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Abstract. In this work, we consider the nonlinear Blind Source Separa-
tion (BSS) problem in the context of overdetermined Bilinear Mixtures,
in which a linear structure can be employed for performing separation.
Based on the Gaussian Process (GP) framework, two approaches are pro-
posed: the predictive distribution and the maximization of the marginal
likelihood. In both cases, separation can be achieved by assuming that
the sources are Gaussian and temporally correlated. The results with
synthetic data are favorable to the proposal.
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1 Introduction

In the context of Blind Source Separation (BSS), it is desired to retrieve the
original sources signals that were mixed together from a number of observations
of these mixtures [1]. Classically, this problem is viewed from the perspective
that the mixing process is linear and that the sources are mutually statistically
independent. In this context, a number of methods based on Independent Com-
ponent Analysis (ICA) were successfully employed in many practical applications
[1]. However, in certain real world separation problems, e.g., chemical sensor ar-
rays [2], the mixtures are evidently nonlinear. In such cases, the extension of the
ICA methods towards a general nonlinear system is not straightforward [3]. In
light of this, the studies on nonlinear BSS have been focused on classes of con-
strained mixing models in which the framework employed in the linear case can
be effectively extended. A representative example of these constrained models is
the Bilinear mixture equations [4], with actual applications like the show-through
effect removal in scanned images [5] and the project of gas sensor arrays [6].

The bilinear model is of special interest for us due to three interesting fea-
tures: (i) it can be formulated as a linear system with respect to the mixing
coefficients; (ii) it is an initial step toward polynomial mixtures; and (iii) in the



overdetermined case (when the number of mixtures is greater than the num-
ber of sources), a linear structure may be enough for separation, under certain
conditions on the number of sources and mixtures. In the literature, these fea-
tures were exploited along with certain statistical properties about the sources,
in which we can cite, for instance, circularity [7], finite alphabet [8], sparsity [9]
and limited band [10]. In this work, however, we propose a different approach in
which the sources are described as independent Gaussian Processes (GP) [11].
Although the GP framework is solely based on second-order statistics (SOS), this
idea turns to be promising due to the linear properties found in the overdeter-
mined bilinear model. Moreover, its formulation provides an attractive theoret-
ical approach to perform source separation. The GP method encompassed here
is twofold: we consider the GP predictive distribution (a semi-blind approach)
and the maximization of the marginal likelihood, respectively.

2 Problem Statement

In the BSS problem, it is considered that a set of N sources are instantaneously
mixed, giving rise to M observations according to the following relation:

x(n) = f (s(n)) (1)

where s(n) = [s1(n) · · · sN (n)]T is the source vector with N elements, x(n) =
[x1(n) · · · xM (n)]T is the observation vector (of length M) at time instant n
and f(·) is a set of M functions, potentially nonlinear. By assuming the knowl-
edge of only the mixtures x(n) and certain a priori information (e.g., statistical
independence among sources), it is desired to recover the original sources s(n)
by means of a separation process, up to scale and permutation factors [1].

Interestingly, for certain types of nonlinear functions f(·), when the number
of mixtures M is larger than that of sources N – which is referred to as the
overdetermined case –, additional information can be used to systematically
simplify the separation process. This attractive feature arises in the context of
bilinear mixtures, which will be described in the following.

2.1 Bilinear Mixtures - The Overdetermined Case

The bilinear mixtures belong to a special class of nonlinear mixtures and can be
represented by following expression [1, 5]:

xi(n) =
N
∑

j=1

aijsj(n) +
∑

k 6=l

biklsk(n)sl(n), (2)

which can be viewed as a linear combination of the sources plus the cross prod-
uct terms sk(n)sl(n), for k 6= l. Interestingly, for this type of mixtures, if a
given number of additional mixtures is available, it is possible to perform the
suppression of the nonlinear terms, reducing the nonlinear problem to a linear
one.



For the sake of simplicity, we assume henceforth the overdetermined case of
N=2 sources and M=3 mixtures, which is a clarifying and still representative
instance for practical scenarios [6]. In this case, by using a vector notation, the
bilinear mixtures can be written as

x(n) =





x1(n)
x2(n)
x3(n)



 =





a11 a12 b1
a21 a22 b2
a31 a32 b3









s1(n)
s2(n)

s1(n)s2(n)



 , (3)

note that we have used a simplified index notation for b, since there is only a
single cross product term – i.e., s1(n)s2(n). From a certain perspective, Eq. (3)
can be viewed as a linear mixing problem with an additional statistically de-
pendent source s1(n)s2(n) = s3(n) [9]. Regarding the separation task in the
overdetermined case, we consider two approaches: (i) the one-stage and (ii) and
the two-stage.

