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Abstract. In this work, we tackle the problem of blind extraction of
intermittent sources. Our approach is based on the generalized eigenvec-
tor decomposition of covariance matrices and extends previous works in
two aspects: by developing a more precise technique to detect inactive
periods and by building a more general yet more precise strategy to esti-
mate the vectors that lead to the separation of the intermittent sources.
Simulations are carried out to illustrate the effectiveness of our proposal.
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1 Introduction

Blind source separation (BSS) concerns the retrieval of a set of signals (sources)
by considering only mixed versions of these original sources. When a linear model
is assumed, the mixtures x(t) = [x1(t), · · · , xN (t)]T are linked to the unknown
sources s(t) = [s1(t), · · · , sM (t)]T by

x(t) = As(t), (1)

where A ∈ RN×M is the unknown mixing matrix. When N ≥ M , independent
component analysis (ICA) [9, 3, 2] methods can be employed to perform source
separation in (1). In short, ICA, which works under the assumption that the
sources are statistically mutually independent, looks for a separating matrix
B that makes the retrieved sources y(t) = Bx(t) as independent as possible.
Alternatively, in second-order methods, BSS is accomplished by exploiting the
time structure of the sources (coloration [1] or non-stationarity [12]). In these
approaches, as well as in ICA, neither the scaling of the sources nor their original
order can be identified.

More recent studies in BSS have been suggesting that it is possible to obtain
a better performance or even tackle underdetermined cases by considering prior
information that are not present in the basic ICA and second-order methods
framework. For instance, one can make use of the fact that the sources can be
represented, possibly in a transformed domain, by sparse signals [8].
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In this paper, we address the extraction of intermittent sources. This as-
sumption, which is closely related to non-stationarity and to sparsity, is based
on the observation that the sources are inactive in some windows, possible in a
transformed domain —such an hypothesis holds, for instance, when represent-
ing speech signals in the temporal or time-frequency domains [13, 4], or chemical
signals in the frequency domain [5, 6]. Source separation of intermittent sources
can be carried out by means of a generalized eigenvalue decomposition (GEVD)
of two covariance matrices. A first attempt in this direction could be found
in [11]. However, this method does not explain how to choose practically these
two covariance matrices. To overcome this difficulty one may use a joint diago-
nalization of several covariance matrices [12]. Nevertheless, there is an overhead
in this later method as it separates all the sources and not only the intermittent
sources.

More recent studies [13, 6] proposed methods based on the GEVD that are
specially tailored for the extraction of intermittent sources. The method intro-
duced in the present work extends [13, 6] in two aspects: 1) by improving the
detection of inactivity periods and 2) by exploiting in a better way these in-
activity periods (i.e. without the need of a deflation procedure as in [6] or the
restriction that, to separate a given source, say si, there should be a period when
only si is inactive [13]). This article is organized as follows. Section 2 presents
the proposed approach to exploit the inactivity periods of intermittent sources.
The proposed algorithm is introduced in Section 3. Numerical experiments and
results are given in Section 4 before conclusion and perspectives in Section 5.

2 Basics

In this section, the principles underlying the proposed method to extract in-
termittent sources are presented. It is based on a second-order framework. Let
consider the linear instantaneous mixing model (1) with as many observations
as sources (M = N). Also, let us represent the covariance matrix of mixtures
x(t) at sample t by

Rx(t)
4
= E[x(t)x(t)T ] =

N∑
i=1

σ2
i (t)aia

T
i , (2)

where σ2
i (t) = E[si(t)

2] is the power of the i-th source at sample t and ai is
the i-th column of mixing matrix A = [a1, · · · ,aN ].

The proposed method is based on the assumption that there exist some
samples where at least one source is inactive: i.e. for t = τ, ∃n / sn(τ) = 0. Let
suppose in this section that all the sources are stationary excepted N1 sources,
say s1(t), · · · , sN1(t) without loose of generality. Moreover, we assume that the
first N1 sources are simultaneously inactive at sample τ : i.e. for t = τ , 1 ≤ i ≤
N1, si(τ) = 0. Therefore the covariance matrix of observations x(t) at sample τ
can be written as

