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Abstract. In the context of Post-Nonlinear (PNL) mixtures, source sep-
aration can be performed in a two-stage approach, which encompasses a
nonlinear and a linear compensation part. In the former part, it is usu-
ally required the knowledge of all the source distributions. In this work,
we propose a less restrictive approach, where only one source distribu-
tion is needed to be known – here, chosen to be a colored Gaussian. The
other sources are only required to present a time structure. The method
combines, in a joint-based approach, the use of the second-order statis-
tics (SOS) and the matching of distributions, which shows to be less
costly than the classical method of computing the marginal entropy for
all sources. The simulation results are favorable to the proposal.
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1 Introduction

In the area of signal processing, the problem of retrieving a set of source signals
from their mixtures has been intensively studied for three decades. Since this
task is performed with only the knowledge of some samples of the mixtures, this
problem is named Blind Source Separation (BSS) [1]. The majority of the initial
efforts were aimed at the standard linear and instantaneous mixture problem,
with the assumption that the sources are mutually independent. These studies
resulted in a well-founded and solid theoretical framework known as Independent
Component Analysis (ICA) [1]. Although it can count with a vast number of
practical applications, there are certain cases in which the linear assumption is
insufficient – e.g., smart chemical sensor arrays [2] and hyperspectral imaging [3]
– and nonlinear mixing models must be considered. Notwithstanding, from a
general nonlinear standpoint, the ICA framework may not provide the sufficient
information for performing source separation. Thus, the studies on this topic



were focused on a constrained set of nonlinear models in which the ICA methods
are still valid [4], like the so-called Post-Nonlinear (PNL) models [5].

The approaches for solving the PNL mixing problem can be roughly divided
into the joint and the two-stage approaches [6]. In the former case, an ICA-
based method is usually employed [5]. In the second case, the nonlinear part
is solved in a first step – e.g., via a Gaussianization method [7] – and, for the
subsequent step, there remains a linear BSS problem, which is a well studied
issue [1]. Additionally, if the sources present a temporal structure, a second-
order statistics (SOS)-based approach can be employed in the second stage [7].
Notwithstanding, these approaches may suffer some drawbacks: in the joint ap-
proach, it is usually necessary to estimate the mutual information, which may
be computationally costly and also be susceptible to local minima convergence.
In the two-stage approach, the nonlinear compensation methods, for achieving
accurate enough results, may require prior assumptions, which can not be avail-
able in certain scenarios [6]. In this work, we consider a less restrictive approach
by assuming the knowledge of the distribution shape of a single source, e.g., a
Gaussian distribution, and that the sources present temporal structure. In this
case, we propose a joint approach which allies a SOS-based cost function to a
density (Gaussian) matching which can be simply performed via kernel estima-
tors [8]. We also consider a robust metaheuristic known as Differential Evolution
(DE) [9] to avoid suboptimal convergence.

2 The Post-Nonlinear Mixtures

In the blind source separation (BSS) problem, the main objective is to retrieve
the original sources s(n) from the observed mixtures x(n) = Φ (s(n)), where
x(n) = [x1(n) · · · xM (n)]T is the observation vector of length M , s(n) =
[s1(n) · · · sN (n)]T is the source vector with N elements and Φ(·) is the mixing
function [1]. Classically, it is assumed that the mixing function can be described
as linear and instantaneous system of the type x(n) = As(n), where A is a
M×N matrix. However, this model is not sufficient for certain applications. In
that sense, the Post-Nonlinear (PNL) model rises as an emblematic and signifi-
cant step in nonlinear BSS [1],[5].

The PNL system comprises two stages of mixing: the linear and the nonlinear
stages. As illustrated in Fig. 1, the mixtures can be written as x(n) = f (As(n)),
being f(·) a set of M component-wise functions. The separation system is a mir-
rored version of the mixing system, being its output given by y(n) = Wg (x(n)),
where W is a N×M matrix and g(·) is a set of M component-wise functions,
ideally the inverse of f(·) [1].

2.1 Separation Techniques for PNL Mixtures

In the context of PNL mixtures, it is possible to classify the separation techniques
into two main classes: the joint and the two-stage approaches [6].



Fig. 1. Mixing and separating systems in the PNL model.