In the one-stage approach, a simple linear separating system is considered:

[

y1(n)
y2(n)

]

=

[

w11 w12 w13

w21 w22 w23

]





x1(n)
x2(n)
x3(n)



 = W̃x(n), (4)

where W̃ is a non-square matrix of dimension 2 × 3 (N ×M). In this case, W̃
is adjusted in a single stage.

For the two-stage approach, as shown in [9], a linear combination of the
mixtures of the type

[

z1(n)
z2(n)

]

=

[

x1(n)
x2(n)

]

−

[

α1

α2

]

x3(n), (5)

is able to suppress the quadratic cross terms in Eq. (2) – i.e., the nonlinear part of
the mixture is removed – if the values of α were properly adjusted. Theoretically,
it can be shown that the optimum values for α are αi = bi/b3 [9] and, when
this ideal case is achieved, z(n) is simply a linear mixture of the sources. We call
this the first stage. For the second stage, since we face a linear BSS problem,
we can write a 2-by-2 separating system as y(n) = Wz(n), whose solution
is straightforward to be reached – for example, via standard ICA methods [1].
Although only presented for the case of two sources and three mixtures, this idea
can be generalized to N sources, but it will require at least M = N(N+1)/2
mixtures to cancel all nonlinear elements [10].

Interestingly, in both cases, a linear structure is able to perform separation.
From the literature, for the one-stage approach, the non-square shape of the
separating matrix avoids the direct application of certain classical ICA meth-
ods. However, it is still possible to use, for example, gradient-based methods for
optimization [12]. On the other hand, the efforts in the two-stage approach are
mainly aimed at solving the first stage (since the second stage is a well stud-
ied problem), usually being considered certain statistical properties about the
sources [7–10].



These approaches are able to encompass a wide range of real world scenarios,
but, in order to enlarge its scope, we propose, in this work, a different approach:
sources that are described as Gaussian Processes. This idea will lead to two
different methods in GP, depending on the approach, one- or two-stage.

3 Gaussian Processes in the Bilinear Mixtures

The main motivation for this work lies in Gaussian processes (GP), which can
be defined as a collection of random variables (RV), any finite number of which
have a joint Gaussian distribution [11]. GP is able to provide convenient methods,
since it can be totally described by second-order statistics (SOS). In the context
of bilinear mixtures, a GP can be constructed based on priors about the sources.
More specifically, we assume that the sources are stationary, Gaussian distributed
and mutually independent. Mathematically, this assumptions can be written, in
the case of N=2 sources, as

[

s1(n)
s2(n)

]

∼ N

(

µ,

[

σ2
s1

0
0 σ2

s2

])

(6)

where µ = [µ1 µ2]
T is the column vector with the sources mean values and σ2

si

the variance of the i-th source si(n). For simplicity, we consider in this work that
µi = 0, for all i. In addition, sources are also assumed to be temporally colored
(with different autocorrelation functions).

Based on the model description in Section 2 and on the prior given by Eq. (6),
it is possible to assert some information about the mixtures x(n). From Eq. (3),
we know that s3(n) = s1(n)s2(n) is the product of two Gaussian distributed RV,
which results that s3(n) can be described by means of a double-sided chi-squared
distribution; hence, the probability density function of the mixtures, p(x), is not
necessarily Gaussian – it will be approximately Gaussian for small values b in
Eq. (3) or for a large number of sources, due to the central limit theorem [1],
however, these cases will not be considered here and p(x) will be assumed to be
non-Gaussian.

In our approach, it turns to be interesting to express the estimated sources
y(n) as a GP; in other words, it is desired that a conditional distribution of y(n)
be Gaussian. We consider the two conditional posterior probabilities, p(y|x) and
p(y|z), which are related to the one- and two-stage approaches, respectively. As
we intend to show, they will lead to two representative approaches in the GP
formulation, one for each conditional probability: the predictive distribution and
the marginal likelihood, as described in the following.

3.1 The Predictive Distribution

In the context of the one-stage approach, it is possible to assert a few com-
ments on p(y|x). Using the Bayes’ rule, p(y|x) = p(x|y)p(y)/p(x) and, since
p(x|y) is not necessarily Gaussian and p(x) is definitively not Gaussian, then



p(y|x) is not Gaussian as well. However, from a theoretical standpoint, by con-
ditioning the posterior for a given source, e.g., si(n), we have now p(y|x,si) =
p(x|y,si)p(y|si)/p(x|si), which is Gaussian distributed: this result becomes more
evident by verifying that p (s3|s1) or p (s3|s2) is Gaussian.

