 andbi = δ, whereδ ∈ R. Note that in this case
one can fix, without loss of generality,bi = 1.

In order to check ifJ2(w, B̂zi(t)) succeeds in discriminat-
ing the desired solution, we plot in Fig. 3 the shapes of this
cost function for the two mixtures of our example. Since this
function depends on three parameters (ai, ci andB̂zi(t)), we

had to fix B̂zi(t) to the value that minimizesJ2(w, B̂zi(t))

(B̂zi(t) = 0.52 in this case). By looking at the resulting
shapes, one can note that the proposed cost function is indeed
minimized by the expected solutions of our problem.
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Fig. 3. Cost functionsJ2(wi, B̂zi(t)) for the polynomial
model.

4.2. Example of PNL source separation

We now present an example where the complete procedure,
described in Section 3.2.1, is applied to a PNL mixture with
3 sources and3 sensors. The first source is a sine wave of
frequencyBs1(t) = 0.01, while the two others are aperi-
odic signals with bandwidthBs2(t) = 0.5 andBs3(t) = 0.8.
The linear part of the mixing system is given by the matrix
A = [1 0.5 0.5; 0.4 1 0.6; 0.3 0.6 1], and the nonlinear func-
tions followed the NE model, i.e.,fi(xi) = di log(xi) where
d1 = 0.050, d2 = 0.060 andd3 = 0.045. The number of
available samples in this situation was1000, and an AWG
noise ofSNR = 20dB was defined in each sensor.

The application of the proposed method for dealing with
the nonlinear stage provided the following estimations:d̂1 =
0.048, d̂2 = 0.070 andd̂3 = 0.044. As can be seen in Fig. 4,
the resulting mappings betweenzi(t) andqi(t) are close to



linear functions, which indicates that the task of inverting the
nonlinearities was satisfactorily accomplished. Yet, it is clear
in this figure the noise amplification phenomenon discussed
in Section 4.1.1, and also that the noise effect grows as the
input value grows.
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Fig. 4. Mappings betweenzi(t) andqi(t) for each channel.

Having dealt with the nonlinear functions, we applied
the SOBI algorithm [9] on the signalsqi(t). This method
provided good estimations of the actual sources. Indeed,
the obtained performance indices4 wereSIR1 = 14.94dB,
SIR2 = 10.62dB and SIR3 = 12.02dB. In Fig. 5, we
show the sources1(t) (the sine wave) together with its corre-
sponding estimationy1(t). Note that, due to effect of noise
amplification mentioned before, the estimation error is more
evident when the signal attains high values.

5. CONCLUSIONS

In this work, we proposed a novel source separation method
for post-nonlinear mixtures. By relying on the assumption
that the sources are bandlimited signals, we could obtain a
two-stage solution, where the compensation of the nonlin-
ear section of the PNL was achieved by functions adjusted
with the aim of canceling the high-order frequency terms in-
troduced by the nonlinear distortions. Then, the linear stage
could be estimated through standard BSS methods. Concern-
ing the implementation of this idea, we proposed a cost func-
tion that can be applied even in noisy scenarios. The simula-
tions results attested the viability of the proposed approach.

4We adopted the following performance index: SIRi =

10 log
(

E{ŝi(t)
2}

E{(ŝi(t)−ŷi(t))
2}

)

, where ŷi(t) and ŝi(t) denote, respec-

tively, the retrieved signal and the actual source after meanand variance
normalization.
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Fig. 5. Actual sources1(t) (black) and estimated sourcey1(t)
(gray).
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