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Abstract. This paper deals with the extraction of eye-movement arti-
facts from EEG data using a multimodal approach. The gaze signals,
recorded by an eye-tracker, share a similar temporal structure with the
artifacts induced in EEG recordings by ocular movements. The proposed
approach consists in estimating this specific common structure using Mul-
tiple Measurement Vectors which is then used to denoise the EEG data.
This method can be used on single trial data and can be extended to multi-
trial data subject to some additional preprocessing. Finally, the proposed
method is applied to gaze and EEG experimental data and is compared
with some popular algorithms for eye movement artifact correction from
the literature.

Keywords: Ocular artifact extraction, EEG, Gaze, Multiple Measure-
ment Vectors, Multimodality.

1 Introduction
Electroencephalography (EEG) is a popular non-invasive method to monitor
cerebral activity. It allows to measure the effect of electrical brain activity on
the potential field at the scalp using surface electrodes. However, interpreting
the recordings is challenging, in part due to different kinds of noise [1]. Among
them, one finds the ocular artifacts that are induced by blinks or eye-movements,
see, e.g., Iwasaki et al. (2005) [2] for an in-depth study on the topic. The most
straightforward method to avoid these artifacts is to restrict subjects to move
their eyes during the experimental recordings. However, this excludes experi-
mental protocols where visual scene exploration or reading is a key aspect of the
cognitive study.

For the last thirty years, a number of numerical methods to remove ocular
artifacts have been considered in the literature. Among those, one finds the
regression approach [3, 4] and Independent Component Analysis (ICA) [1, 5].
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The regression approach requires a reference for the ocular artifact. Usually, this
method uses the electrooculogram (EOG) that provides a measurement of the
electric field associated with the ocular activity which is recorded by electrodes
localized in the vicinity of the eyes. In the regression approach, it is assumed that
the EOG matches with the ocular artifacts contained in the EEG observations
up to scaling factors. The goal is then to identify these factors and substract
weighted reference channels from the EEG. Despite its simplicity, this method
presents some major drawbacks. First, it needs additional electrodes for the
reference channels to be available. Second, since EOG electrodes are also placed
on the skin, volume conductivity of the latter results in cross-talk of cerebral
activity and ocular artefact, even on the EOG electrodes. This implies a bias in
the regression toward closeby electrodes.

Under the ICA model, a linear, instantaneous mixing model is estimated,
since this is in line with the linearized Maxwell equations at the frequencies of
interest. The latent sources constituting the EEG observations are assumed to
be statistically independent. The goal of this method is to estimate the linear
mixing operator and the latent sources through maximization of the source inde-
pendence. Once the sources and the linear operator estimated, one can identify
the ocular artifact components among these sources and remove their contribu-
tion from the EEG [1]. ICA has shown its efficiency and it is still widely used
in the EEG community. Nevertheless, ICA also suffers from some drawbacks.
First, it needs a large number of observations (large with respect to the number
of electrodes) to accurately estimate the probability density functions or their
approximations used in the computation of the independence criterion. In ad-
dition, since the sources are not truly independent, removing identified ocular
artifact source components may result in the removal of cerebral activity, thus
losing information of interest. Finally, since we consider only linear operators,
suppression of the contribution of a source results in a decrease of the dimension
of the signal subspace.

In this paper, we propose a novel method for the denoising of EEG data
contaminated by eye-movement artifacts based on the multimodal nature of the
gaze and EEG [6]. We focus on saccades, which are the eye-movements related
to the action of moving from one fixation point to another. During a saccade, the
EEG observations can be decomposed as a linear superposition of the electrical
brain activity and a potential induced by the eye-movement (ocular artifact) [1].
In the meantime, an eye-tracker provides a measurement of the eye-movement
(gaze direction relative to a screen). These gaze signals present a main advan-
tage compared to EOG as they contain no brain activity. Since the gaze signals
share a similar temporal structure with the ocular artifacts in the EEG observa-
tions [2], we consider the eye-tracker observations as reference signals for saccade
denoising of EEG data. Motivated by the temporal similarity of eye-movement
(artifacts) signals recorded from both modalities, we propose to use a Multiple
Measurement Vectors method (MMV) [7] (also called Collaborative Lasso [8] or
Multichannel Sparse Recovery [9]). MMV aims at exploiting the structure shared
by gaze and EEG recordings, sparsely representing them in a single well-chosen
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dictionary. Our hypothesis is that only the part of the EEG observations related
to saccades will be estimated and can then be substracted from EEG channels
to recover a clean brain activity. Although a linear superposition of the temporal
signals is considered, this method will not suffer from data dimension reduction
as is the case for regression or ICA.