In the former, the main idea is to jointly adjust g(·) and W by minimizing
a given statistical dependence measure; generally, the use of the ICA framework
represents an efficient methodology for performing separation, but issues like
local convergence and constrained adaptation of the nonlinearities require special
attention – e.g., it is necessary that f(·) and g(·) be bijective pairs [6].

On the other hand, for the two-stage approach, the linear and the nonlinear
mixing stages are addressed separately, i.e., two different but “simpler” problems
need to be solved: g(·) is adapted so that the nonlinear part of the mixtures are
completely suppressed and, then, W is adjusted to solve the classic linear BSS
problem. There are a number of methods for adapting g(·) – the first stage –, as
those based on some a priori information [10], but the most common approach is
that based on Gaussianization: from the perspective of the central limit theorem,
the resultant random variables after the linear mixing stage will tend to be
“more” Gaussian. Thus, the most intuitive idea for adapting g(·) is to make its
output z(n) Gaussian again [7]. This strategy reveals to be more effective when
the number of sources N is large – according to the central limit theorem – or
when the sources are Gaussian distributed. One can also include among these
ideas the notion of the matching of probability distributions, which was one of the
first methods in the PNL two stage approaches [11]. In this case, the nonlinearity
compensation is accomplished when the distributions associated with u(n) and
with z(n) are matched – note, however, that the a priori knowledge of the
distribution of u(n) is required. This idea will also be relevant for the present
work.

The second stage – i.e., the adaptation of the linear term W – is usu-
ally solved with classical ICA methods, which encompass higher-order statis-
tics (HOS) [1], [6]. However, when the sources are temporally colored, methods
based on second-order statistics (SOS) can be applied, since they are known for
its robustness and reliable simplicity. This idea is exploited in [7] by using a
Gaussianization method in the first stage followed by a temporal decorrelation
separation (TDSEP) method [1] in the second stage. In fact, this approach is
interesting because it merges the simplicity of the second-order framework with
simple source priors, for solving the complex nonlinear mixtures.

Although each approach presents its own particular advantages, in this work,
we propose the use of a joint approach which is able, to a certain extent, to mix
the benefits of a Gaussianization method – by means of a probability density



matching – with the simplicity of the separation techniques based on SOS. The
method will be described in the next section.

3 Proposed Separation Method

The separation method for PNL mixtures proposed in this work is based on a
criterion that mixes the use of SOS and the matching of a (Gaussian) probability
density. We start with the following assumptions: (i) there is at least one source
is Gaussian; (ii) the sources are jointly wide-sense stationary, present a temporal
structure with different autocorrelation functions and are mutually independent;
(iii) f(·) is a set of invertible nonlinear functions; and (iv) the linear mixing
matrix have, at least, two nonzero entries per row and per column.

Since we aim at the joint approach, we seek a single separation criterion
which should be able to jointly adapt g(·) and W. However, this criterion will
be composed of two parts, whose concepts can be understood separately – as we
intend to show – but not its modus operandi.

3.1 Second-Order Statistics for Blind Separation

The first part of the criterion is based on the temporal structure of the sources.
More precisely, we make use of the classical second-order joint diagonalization
methods for linear BSS, which were the starting points for approaches and al-
gorithms like SOBI, AMUSE, TDSEP and modified versions [1].

In this case, the SOS are exploited through time lagged covariance matrices:

Ry,ds
= E

[

y(n)yT (n−ds)
]

, (1)

being ds a constant lag. The main idea is to simultaneously (approximately)
diagonalize the lagged covariance matrices for different values of ds previously
chosen, which can be summarized in the following cost [1]:

JSOS(θ) =
∑

ds∈S

off (Ry,ds
) =

∑

ds∈S

∑

i6=j

(E [yi(n)yj(n−ds)])
2
, (2)

where off(·) the sum of the squares of the off-diagonal elements of a given matrix;
S the set of chosen delays and θ the set of parameters to be adjusted, i.e., θ =
{g(·),W}. An additional normalization term (E

[

y2i (n)
]

−1)2 for i = {1, . . . , N}
is considered, since there are no whitening step for the nonlinear case. To solve
the problem, JSOS(θ) has to be minimized under a constraint over the linear
separating matrix W, in order to avoid convergence to the trivial solution.