Rx(τ) =

N∑
i=N1+1

σ2
i aia

T
i , (3)
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where for the N − N1 stationary sources σ2
i = σ2

i (τ) = σ2
i (t). The proposed

method is based on the generalized eigenvalue decomposition of the couple
(Rx(τ), Rx(t)). It is easy to show that (Rx(τ), Rx(t)) admits only two distinct
generalized eigenvalues: 0 degenerated N1 times whose eigensubspace E0 is or-
thogonal to the space spanned by {aN1+1, · · · ,aN}, and 1 degenerated N −N1

times whose eigensubspace E1 is complementary to E0 in RN . As a consequence,
the projection of the observations x(t) onto E0 can be used to cancel the con-
tribution of the sources si(t), N1 + 1 ≤ i ≤ N . This means that all separation
vectors bi, 1 ≤ i ≤ N1, lie in E0, where bi is the i-th column of the separa-
tion matrix B. In other words, the space spanned by {b1, · · · ,bN1

} is E0. It
is worth noting that when only one source is inactive (let say si(t)), then E0
is unidimensional and the corresponding generalized eigenvector is aligned with
bi.

This method allows us firstly to detect how many sources are vanishing by
testing the generalized eigenvalues and then to extract the space spanned by
the corresponding sources by projecting the observations onto the generalized
eigenvectors associated with the generalized eigenvalues equal to zero.

3 Algorithm to extract intermittent sources

The previous section discussed how to extract the space spanned by intermittent
sources but not how to extract these sources. Moreover, the inactivity periods
are unknown. Given that, we propose, in a first part of this section, a strategy
to detect inactivity periods that extends the one proposed in [13]. Then, we
show how to estimate the extraction vectors bi based on the subspaces observed
during the inactive periods.

3.1 Estimation of inactivity periods

In order to detect block samples where at least one source is inactive, we proposed
to compute for different samples τ the generalized eigenvalue decomposition of
couples {(Rx(τ), Rx)}τ , where Rx is the covariance matrix of observations x(t)
estimated with all samples, and Rx(τ) is the covariance matrix of the observa-
tions estimated on windowed samples around τ . The generalized eigendecompo-
sition of (Rx(τ), Rx) provides

Rx(τ)V (τ) = RxV (τ)Λ(τ), (4)

where Λ(τ) is a diagonal matrix whose diagonal entries λ1(τ) ≤ · · · ≤ λN (τ) are
the generalized eigenvalues and V (τ) is an orthonormal matrix whose columns
vi(τ) are the generalized eigenvectors. Let us define gk such that

gk(τ) =

k∏
i=1

f0(λi(τ))

N∏
j=k+1

f1(λj(τ)), (5)
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Fig. 1. Detection of inactive sources.

where

f0(λ) = 1− 1

1 + exp(−α(log(λ)− β))
and f1(λ) =

1

1 + exp(−α(log(λ)− β))
.

Note that these functions are sigmoids (Fig. 1): if log(λ)− β is large compared
to 1/α then f0(λ) (resp. f1(λ)) is about 0 (resp. 1). Accordingly,

k̂(τ) = argk gk(τ) > .5

is an estimation of the number of inactive sources at sample τ (i.e. less powerful

than 10β times their average power), and the subspace E0(τ, k̂(τ)) spanned by

{v1(τ), · · · ,vk̂(τ)(τ)} is also spanned by k̂(τ) of the separation vectors bi. Fi-

nally, the identification of inactivity periods Θ = {τ | gk(τ) > .5} also provides

couples of weight and subspace1
{

(gk̂(τ)(τ), E0(τ, k̂(τ))
}

. We shall discuss later
how to make use of these weights to improve the estimation of the extraction
vectors bi.

3.2 Estimation of extraction vectors

Once the inactivity periods Θ are detected by the previous step, the set of
subspaces {E0(τ, k̂(τ))}τ∈Θ is used to estimate the separation vectors bi. It is

worth noting that when k̂(τ) = 1 then the corresponding v1(τ) is directly align

with one of the separation vectors bi. However, when k̂(τ) 6= 1, then k separation

vectors bi lie in the k-dimensional subspace E0(τ, k̂(τ)) but are not necessary
align with the eigenvectors vi(τ). To overcome this difficulty, our proposal con-
siders the method for finding the intersection of subspaces described in [7] (see
also Appendix). It is interesting to observe that, if dim(E0(τ, k) ∩ E0(τ ′, k′)) =
1, then the support vector uτ,τ ′ lying in the intersection between these two
subspaces must be aligned with one of the separation vector bi. Accordingly
searching all the intersections between E0(τ, k̂(τ)) and E0(τ ′, k̂(τ ′)), with (τ, τ ′) ∈
Θ2, such that dim(E0(τ, k̂(τ))∩E0(τ ′, k̂(τ ′))) = 1 provides a set of support vectors