This paper is organized as follows: in Section 2, the proposed method and
data preprocessings are described. In Section 3, numerical processings on gaze
and EEG experimental data are presented and comparison with some other
methods are provided. Finally, the conclusion and some perspectives are detailed
in Section 4.

2 Proposed Method
In this section, we present the MMV approach and we describe how to preprocess
gaze and EEG data for using the proposed method.

2.1 Multiple Measurement Vectors

The purpose of MMV is to obtain a sparse representation of multiple observed
signals in a single, well-chosen dictionary, exploiting redundancy in these signals.
The considered model is the following

Y = ΦX + R, (1)

where Y = [y1 . . .yN ] is a data matrix containing N signals yn (n ∈ {1, . . . , N})
stored in Ns-dimensional column vectors (where Ns is the number of samples).
Φ ∈ RNs×M is a (finite) dictionary of M atoms chosen to extract the particular
structure shared among the yi, maximaly capturing its redundancy. There is no
assumption about orthogonality among the atoms. X ∈ RM×N is a row sparse
code matrix in which the nonzero coefficients model the particular signal shape
in the dictionary. R ∈ RNs×N is the residual, i.e., all Y components that do
not present the particular shape we are looking for. In this work, the goal is to
estimate X optimizing the following proxy cost function

Ψ(X) =
1

2
‖ Y −ΦX ‖2F +λ ‖ X ‖2,1, (2)

with ‖ · ‖F the Frobenius norm and ‖ · ‖2,1 the 2,1–mixed norm [10] defined as

‖ X ‖2,1=
∑M

m=1

(∑N

n=1
| Xm,n |2

)1/2

. (3)

This mixed norm is used to keep or discard entire rows of coefficients from the
matrix X in order to represent each signal from Y with the same atoms. Thus,
we extract a common structure shared among all yn. Finally, λ (2) is a regu-
larization parameter inducing row sparsity on X. In this paper, λ is arbitrarly
fixed, however it is important to notice that this parameter can be chosen by
using for example cross-validation.

For this estimation issue, we consider a variable splitting and an augmented
Lagrangian as follows

Ψ(X,Z,U) =
1

2
‖ Y −ΦX ‖2F +λ ‖ Z ‖2,1 +Ut (X− Z) +

ρ

2
‖ X− Z ‖2F , (4)
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Fig. 1: Selection and epochage of one saccade from gaze and EEG data. On the left
side: observed signals (from three EEG channels and two gaze ones) containing at least
one interesting saccade to extract. On the right side: the epoched saccade on the same
five channels during the previously selected time segment.

where Z is the split variable, U is the matrix of Lagrangian multipliers, and ρ
is a regularization constant linked to the converge speed [8]. The optimization
problem reads

X̂ = arg min
X

min
Z

max
U

Ψ(X,Z,U) ≈ arg min
X

Ψ(X), (5)

and we use the Alternating Direction Method of Multipliers algorithm (ADMM)
[8] as a solver.

The main question remains how to build the data matrix Y from the available
observations and the choice of a dictionary Φ adapted to the problem.