Source separation based only on SOS is known to provide sufficient statis-
tical information in the linear mixing case. However, in the nonlinear problem,
additional statistics might be necessary.



3.2 Matching of Gaussian Distributions

Since we consider that at least one of the sources is Gaussian, this statistical
information can be used in the second part of the criterion. Instead of using
Gaussianization methods [6, 7], a multidimensional density matching approach
can be employed, such as the quadratic divergence between densities via kernel
density estimators [8].

Basically, the idea is to force one of the recovered sources, say y1(n), to be
Gaussian with a given temporal correlation (from a covariance matrix). In order
to use the temporal information, we consider the following vector, related to the
first output y1(n):

y1(n) = [y1(n) y1(n−1) . . . y1(n−dm)]
T
, (3)

where dm is the maximum number of delays considered. In this case, the temporal
covariance matrix of y1(n) is Ry

1
= E

[

y1(n)y
T
1 (n)

]

. Hence, we can formulate
a criterion that aims at the match of an estimated multivariate density to a
multivariate Gaussian distribution with zero mean and covariance matrix Ry

1
.

JGM (θ1) =

∫

D

(

fY 1
(v)−GRy1

(v)
)2

dv

=

∫

D

f2
Y 1

(v)dv +

∫

D

G2
Ry1

(v)dv − 2

∫

D

fY 1
(v)GRy1

(v)dv

(4)

where fY 1
(v) is the multivariate density associated with the vector y1(n) at point

v; GRy1
(v) is a Gaussian distribution with covariance matrix Ry

1
, D ∈ R

dm+1

and θ1 = {g(·),w1}, being w1 the vector corresponding to the first row of W.
To estimate fY 1

(v), we consider a kernel density estimation method [12]
using Gaussian kernels, which will lead to further simplifications in our case.
Hence, the kernel estimate of fY 1

(v) is:

f̂Y 1
(v) =

1

L

L
∑

i=1

GΣ (v − y1(i)) , (5)

where L is the number of vector samples of y1(n) and

GΣ (v − y1(i)) =
1

√

(2π)dm+1|Σ|
exp

[

−1

2
(v − y1(i))

TΣ−1(v − y1(i))

]

, (6)

is the multivariate symmetric Gaussian kernel with covariance matrix Σ = σ2I,
where I is the identity matrix of order dm+1 and σ2 the kernel size; |Σ| is the
determinant of Σ. Replacing the estimate fY 1

(v) into Eq. (4), it is possible to
write:

ĴGM (θ1) =
1

L2

L
∑

i=1

L
∑

j=1

G2Σ (y1(i)− y1(j)) +G2Ry1
(0)−

2

L

L
∑

i=1

GΣ+Ry1
(y1(i))

(7)



where the following relation was used [8]:
∫

D

GΣ (v − y1(i))GΣ (v − y1(j)) dv = G2Σ (y1(i)− y1(j)) . (8)

The goal is to minimize the cost ĴGM (θ1). It is expected that, in the optimization
process,Ry

1
converges to a scaled version ofRsk , the temporal covariance matrix

of a Gaussian source sk(n), as will be explained ahead.
It is worth mentioning that this method requires the adjustment of the kernel

size σ, which, for Gaussian distributions, can be done using the Silverman’s

rule [13], i.e., σo = σy1
(4/(L (2(dm+1) + 1)))

1/(dm+5)
, where σy1

is the standard
deviation of y1(n). The number of delays, dm, should be a trade-off between the
amount of temporal information used and the computational cost.

3.3 The Combined Approach

With both costs JSOS(θ) and JGM (θ1) at hand, we are able to analyze some
illustrative cases that might be further clarifying. Nonetheless, for the sake of
briefness, we appeal to certain intuitive properties within the BSS problem.