From a GP prediction standpoint, the distribution p(y|x,si) can be estimated
from mixtures x(n) and a few known source values. This idea can be viewed as
an interpolation problem, given certain reference values and the SOS defined
by the GP [11]. Once obtained the predictive distribution p(y|x,si), the esti-
mated sources y(n) can be obtained using Markov Chain Monte Carlo (MCMC)
methods [12].

From the perspective of the bilinear mixture problem, this approach can con-
tribute with an interesting theoretical understanding, but imposes some practical
difficulties from the standpoint of blind separation, since the knowledge of cer-
tain reference values is difficult to obtain. In light of this, this method is classified
as a semi-blind approach. Although this might seem restrictive, in certain cases
it can be shown to be feasible, such as in the context of chemical sensor arrays,
where the solution concentration measures are preceded by certain calibration
points, which can be interpreted here as reference values [6]. Furthermore, the
reference values can admit certain degree of error [11], which prompts the em-
ployment of this idea along with other methods that are able to provide ‘coarse’
estimates of sources.

In the GP formulation, the temporal information is crucial. Hence, we com-
pose vectors yi(l) = [yi(l1) . . . yi(lL)]

T , for i = 1, . . . , N , which is the i-th
output at L time instants l = {l1, . . . , lL}. Suppose now that the sources are
known at P time instants j = {j1, . . . , jP }, i.e., the vectors si(j) = [si(j1) . . .

si(jP )]
T
, for i = 1, . . . , N , are given (and they will be referred to as ‘target’ val-

ues). Also, the mixtures x(l1), . . . ,x(lL),x(j1), . . . ,x(jP ) are known (at the time
instants l and j). Then, the goal is to predict the probability density function of
yi(l), the outputs at time instants l.

For mathematical simplicity, we define the following entities for the case of
N = 2 sources: y(l) = [yT

1 (l) y
T
2 (l)]

T is the column vector with all outputs at
time instants l; similarly, s(j) = [sT1 (j) sT2 (j)]

T is the column vector with the
targets; X(l) = [x(l1) . . . ,x(lL)] and X(j) = [x(j1) . . . ,x(jP )] are the mixtures
matrices for time instants l and j, respectively. Hence, the conditional probability
of y(l) can be denoted as p (y(l)|X(l),X(j),s(j)).

Based on the priors and on the knowledge that p (y(l)|X(l),X(j),s(j)) is Gaus-
sian, we can write the following GP in the case of N = 2 sources:

y(l)|X(j), s(j) ∼ GP (0,K(X(l),X(l))) , (7)

where K(X(l),X(l)) is the covariance matrix of size 2L×2L in function of X(l).
Eq. (7) means that the distribution for y(l) is jointly Gaussian with zero mean
and covariance matrix K(X(l),X(l)). However, K(X(l),X(l)) must be defined
so that it is able to encompass the temporal structure of the sources and the
mutual independence information. Hence, in this work, we propose the use of a



block-diagonal covariance matrix of the type:

K(X(l),X(l)) =

[

Ky1
(X(l),X(l)) 0

0 Ky2
(X(l),X(l))

]

(8)

where Kyi
(X(l),X(l)) is a covariance submatrix of dimension L × L, whose

element of the l-th row and l′-th column is given by the squared-exponential
(SE) function [11]:

Kyi
(X(l),X(l′)) = γi exp

(

−1

2
(x(l)− x(l′))TΣ−1

i (x(l)− x(l′))

)

, (9)

with Σi = σ2
i IM , being σ2

i the estimated variance of source i, γi a scale factor,
and IM the identity matrix of order M (here M=3).

Hence, from the GP classical results [11], the predictive distribution can be
obtained by

p (y(l)|X(l),X(j),s(j)) ∼ N
(

K(X(j),X(l))Γ−1s(j),

K(X(j),X(j))−K(X(j),X(l))Γ−1K(X(l),X(j))
)

.
(10)

where Γ = K(X(l),X(l))+Φ, with Φ = [ǫ21IL 0;0 ǫ22IL], a diagonal matrix which
is able to consider the degree of error (or uncertainty) in the target samples by
means of noise variances ǫ2i associated to each source. In that sense, the targets
s(j) can admit certain level of error, and the accuracy of the predictive distribu-
tion will depend on the estimation of the error variances ǫ2i . Eq. (10) shows that
p (y(l)|X(l),X(j),s(j)) is Gaussian distributed with mean K(X(j),X(l))Γ−1s(j)
and covariance matrix K(X(j),X(j))−K(X(j),X(l))Γ−1K(X(l),X(j)).