2.2 Data matrix building

This MMV method can be used to denoise either only one saccade or several
saccades (respectively, single trial and multitrial processing). The first prepro-
cessing step is to epoch the recordings in order to keep only the interesting parts
of the signals (see Fig. 1). To do so, we localize the saccades on gaze channels
(at the dash-dot line in Fig. 1). Then, we extract a predefined time window
containing only one saccade (in dash lines in Fig. 1). These constitute the trials.
Each trial is made of Ns samples and contains a first fixation, then the saccade
and finally a second fixation.

We consider K trials. For each trial, we have P recordings from the eye-
tracker (the number of gaze channels) and Q recordings from the EEG sensors
(the number of electrodes). For the kth trial, k ∈ {1, . . . ,K}, we can build,
respectively (resp.), a gaze matrix G(k) ∈ RNs×P and an EEG matrix E(k) ∈
RNs×Q defined for all n ∈ {1, . . . , Ns} by

G(k) = [g
(k)
1 (n), . . . ,g

(k)
P (n)] and E(k) = [e

(k)
1 (n), . . . , e

(k)
Q (n)], (6)
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Fig. 2: Dynamic Time Warping method associating to each sample of signals S and T
the point of, resp., T and S that presents the smallest distance (green lines are mapping
between points of time series T and S). (provisional figure extracted from [13]).

where g
(k)
p (n) ∈ RNs×1, p ∈ {1, . . . , P} and e

(k)
q (n) ∈ RNs×1, q ∈ {1, . . . , Q} are

column vectors representing the signals from, resp., the pth gaze channel and
the qth EEG channel. An optional preprocessing is the downsampling. Indeed,
the number of samples directly impacts the computational time. Thus, if the
epoched signals are made of too many samples, then one can downsample them
respecting the Nyquist-Shannon sampling theorem. As, in the same trial, the
gaze signals and the ocular artifacts contained in EEG signals share the same
structure, one may directly use the MMV on data matrix Y = [G(k),E(k)].

The case of multitrial processing raises a main issue. Indeed, in each trial,
data present a common temporal structure linked to the ocular artifacts that
is important for the proposed method efficiency. Among trials, one can find
similar structures (or shape) but this time with some temporal distortions due
to the difference among saccades or among subjets moving their eyes. These
distorsion may impact the MMV performance in the considered application. In
order to fix this issue, we propose to align the different trials using an extension
of the Dynamic Time Warping (DTW) [11] called the Generalized Time Warping
(GTW) [12]. DTW is an algorithm for measuring similarity between two time
series. This method can be used to compute an optimal match between two
temporal signals. As it is shown in Fig. 2, DTW calculates nonlinear functions
for each time serie, such that the sum of the distances between their points is
smallest and so the correlation between both signals is maximum. The considered
distance depends on which algorithm is used. GTW generalizes DTW method for
more than two sets of time series. Whatever the saccade orientation, GTW aims
at matching the shape of signals from different trials. For that, GTW computes,
for each set, a nonlinear bijective function that warps time and allows to minimize
the shape difference among the set of time series. Due to their very similar shape
(see Fig. 3), gaze signals seems simpler to align. Thus, we directly apply the GTW
on all matrices G(k), k ∈ {1, . . . ,K}. Once the nonlinear functions are computed,
they are applied to gaze and EEG matrices of the corresponding trial.

After this shape matching step, we can build two new matrices. They contain
the concatenation of each channel of each trial, resp., for the gaze and for the
EEG observations. They are defined as follows

G = [GTW(G(1)), . . . ,GTW(G(K))] and E = [GTW(E(1)), . . . ,GTW(E(K))],
(7)
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where GTW(·) is the generalized time warping operator, G and E are, resp.,
made of KP and KQ channels. These dimensions may be very large and have
a major impact on the computational complexity. We propose to reduce the
size of these matrices. As we have induced a similar shape among the gaze
trials using the GTW, we can expect that the contribution of the ocular artifact
components is also similar in EEG observations for all the trials. Hence, we
propose to do a Principal Component Analysis (PCA) on G and an other one
on E. For the gaze matrix G, all the channels share a smooth step shape and thus
the first principal component should explain almost entirely the signal power.
We propose to threshold the principal components keeping the most powerful
ones and dropping the others when we have enough to explain 99% of the original
signal power. For the EEG, we only want to extract the saccade components. As
saccades induce an electrical potential much larger in magnitude than the brain
activity, we propose to keep the first principal components explaining 95% of the
entire power. Both these empirical thresholds highly reduce the size of G and E.
Finally, we use MMV on the new data matrix Y = [PC99%(G),PC95%(E)], where
PC99%(G) and PC95%(E) are the operators extracting the principal components.

