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Abstract. In this paper, the problem of multimodal soft coupling under
the Bayesian framework when the variance of the probabilistic model is
unknown is investigated. Similarity of shared factors resulted from Non-
negative Matrix Factorization (NMF) of multimodal data sets is imposed
in a soft manner by using a probabilistic model. In previous works, it is
supposed that this probabilistic model is exactly known. However, this
assumption does not always hold. In this paper it is supposed that the
probabilistic model is already known but its variance is unknown. So
the proposed algorithm estimates the variance of the probabilistic model
along with other parameters during the factorization procedure. Simula-
tion results with synthetic data confirm the effectiveness of the proposed
algorithm.

Keywords: Nonnegative matrix factorization, Bayesian framework, Soft
coupling

1 Introduction

Multimodal signals are recorded by different sensors viewing a same physical phe-
nomenon. These signals can be of the same type (different microphones recording
a same speech) or different types (audio and video recordings of a speech). Since
the physical origin of the multimodal signals are the same, some similarities and
correlations are expected among them. Utilizing this similarity by joint analyzing
the multimodal signals is known as data fusion [1, 2]. Coupled factorization of
multimodal data sets is a common approach for data fusion [3]. Coupled factor-
ization of data sets can be achieved by coupled matrix factorization [4], coupled
matrix-tensor factorization [2] or coupled tensor factorization [5].

Factorization of a 2-way array data set (matrix Vm) can be achieved by
using Nonnegative Matrix Factorization (NMF). NMF is decomposing a data
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matrix with nonnegative elements as a product of two matrices with nonnegative
elements as [6]

Vm = WmHm, (1)

where Vm ∈ <F×N is the data matrix, Wm ∈ <F×K and Hm ∈ <K×N (K <
min(F,N)) are the factorization parameters.

Due to the correlation among multimodal datasets (Vm,m = 1, ...,M ), one
or some of their factorization parameters is (are) similar to each other which
is (are) named as shared factor(s). Other parameters which are particular for
each data set are called unshared factors [5, 7]. Since NMF decomposition of a
data set is not unique, joint (coupled) factorization of multimodal datasets and
utilizing the similarity of the shared factors among them can improve the quality
of factorization, and especially can reduce the indeterminacies.

In some algorithms such as [8] shared factors are assumed to be equal among
the datasets. These algorithms are usually named as hard coupling algorithms.
The “equality” of the shared factors is relaxed to their “similarity” in papers such
as [4]. These algorithms are known as soft coupling algorithms. Soft coupling of
the shared factors is studied in different papers and has different applications
such as source separation [4] or speaker diarization [9]. Similarity of the shared
factors is usually imposed by using penalty terms. The penalty terms can be `1
or `2 norms [4] or can be achieved in the Bayesian framework and based on the
joint distribution of the shared factors [7].

The soft coupling in the Bayesian framework is proposed in [7] and is based
on the statistical dependence of the shared factors which is assumed to be known.
But this assumption does not always hold. Statistical dependence between the
shared factors can be unknown. Even if the kind of the statistical dependence is
known, parameters such as variance can be unknown. In this paper, soft coupling
of the shared factors in the Bayesian framework when the variance of the sta-
tistical model is unknown is studied. Factorization parameters of a dataset are
computed by the help of the parameters of another dataset using soft coupling.
It is supposed that the kind of the statistical model between the shared factors
(Gaussian) is known, but the variance of the model is unknown. So the variance
is also estimated along with other parameters. In this paper, the update rules
for updating the parameters are derived by using Majorization Minimization al-
gorithm and exploiting auxiliary functions and an stopping criteria for stopping
the update of the variance is also defined.

The paper is organized as follows. Soft coupling for NMF is reviewed in
Section 2. The proposed algorithm is presented in Section 3, and finally Section 4
devoted to the experimental results.

2 Soft coupling for NMF

2.1 NMF model

As mentioned in the introduction part, NMF is decomposing a matrix V with
nonnegative elements to the product of two matrices W and H with nonnegative



A New Algorithm for Multimodal Soft Coupling 3

elements. The decomposition is achieved by solving [6]

min
W≥0,H≥0

D(V‖WH), (2)

where D measures the difference between V and WH. Different functions are
used for D such as Kulback-Leibler divergence or Itakura Saito divergence [8, 4].
Itakura-Saito divergence is defined as [8]

DIS(V‖WH) =
∑
i,j

v(i, j)∑
k w(i, k)h(k, j)

− log
v(i, j)∑

k w(i, k)h(k, j)
− 1, (3)

where v(i, j), w(i, k) and h(k, j) are elements of V, W and H, respectively.
The parameters W and H in (2) are estimated during an update procedure.