The complexity of the method exponentially increases with the number of
considered time instants (for both target, j, and predicted samples, l). In view
of this, for implementation purposes, a Cholesky decomposition can be used to
simplify the inversion of Γ and to generate the predicted samples of y(l) [11].
The variables θ̃ = {γ1, γ2, σ1, σ2, ǫ1, ǫ2} are called hyperparameters of the GP
and can be adjusted by maximizing the marginal likelihood given the targets [11].
Once the predicted source samples are obtained, the separation matrix W̃ can
be directly estimated via supervised approaches [1], if necessary.

3.2 Maximization of the Marginal Likelihood

For the two-stage case, using Bayes’ rule, p(y|z) = p(z|y)p(y)/p(z), p(z) – and,
consequently, p(y) – can be Gaussian, but not necessarily (note that the out-
put z(n) will be associated with a Gaussian distribution if the values of α are
properly adjusted). Nonetheless, when p(z) is Gaussian, p(y|z) will also be. In
this case, the marginal likelihood p(y|z) can be maximized with respect to the
hyperparameters of the system, forcing it towards the Gaussian distribution.

Using the previously defined notation, for a given set of observationsX(l) and
for given values of α and W, it is possible to obtain Z(l) and, in the sequence,



y(l) – see Eq. (5). Thus, we wish that p(y(l)|Z(l)) be described according to a
GP, i.e.,

y(l) ∼ GP (0,K(Z(l),Z(l)) , (11)

beingK(Z(l),Z(l)) a block-diagonal covariance matrix, as defined in Eq. (8) with
inputs Z(l) instead of X(l).

By denoting θ = {γ1, γ2, σ1, σ2,α,W} the vector of all hyperparameters, it
is possible to write the log likelihood

L =
−1

2
yT (l)K−1(Z(l),Z(l))y(l)−

1

2
log |K(Z(l),Z(l))| −

(L+1)

2
log 2π, (12)

being K(Z(l),Z(l)) a function of Z(l) and θ.
Hence, by maximizing L with respect to the hyperparameters θ, we hope to

obtain a conditional probability p(y(l)|Z(l)) that is Gaussian and, in this case,
the optimal parameters α andW are the solution of the separation problem. Note
that, in this case, the two-stages are solved simultaneously. As in the predictive
case, the complexity grows exponentially with the number of samples and large
data sets should be avoided.

The effectiveness of this approach comes from the fact that different time
delays are being compared in the GP by construction. In fact, since we are
considering only SOS, the temporal structure is essential for separation. This idea
is encompassed by the block diagonal covariance function K(Z(l),Z(l)) which
allows temporal correlation between samples of the same output, but applies
decorrelation (in different time delays) for different outputs. This is also valid
for the predictive case. In the sequence, we compare the performance of the two
proposed GP approaches.

4 Simulation Results

In order to test the two proposed methods, we consider a simulation scenario
for the 2 source and 3 mixture case. The sources are assumed to be two colored
Gaussian distributed, obtained from i.i.d. Gaussian sampled, that are temporally
colored by the finite impulse response (FIR) filters with impulse response h1(z) =
1+0.6z−1−0.3z−2 and h2(z) = 1−0.8z−1, each source separately. We considered
the following mixing matrix,

A =





a11 a12 b1
a21 a22 b2
a31 a32 b3



 =





−0.8049 0.0938 −0.0292
−0.4430 0.9150 0.6006
−1.4434 −0.4997 0.5180



 , (13)

whose mixtures were obtained using Eq. (3).
The predictive distribution is the first approach to be tested. From a set of

100 samples of the mixtures x(n), we consider the cases in which P = 10 and
P = 5 targets ŝ(j) are available (with and without noise). For this purpose,
within the time window of 100 samples, P time instants are randomly picked,



Fig. 1. Predictive - Noise (top) and Noiseless (bottom) Targets. The shaded area de-
notes the prediction uncertainty.