We start by considering the sole minimization of JGM (θ1) and, for simplicity,
we suppose the N=2 sources case with the following possible types of sources:
(i) only one of the sources is Gaussian distributed and (ii) both sources are
Gaussian and temporally colored (with different autocorrelation functions). In
the scenario (i), we know that, at the end of the linear mixing problem (with all
linear coefficients non-null), u(n) will tend to have a joint Gaussian distribution,
but not exactly Gaussian due to one of the sources being not Gaussian. After the
nonlinearities f(·), it is expected that x(n) will be even farther from the Gaussian
distribution. By forcing y1(n) to be Gaussian via minimization of JGM (θ1), it
is expected that the nonlinear separating functions g(·) are able to produce a
Gaussian-like distribution for z(n), so that the linear separating structure W1

will be able to extract a Gaussian source, but not necessarily the desired one.
Hence, in the case (i), if considered the additional minimization of the cost
JSOS(θ), it might be able to recover the correct Gaussian and, consequently, the
other source, since their lagged covariance matrices will be jointly diagonalized.
In case (ii), since the linear mixtures of Gaussian distributions remains Gaussian,
we have that u(n) would be jointly Gaussian. The nonlinearity f(·), again, will
drive the distribution of x(n) away from Gaussianity. By minimizing JGM (θ1)
in this case, it is expected that nonlinearities be compensated, but the linear
part will be unable to separate between the two Gaussian sources. Now, if we
also consider the minimization of JSOS(θ), we know from the linear BSS theory
that Gaussian distributions can be separated and the estimation of the temporal
covariance matrix Ry

1
will be more precise. Undoubtedly, it is not possible to

determine which of the Gaussian sources will be recovered at y1(n), but, since
the BSS problem admits permutation of the solutions, this is not an issue.

In fact, a bond between both SOS and GM criteria emerges in the temporal
information used by both costs, where there is an important synergy: the diago-
nalization of Ry,ds

aids the convergence of Ry
1
to Rsk – the temporal covariance



matrix of a Gaussian source – in addition, the information that the source y1(n)
is Gaussian can also contribute to it; in turn, when Ry

1
tends to Rsk , it can aid

with the separation of the other sources when diagonalizing Ry,ds
.

These illustrative cases reveal how the joint minimization of the SOS and GM
costs might aid the separation task. Hence, we propose the following combined
cost:

JSOS+GM (θ) = JSOS(θ) + αJGM (θ1), (9)

where α is a trade-off parameter between costs. The other parameters that re-
quire (pre-)adjustment are the number of samples and of time delays.

In the following, we present some performance analysis of the proposed
SOS+GM criterion in simulation scenarios.

4 Simulation Results

In this section, we analyze the performance of the SOS+GM criterion and com-
pare it with two other methods: the minimization of only the SOS cost (joint
approach) and the Gaussianization process followed by the minimization of the
SOS cost (the two-stage approach proposed in [7]). For the Gaussianization
method, the maximization of Shannon’s entropy was considered, using (univari-
ate) Gaussian kernel estimators [14].

The analyses were conducted in two scenarios. In the first one, we consider
two Gaussian sources that are temporally colored by the finite impulse response
(FIR) filters h1(z) = 1+0.5z−1 + 0.2z−2 and h2(z) = 1−0.8z−1, one for each
source. For the second scenario, one of the sources is a temporally correlated
Gaussian (by the filter h1(z)) and the other is a uniformly distributed signal
(from −1 to +1) with no temporal structure. In both scenarios, the mixtures
were the result of x(n) = (As(n))3, being A = [0.25 0.86;−0.86 0.25]. For the
separating structure, we considered, in place of g(·), parametric functions of
the type zi(n) = gi,1xi(n) + gi,2sign(xi(n))

3

√

|xi(n)|, where the operator sign(·)
returns a +1 if xi(n) ≥ 0 or a −1 if xi(n) < 0; followed by a 2× 2 matrix W.

In all cases, the number of delays and the number of samples considered
remained fixed. For the SOS cost, common to all considered methods, we adopted
3 delays with S = {0,1,2} and 500,000 samples of y(n) (the SOS cost demanded
a higher accuracy in its estimation, hence the large number of samples). For the
Gaussianization method, 500 samples of the vector z(n) were used to estimate
the marginal entropies. For the GM cost (part of the SOS+GM criterion), we
considered dm = 1 (delays 0 and 1), 500 samples of the vector y1(n) and α = 1.