Multiplicative update rules with nonnegative initialization which preserve the
nonnegativity property of the elements of the final parameters are proposed for
estimating W and H in different papers [8, 4, 10] as

w(i, j)← w(i, j)×
∑
k h(j, k)v(i, k)/v̂2(i, k)∑

k h(j, k)/v̂(i, k)
, (4)

h(i, j)← h(i, j)×
∑
k w(k, i)v(k, j)/v̂2(k, j)∑

k w(k, i)/v̂(k, j)
, (5)

where v̂(i, j) is the (i, j)-th element of V̂ = WH, and w(i, j) and h(i, j) are the
elements of W and H, respectively.

2.2 Coupled NMF

Coupled factorization As mentioned in the introduction part, coupled factor-
ization of multimodal datasets is a common approach for data fusion. Coupled
factorization of two multimodal datasets in a hard manner (hard coupling) is
modeled as [8]

min
W1,W2,H

λ1D(V1‖W1H) + λ2D(V2‖W2H), (6)

where V1 and V2 are the multimodal datasets, H is the shared factor, W1 and
W2 are the unshared factors, and λ1 and λ2 are the weights of each term. For
coupling in a soft manner (soft coupling) the above cost function changes to [4]

min
W1,W2,H1,H2

λ1D(V1‖W1H1) + λ2D(V2‖W2H2) + λ3`p(H1,H2), (7)

where H1 and H2 are the shared factors, `p(H1,H2) is the penalty term which
imposes the similarity of the shared factors, and λ3 weights the penalty term.
As mentioned before, the penalty term can be for example `1 or `2 norms or
can be obtained in the Bayesian framework which will be discussed in the next
subsection.
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Soft coupling in the Bayesian framework The problem of estimating W
and H given V can be modeled as a Maximum A Posteriori (MAP) estimation
of the parameters as [8, 7]

argmax
θ

p(θ,V) = argmin
θ
{− log p(V|θ)− log p(θ)}, (8)

where θ = {W,H} and p stands for the probability density function. Joint
estimation of the parameters of the two multimodal datasets V1 and V2 (joint
factorization of V1 and V2) can also be modeled as [7]

argmax
θ

p(θ,V1,V2) = argmin
θ
{− log p(V1|θ1)− log p(V2|θ2)− log p(θ1,θ2)},

(9)

where θ = {W1,H1,W2,H2}, θ1 = {W1,H1} and θ2 = {W2,H2}. The third
term, log p(θ1,θ2), is the log of the joint density of θ1 and θ2. In (9) it is assumed
that the data sets V1 and V2 are conditionally independent given θ1 and θ2.
H1 and H2 are the shared factors and W1 and W2 are the unshared factors.

Similar to [7], it is assumed that H1 is random but H2, W1 and W2 are
deterministic , and H1 only depends on H2 (shared factors). So the last term of
(9) can be written as

− log p(θ1,θ2) = − log p(H1|H2). (10)

So the coupled factorization of two datasets with soft coupling based on
Bayesian framework is modeled as [7]

argmin
θ
{− log p(V1|θ1)− log p(V2|θ2)− log p(H1|H2)}, (11)

where − log p(H1|H2) is the soft coupling term. In [7] it is assumed that the
coupling model (− log p(H1|H2)) and its parameters are known. In this paper
it is assumed that although the statistical model between the shared factors are
known, the variance of the model is unknown. So the variance should also be
estimated along with the other parameters. This will be discussed in the next
section.