for which the sources are assumed to be known. Hence, the objective is to cor-
rectly predict the system output y(l), given s(j), X(j) and X(l). Additionally, a
perturbation can be considered with additive white Gaussian noise (to simulate
targets with certain degree of error) with variance σ2 = 1e−1, resulting a SNR
level of 14.9 dB. 1000 independent experiments were considered, from which each
realization encompassed a new set of mixtures and targets. We start by adjust-
ing the hyperparameters θ̃, which were empirically chosen to be γ1=10, γ2=30,
σ1=4.5, σ2=5.48, ǫ1=ǫ2=0. For illustrative purposes, we display in Fig. 1 one
realization of the predicted distribution for P = 5 and for noiseless (top) and
noisy (bottom) targets. The dashed line represents the desired output and the
red circle the known targets. The shaded area comprises the region where a re-
alization of p (y|x, s) could fall (more precisely, the region denotes the predicted
mean value ± 3 times the predicted standard deviation for each time instant).
Hence, a large shaded area means the prediction is less accurate. It is possible to
note for the noiseless targets that, with exception of certain small regions, the
predicted region is small and falls really close to the desired output. Although
we do not show here, for P = 10 noiseless targets, the prediction is very accu-
rate. Notwithstanding, when the provided targets present certain level of error,
the accuracy is reduced for all time instants; as shown in Fig. 1 (bottom), the
shaded area is increased with respect to the noiseless case. In the noisy case, we
have chosen ǫ21 = ǫ22 = σ2 = 1e−1.

In order to evaluate the quality of the predicted samples, we measured the
signal-to-interference ratio (SIR), defined as SIR = 10 log

(

E[yi(n)
2]/E[(si(n)

−yi(n))
2]
)

. Since we are interested in the mean performance, it was considered
only the predicted mean for computing the SIR (and averaged over all realiza-
tions). The results are displayed in Tab. 1. As previously discussed, in the noise-
less case (σ2 = 0), we can see high values of SIR for both values of P (above 50
dB), which means that the sources are recovered with small error. However, the
reduction of the number of targets causes the performance to slightly decrease.



Table 1. Mean SIR [dB] for the maximum likelihood and the predictive approaches

Predictive Maximum

σ2 = 0 σ2 = 1e−1 Likelihood

P = 10 P = 5 P = 10 P = 5

Source 1 73.41 64.18 38.08 24.78 13.70
Source 2 74.30 65.35 40.59 27.81 16.26

In the case of noisy targets, the SIR is reduced even more, to approximately 40
dB for P = 10 and to 25 dB for P = 5. In that sense, it is clear that the higher
the number of targets and its quality, the higher is the SIR of the prediction.

For the second approach, we consider the maximization of the log likelihood,
in which we wish to adjust the hyperparameters θ to its optimal values. The
adaptation can be performed according to several optimization methods [12].
However, in this work, we adopt the metaheuristic called Differential Evolution

(DE) [13] for optimization, which is an efficient technique to explore the search
space and avoid convergence to local optima (for more details, please refer to
[13]). The chosen DE parameters are NP=300 (population size), F=0.7, CR=0.7
and 100 iterations.

In this case, we consider a set of 45 samples of x(n) and performed the
adaptation of θ via the DE method. This procedure was repeated 10 times, for
different realizations of x(n). Even with a reduced number of samples, each op-
timization leads to good results, with mean value of α1=0.0456 and α2=1.1498,
which are close to the ideal values α1=0.0564 and α2=1.1595, respectively. The
mean SIR values can be seen in Tab. 1. Although this SIR value is not quite
impressive, the performance is good if the reduced number of samples is taken
into account.

5 Conclusions

In this work, we proposed two GP formulations to solve the overdetermined
bilinear mixing problem concerning the one- and two-stage approaches. Our
propositions are both based on the prior that the sources are mutually inde-
pendent Gaussian distributed, however, they differ in the application of the GP
method. We have shown that, for the GP formulation consistency, it was required
in the former case the conditioning of the output distribution to the knowledge
of certain reference samples, named targets, what prompted us to adopt a pre-
dictive based GP approach. In the second case, the two-stage approach allowed
the adjustment of the hyperparameters via the maximization of the marginal
likelihood. As shown in the simulation results, the predictive approach tends
to provide better results, depending on the quality and number of the targets,
however, the maximization of the marginal likelihood is also able to perform the



separation of the sources. Although these GP methods present certain algorith-
mic complexity, the computational burden can be reduced by using a relatively
small number of samples.

For future works, we consider a deeper analysis of the requirements for sep-
aration – e.g., a spectral density analysis of the temporal structure – and the
extension of these theoretical analysis to noisy scenarios and to other classes of
mixing systems, like the Linear Quadratic.
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