U =
{
uτ,τ ′ | dim

(
E0(τ, k̂(τ))

⋂
E0(τ ′, k̂(τ ′))

)
= 1
}
. (6)

1 In this article, by sake of simplicity we do not make the difference between a subspace
and its matrix representation.
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Note, however, that more support vectors than separation vectors might be iden-
tified. Therefore, in an ideal situation, some separation vectors are repeated. Of
course, when there is some noise in the observed data or when the detection
of inactivity periods is not completely perfect, which is usually the case, it is
expected that these repeated vectors be actually concentrated around the opti-
mum direction. Therefore, our method is completed by a clustering stage whose
goal is exactly to estimate the separation vectors bi used in the extraction of
the intermittent sources.

In this study, we consider kernel-PCA [10] for performing the clustering. The
chosen kernel is

ψ(uτ1,τ2 ,uτ3,τ4) =


|uTτ1,τ2uτ3,τ4 | − cos(θ0)

1− cos(θ0)
, if |uTτ1,τ2uτ3,τ4 | ≥ cos(θ0)

0, else

(7)

where uτi,τj ∈ U . θ0 is an a priori chosen angle which defines the minimum angle
between two separation vectors. In practice, the accuracy of support vector uτi,τj
depends on the values of the corresponding eigenvalues λl(τi) and λl(τj). It can

be shown from performance analysis that the accuracy of E0(τi, k̂(τi)) increases
as the related eigenvalues λ1(τi), · · · , λk̂(τi)(τi) decrease to zero. In view of the
observation of the last paragraph, we propose the following weighted version of
the kernel (7)

ψ′(uτ1,τ2 ,uτ3,τ4) = wτ1,τ2 wτ3,τ4 ψ(uτ1,τ2 ,uτ3,τ4), (8)

where wτi,τj is a measure of the inactivity accuracy defined by

wτi,τj =
√
gki(τi)gkj (τj). (9)

Note here that, by proceeding this way, the support vectors uτi,τj that are asso-
ciated with lower eigenvalues through gk̂(τ) are somehow more important in the
clustering step. The kernel PCA consists in performing an eigenvalue decompo-
sition of matrix Ψ ′ ∈ Rcard(U)×card(U) whose entries are ψ′(uτ1,τ2 ,uτ3,τ4):

Ψ ′ = Φ∆ΦT , (10)

where ∆ is a diagonal matrix of eigenvalues and Φ is an orthonormal matrix
whose columns are eigenvectors of Ψ ′. Let W = [φ1, · · · ,φn] be the matrix of
the n eigenvectors related to the n largest eigenvalues. The extraction matrix
B ∈ Rn×N is then estimated by

B = WT Ψ ′ UT , (11)

where U is the matrix obtained by the concatenation of all support vectors
in U . Note that the exact number n of intermittent sources has not to be known
a priori since it can be estimated by checking the eigenvalues ∆i,i (10). The
intermittent sources are finally estimated thanks to

ŝ(t) = Bx(t), (12)

for all samples t, including those when the intermittent sources are active. The
final algorithm is summarized in Algo. 1.
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Algorithm 1 Proposed algorithm

{Estimation of the inactivity periods}
Compute covariance matrix Rx from all samples
for each τ do

Compute covariance matrix Rx(τ) from sliding windows centered on τ
Compute generalized eigenvalue decomposition (4) and for 1 ≤ k ≤ N , gk(τ) (5)
Estimate the number k̂(τ) of inactive sources thanks to k̂(τ) = argk gk(τ) > .5

⇒
(
gk̂(τ)(τ), E0(τ, k̂(τ)

)
end for
Estimate the set of inactivity periods by Θ = {τ | k̂(τ) ≥ 1}

{Estimation of the subspaces intersections}
for each 1 ≤ i, j ≤ card(Θ) do

Dimension of the intersection: d(i, j) = dim(E0(τi, k̂(τi)) ∩ E0(τj , k̂(τj)))
end for
Estimate the set of support vectors U (6) such that d(i, j) = 1

{Estimation of extraction vectors}
Compute weighted kernel PCA of {(ui,j , wi,j)} (7) to (11)

Estimate intermittent sources by ŝ(t) = Bx(t) (12)

s 1
s 2

0 500 1000

s 3

Samples

(a) Actual sources

ŝ 1
ŝ 2

0 500 1000

ŝ 3

Samples

(b) Estimated sources

ŝ 1
ŝ 2

0 500 1000

ŝ 3

Samples

(c) Estimated sources [13]

Fig. 2. Illustration of the proposed methodology.