3 The Proposed algorithm

As mentioned in the previous section, − log p(H1|H2) is the soft coupling term
that relates the shared factors H1 and H2 in a soft manner. Supposing that p is
the Gaussian probability density function and

(h1(i, j)|h2(i, j)) ⊥⊥ (h1(i′, j′)|h2(i′, j′)), (i, j) 6= (i′, j′)

where ⊥⊥ shows the independence between two random variables, and h1(i, j)
and h2(i, j) are the (i, j)-th elements of H1 and H2, respectively. So the soft
coupling term can be written as
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− log p(H1|H2) =

∑
i,j ‖h1(i, j)− h2(i, j)‖2

2σ2
+
∑
i,j

{1

2
log 2π + log σ}. (12)

In (12), h1(i, j) and h2(i, j) are the (i, j)-th components of H1 and H2, respec-
tively, σ is the model variance which is unknown. Since σ should be updated
during the update procedure the last term of (12) cannot be ignored. In the
above model, σ is the same for all of the elements of H1 and H2, but the prob-
lem can also be investigated when each element has a particular variance.

For modeling − log p(V1|θ1), following [8], we assume that V1 is the Short
Time Fourier Transform (STFT) matrix of a source whose elements at discrete
time “n” and frequency “f”, (v1(f, n)), have the complex Gaussian distribution:
v1(f, n) ∼ Nc(0,

∑
k w1(f, k)h1(k, n)), where w1(f, k) and h1(k, n) are the ele-

ments of W1 and H1, respectively. Under this assumption, it is shown in [8] that
(details can be found in [8])

− log p(V1|θ1) = − log p(V1|W1H1) = DIS(|V1|2‖W1H1) + cst. (13)

In this paper it is assumed that the second data set, V2, is factorized before
and H2 has been computed and kept constant during the updating procedure.
So the second term of (11) is vanished and the problem in the Bayesian approach
is factorizing |V1|2 to its components W1 and H1 by the help of H2 which has
already been computed. The problem is formulated as

argmin
W1,H1

{
− log p(V1|W1H1)− log p(H1|H2)

}
,

= argmin
W1,H1

{
DIS(|V1|2‖W1H1) +

∑
i,j ‖h1(i, j)− h2(i, j)‖2

2σ2
+
∑
i,j

log σ

}
.

(14)

Since the penalty term in (14) (last two terms) do not depend on W1, we
can use (4) for updating W1. But new update rules are needed for updating H1

as well as σ. The update rules are discussed in the following subsections.

3.1 Update rule for updating H1

For applying the Majorization Minimization algorithm [6, 11] for minimizing
F (h), an auxiliary function G(ht, h) is defined as

G(ht, h) ≥ F (h),

G(ht, ht) = F (ht),
(15)

where G(ht, h) is an auxiliary function for F (h) and ht is the amount of h in the
t-th iteration where G(ht, ht) = F (ht) . An auxiliary function has the property
that F (h) is nonincreasing under the following update[6]

ht+1 = argmin
h

G(ht, h).
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It means that F (ht+1) ≤ F (ht). So an update rule for minimizing F (h) can
be achieved by using its auxiliary function (details can be found in [6]). An
auxiliary function for minimizing Itakura Saito divergence of (3) with respect to
H is proposed in [11] as

G(H|Ht) =
∑
i,j

ht
2
(i, j)

h(i, j)

(∑
k

w(k, i)
v(k, j)

v̂2(k, j)

)
+ h(i, j)

(∑
k

w(k, i)

v̂(k, j)

)
+ cte,

(16)

where v̂(k, j) is the (k, j)-th element of V̂ = WHt. Since the above auxiliary
function is convex with respect to H (noting that h(i, j) ≥ 0 ∀i, j), its min-
imum can be found by putting its derivative to zero and finding the resulted
parameters. In this paper, the Itakura Saito divergence is coupled with a term
resulted from the Gaussian coupling of the shared factors. So the resulted convex
auxiliary function for minimizing the cost function (14) with respect to H1 is

G2(H1|Ht
1) = G(H1|Ht

1) +

∑
i,j ‖h1(i, j)− h2(i, j)‖2

2σ2
. (17)

The derivative of the above auxiliary function with respect to h1(i, j) is

−h
t
1
2
(i, j)

h21(i, j)

(∑
k

w1(k, i)
v1(k, j)

v̂21(k, j)

)
+

(∑
k

w1(k, i)

v̂1(k, j)

)
+

(h1(i, j)− h2(i, j))

σ2
. (18)

The above equation should be set to zero and solved with respect to h1(i, j).