To perform the optimization of the weights (nonlinear and linear), we adopted
the metaheuristic known as Differential Evolution (DE) [9]. The DE parameters
were chosen to be NP = 300 (population size), F = 0.7, CR = 0.7 and 100
iterations – for more details, please refer to [9]. For the joint approaches, a single
run of the DE adapts all coefficients, while, for the two-stage approach, two DE
runs are necessary, one for the nonlinear and other for the linear part. After
training, the performance of the best individual in the population was measured



in terms of SIR, defined as SIR = 10 log
(

E[yi(n)
2]/E[(si(n)− yi(n))

2]
)

, after
sign and variance correction.

Fig. 2 shows, for both scenarios, the scatter plot si(n)×si(n−1) of each source
and the outputs of the SOS+GM, the SOS and the Gaussianization/SOS meth-
ods through the plots s(n)×y(n), where a diagonal line means that a perfect
separation was achieved (the red dots are the output samples used to estimate
the GM cost). The measured SIR values for each case are displayed in Tab. 1.

(a) Scenario 1.

(b) Scenario 2.

Fig. 2. Scatter plots of the sources and of the outputs for each method.

In scenario 1, the proposed SOS+GM method was able to recover both
sources with high SIR values. The output y1(n), in this case, recovered the
source s2(n) and preserved its temporal structure with higher precision, being,
consequently, associated with a higher SIR level. The second method (sole SOS
criterion) has not performed well, being its plots si(n)×yi(n) in Fig. 2(a) far



from a diagonal line and with outputs associated with low values of SIR. For the
two-stage Gaussianization/SOS method, Gaussian signals were recovered, but
just one of them preserved the temporal structure of the source (s1(n)). In fact,
this result comes from a drawback of the two-stage approach: in the Gaussian-
ization step, the outputs z(n) can be very close to Gaussian distributions, but
may carry a small nonlinear residue (due to precision issues on estimation, for
example); then, in the linear separation step, this residue can not be treated.
Indeed, in the simulations, the optimization of the SOS cost in the second-stage
was not able to achieve its lowest value, since the nonlinear residue could not be
treated by a linear structure. Even though, the SIR value of 19.49 dB obtained
in the estimation of s2(n) can be considered acceptable in nonlinear scenarios
(note that, in Fig. 2(a), the deviation of the output y2(n) from s2(n) are not
severe).

Table 1. Performance in terms of SIR [dB]

Sources GM+SOS SOS Gauss./SOS

Scenario 1
Gaussian h1(z) - Source 1 61.5618 10.3715 70.2770
Gaussian h2(z) - Source 2 75.0141 −3.3308 19.4858

Scenario 2
Gaussian h1(z) - Source 1 38.4945 −0.5136 21.3580

Uniform - Source 2 39.6601 5.7545 34.0684

In the second scenario, our SOS+GMmethod performed as expected and was
able to recover the Gaussian source and its temporal structure at output y1(n),
as indicated by the plot s1(n)×y1(n) of Fig. 2(b). Also, the second source was
recovered with an SIR value of 39.66 dB, being a reliable estimate. For the SOS
method, again, the performance measures were far from the desired, indicating
that the sole minimization of SOS cost is not sufficient for nonlinear separation.
Finally, the Gaussianization/SOS method could provide reasonable estimates of
the sources, as shown in Fig. 2(b). However, due to the presence of the uniform
distribution in the mixture, the Gaussianization step was not able to completely
compensate the nonlinearities, causing a reduction on the performance. Indeed,
in this scenario, since the proposed method does not encompass any assumption
on the distribution shape of the sources different from the one that is Gaussian,
it can obtain better results.

5 Conclusions

In this work, we have proposed a joint approach for source separation in the PNL
model. The method allies the use of the second-order statistics to the density
matching approach. By only assuming temporally colored sources and, at least,
one Gaussian source, this method is able to perform the separation based on less
restrictive requirements than the usual two-stage methods, whose assumptions



apply to all sources. Also, it can be computationally simpler than estimating
mutual independence in the classical ICA framework. Along with the use of the
DE metaheuristic, the simulations indicated that the proposed method is more
robust than the Gaussianization method in the case of two Gaussian sources and
in the case of one Gaussian and one uniformly distributed source.

Since this work is still in its initial stage, there are plenty of possibilities for
future works. We consider, for instance, the analysis of the conditions for the
extension to a higher number of sources; the assumption of a known source dis-
tribution which is not Gaussian; and, finally, the proposition of a gradient-based
algorithm.
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