It remains to explain how to select the dictionary Φ.

2.3 Dictionary selection

Since we aim at decomposing only the ocular artifact components, we consider
a dictionary containing atoms that match with the gaze signals. As these signals
look like smooth steps, our choice is to use the following sigmoidal function

fα,β(t) =
1

1 + e−α(t−β)
, (8)

where α and β are, resp., the scale and the translation parameters. In order
to take into account the gaze signals overshoots and the side effects due to the
signals finite support, we include the derivative of (8) in the dictionary

gα,β(t) =
∂fα,β(t)

∂t
= αfα,β(t)f−α,β(t). (9)

We also add the constant function which acts as an offset and we normalize all
the atoms. Finally, all the atoms are seen as column vectors and we concatenate
them in the dictionary Φ for all considered scales α and translations β.

Hereafter, we summarize the outline of the proposed novel MMV method for
gaze and EEG multimodal approach (called MMV-G&E).

1. Preprocessing from gaze and EEG observations

• Epoch → build G(k) and E(k), k ∈ {1, . . . ,K} (6)

• Downsample (optional)

• If K > 1 : perform GTW → build G and E (7)

• Build Y = [PC99%(G),PC95%(E)]

2. MMV method: optimize the cost function Ψ(X) (4)

• Choose the dictionary Φ with respect to the data

• Fix the regularization parameters λ and ρ

• Solve (5) for X̂, e.g., using ADMM
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Fig. 3: All trials for some gaze and EEG channels after downsampling and preprocessing
by GTW method.

3 Experiments

In this section, we assess the MMV-G&E performance on gaze and EEG real-
data. These come from an experiment in visual exploration where participants
had to search a target from a set of distractors [14]. Sixty four active electrodes
(BrainProductsGmbH) were mounted on an EEG cap (BrainCapTM) placed on
the scalp in compliance with the international 10-20 system. To be compatible
with the EEG acquisition, eye-movements were recorded by a remote binocular
infrared eye-tracker EyeLink 1000 (SR Research) to track the gaze direction of
the left eye while the observer was looking at the stimuli. The EyeLink system
was used in the Pupil-Corneal Reflection tracking mode. For both acquisition
devices, the sampling frequency was 1000Hz. Off-line, EEG signals and gaze
samples were synchronized using hardware triggers signals sent in parallel to the
EEG recorder and the eye-tracker, along the experiment. Let note that the EEG
electrode F3 was defective during the experiment and has been removed from
the data (Q = 63). Concerning the gaze information, we take into account the
vertical and the horizontal channels (P = 2). We consider K = 26 epoched trials.
Each signal, downsampled at 333Hz, is composed of Ns = 75 samples and lasts
about 225 ms. After the GTW preprocessing, we obtain the data displayed in Fig.
3 for both gaze channels and two EEG channels. In Section 3.1, we describe the
selected parameters for using the proposed method and we show some qualitative
results obtained on real-data. Finally, a validation method is proposed to assess
the performance of MMV-G&E and comparisons with standard methods from
the literature are provided in Section 3.2.

3.1 MMV-G&E parameters and qualitative results

For this experiment, the MMV-G&E regularization parameters have been heuris-
tically fixed: λ = 42 and ρ = 1. Future work will consist in optimizing λ. Con-
cerning the dictionary, the atoms defined, for t = −10, . . . , 10, with a step of
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Fig. 4: MMV-G&E denoising effect for one trial and some gaze and EEG channels.