4 Numerical experiments

The first experiment illustrates the influence of the new methodology to estimate
extraction vectors (Fig. 2). Three artificial intermittent sources (Fig. 2(a)) are
linearly mixed. As one can see, the three sources are chosen so that the first one is
never the only inactive source. In this case, our previous method [13] (Fig. 2(c))
has failed to extract the first actual source: the third estimated source is still a
mixture of several actual sources. On the contrary, the proposed methodology
(Fig. 2(b)) has succeeded to extract all the three sources without deflation.

The second experiment compares the extraction of 5 speech signals from 70
mixtures of audio signals by the proposed algorithm and a more classical esti-
mation of the separation matrix by joint-diagonalization of covariance matrices
based on non stationarity [12] (refered as SONS). In this experiment, the results
are averaged over 50 randomly chosen configurations: the 5 speech signals, the
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Proposed method SONS [12]

PIdB (13) -34 -41

Time [s] 1.1 847

Table 1. Comparison of speech sources extraction.

65 audio (musical) signals and the mixing matrix are randomly chosen. All the
signals are sampled at 16kHz. The time sliding windows have a 40ms length with
an overlap of 50%. To evaluate the estimation of the extraction vectors bi, we
have used the performance index defined by

PIdB = 10 log

(
1

card(S)

∑
i∈S

(∑
j

∣∣∣∣∣ Ci,j

maxk
∣∣Ci,k∣∣

∣∣∣∣∣
2

− 1

))
, with C = BA, (13)

where S denotes the set of speech sources. So the smaller the performance index
is, the better the extraction is. As one can see (Tab 1), the proposed method
is slightly less performant than the SONS method while keeping quite good
performance. Indeed, it only exploits a part of the signal while the SONS used
the overall signals. However, it is worth noting that the proposed method has a
less computational coast.

5 Conclusions and perspectives

In this paper, we introduced an algorithm to extract intermittent sources from
linear mixtures. It is based on second order statistics: the detection of inactivity
periods allows to estimate the separation matrix which is used to extract the
intermittent sources when they are active. Simulations in different configurations
pointed out that our proposal is efficient and presents a low computational cost.
Even if in this study the purpose was to extract speech signals, the proposed
algorithm can be used in a more general context. Future works include the
derivation of an automatic strategy for adjusting parameters. Moreover, a more
robust clustering algorithm will also be studied. Finally, this proposed method
could be used as an initialization of joint diagonalization of covariance matrices
to only extract intermittent sources.

Appendix: intersection of subspaces

This appendix summarizes some useful considerations about intersection of sub-
spaces [7]. Let S1 and S2 be two subspaces in Rm. The principal angles θk
between subspaces S1 and S2 are defined by cos(θk) = maxu∈S1 maxv∈S2 u

Tv =
uTk vk,subject to ‖u‖2 = ‖v‖2 = 1, uTui = 0, and vTvi = 0, ∀ i = {1, · · · , k −
1}. Let Q1 ∈ Rm×p and Q2 ∈ Rm×q be two orthonormal basis of S1 and S2,
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respectively. Assume that p ≥ q. The angles between subspaces can be efficiently
obtained by the singular value decomposition of QT1Q2:

Y T
(
QT1Q2

)
Z = diag(λ1, · · · , λq).

The principal vectors and angles are then obtained by [u1, · · · ,up] = Q1Y ,
[v1, · · · ,vq] = Q2Z and cos(θk) = λk, k = {1, · · · , q}, respectively. As a con-
sequence, if there exist some principal angles such that cos(θk) = 1, then they
define the intersection between subspaces S1 and S2. The dimension of the inter-
section is thus defined by the number of principal angles such that cos(θk) = 1.
Also, the intersection is spanned by {vk}k or by {uk}k.
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