20/(Ns − 1), by (8) and (9) are concatenated with the constant function as
explained in Section 2.3. The scale and translation parameters are empirically
chosen: α ∈ {1, . . . , 10} and β = −10, . . . , 10, with a step of 20/(Ns − 1). Fig.
4 shows the denoising by the proposed method on the considered experimental
data. After removing the saccade contribution estimates (in dashed lines) from
the observations (in dotted curves), we obtain the denoised signals (in solid lines)
which seem to conserve the pre-saccadic behavior that corresponds to pure brain
activity. We can observe that, as expected, the saccade contribution estimates
depend on the considered electrodes. Thus, MMV-G&E method derives high
magnitude saccades for Fp1 and F8 and very low magnitude ones for P8.

3.2 Comparisons and validation

Here, we compare MMV-G&E to some algorithms from the state of the art:

• the regression method [3, 4] with the gaze taken as reference,
• Infomax algorithm (ICA) [1] applied to a matrix in which gaze and EEG

channels are concatenated for each trial and then all trials are stacked,
• CCA [15] that finds projections on a common space, maximizing the corre-

lation between gaze and EEG,
• the coupled tensor factorization method RACMTF [6].

In order to assess the efficiency of these methods, we propose the following
validation. From each EEG trial E(k), we extract three windows of 20 samples
representing, resp., the pre-saccadic fixation, the saccade and the post-saccadic

fixation, stored in three matrices, resp., E
(k)
pr , E

(k)
sa and E

(k)
po of size 20 × 63.

Each extracted signal is centered. Then, we stack the trials such that Epr =

[E
(1) T
pr , . . . ,E

(K) T
pr ]T where (·)T is the transpose operator. We do the same for

Esa and Epo. Finally, we compute two vectors of generalized eigenvalues (GEV):

d1 = GEV(Cov(Epr),Cov(Epo)) and d2 = GEV(Cov(Esa),Cov(Epo)), (10)
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Fig. 5: Validation comparing the GEVD between the covariance matrices of pre and
post-saccadic fixations and GEVD between the covariance matrices of pre-saccadic
fixation and denoised saccade. MMV-G&E is confronted with four popular method.

where Cov(·) is the covariance operator. The vectors d1 and d2 are displayed
in Fig. 5. The brain activity can be assumed to be stationary for long time
segments. Here, as the trials are stacked in the matrices Epr, Esa and Epo, we
can expect that each d1 entry should tend to 1. Due to the saccade power, we
have d2,i ≥ d1,i (i ∈ {1, . . . , 63}). This is confirmed before denoising (see Fig.
5). After this processing, we expect to reduce the distance bewteen each pair of
generalized eigenvalues (ideally d2,i = d1,i). For indicative information, a mea-
surement between d2 and d1 is provided, in Fig. 5, using the mean square error
in logarithmic scale (MSElog10

). In this figure, we can observe that the proposed
method obtains slightly better results than regression one and outperforms the
three other algorithms on this example.

4 Conclusions and Perspectives
In this paper, we propose a multimodal approach to tackle the eye-movement
artifact removal in EEG recordings. The gaze signals, used as a reference, share
a similar shape with the ocular artifacts. The considered MMV method allows
to exploit this property decomposing the data in a row sparse way in a same
well-chosen dictionary. Only the structure shared by gaze and EEG recordings
is estimated and is used to extract the ocular artifacts from the EEG data. One
may notice that the use of MMV-G&E for single trial processing is straightfor-
ward, yet, it is more complicated for multitrial processing. Indeed the signals
between different trials have to share the sought similar temporal structure. In
order to enforce this constraint, we propose to use the GTW method that warps
time in order to align the signals. The experiments on gaze and EEG real-data
have shown the proposed method efficiency for the ocular artifact extraction.
Moreover MMV-G&E compares favorably to classical methods from the litera-
ture. Future work will consider other extensions as a clever choice for the MMV
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thresholding parameter or some additional constraints for the sparse representa-
tion linked to the temporal structure of gaze and EEG data. It will also consist
in testing MMV-G&E performance on various criteria.
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