Denoting a(i, j) = −ht1
2
(i, j)

(∑
k w1(k, i) v1(k,j)

v̂21(k,j)

)
, b(i, j) =

(∑
k
w1(k,i)
v̂1(k,j)

)
−

h2(i,j))
σ2 and c(i, j) = 1

σ2 , (18) changes to

a(i, j) + b(i, j)× h12(i, j) + c(i, j)× h13(i, j)

h1
2(i, j)

, (19)

where a(i, j) < 0, c(i, j) > 0 and the sign of b(i, j) can be changed during
the update procedure. The real root of the numerator of (19) is 1

3

(
z(i, j) +

1
z(i,j) − 1) b(i,j)c(i,j) where z(i, j) is equal to (for simplicity in the notations the (i, j)

is removed in the rest of the equations)

z =
3
√

3
√

3
√

27a2c4 + 4ab3c2 − 27ac2 − 2b3

b 3
√

2
. (20)

For
√

27a2c4 + 4ab3c2 being real, the condition b ≤ 3

√
− 27

4 ac
2 (noting that a < 0)

should be established. Simple calculation shows that b ≤ 3

√
− 27

4 ac
2 also results

in −27ac2−2b3 > 0. So if b ≤ 3

√
− 27

4 ac
2, the numerator of (20) is positive and the

sign of z is the same as the sign of b. The sign of z+ 1
z −1 is the same as the sign

of the z and the sign of z is the same as the sign of b, therefore if the constraint
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b ≤ 3

√
− 27

4 ac
2 holds, 1

3

(
z + 1

z − 1) bc is positive. So h1(i, j) = 1
3

(
z + 1

z − 1) bc

is the positive root of (18). For when the condition b ≤ 3

√
− 27

4 ac
2 does not

hold, for decreasing the auxiliary function and consequently the proposed cost
function, if (18) > 0 then ht1(i, j) decreases by dividing to 1 + β. Otherwise
ht1(i, j) is increased by multiplying to 1 + β. Noting that β is a small positive
constant. Based on this discussion, the update procedure of H1 is summarized
in Algorithm 1.

Algorithm 1 Update procedure of H1

1: if b ≤ 3

√
− 27

4
ac2 then

2: ht+1
1 (i, j)← 1

3

(
z + 1

z
− 1) b

c
. t is the number of the iteration

3: else
4: if (18) > 0 then
5: ht+1

1 (i, j)← ht
1(i, j)/(1 + β)

6: else
7: ht+1

1 (i, j)← ht
1(i, j)× (1 + β)

8: end if
9: end if

3.2 Update rule for updating σ

Similar to H1, we use auxiliary function for updating σ as

G(σ|σt) =

∑
i,j ‖h1(i, j)− h2(i, j)‖2

2σ2
+ (log σt +

σ − σt

σt
)K ×N, (21)

where “log” function is replaced by it’s tangent [11] which is the same for all
of the elements of H1. So the last summation in (14) changes to the product of

(log σt + σ−σt

σt ) by (K ×N), the entry number of H1. The cost function of (21)
is convex with respect to σ and the root of its derivative with respect to σ is

σ =
3

√∑
i,j ‖h1(i, j)− h2(i, j)‖2σt

K ×N
. (22)

So the variance of the model is updated using (22). Updating σ without any
additional constraint results in converging σ to zero and finally H1 will be equal
to H2. So updating of σ should be stopped after some iterations. Here, σ is up-
dated as long as DIS(|V1|2‖Wt+1

1 Ht+1
1 ) ≤ DIS(|V1|2‖Wt

1H
t
1). where Wt

1 and
Ht

1 are the parameters of the previous iteration and Wt+1
1 and Ht+1

1 are the
parameters of the current iteration. DIS(|V1|2‖Wt+1

1 Ht+1
1 ) is the cost function

of (14) without the coupling penalty term in the (t + 1)-th iteration. Exces-
sive reduction in σ gives a significant weight to the coupling term which re-
sults in too much similarity of H1 and H2. This makes DIS(|V1|2‖W1H1) to
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Fig. 1. Estimated variance (continuous line) using the proposed algorithm versus actual
variance (dashed line).

increase (instead of decrease), especially when H1 and H2 are not very simi-
lar. This can be used as a criteria for stopping the update of σ. So updating
σ stops and σ is kept fixed in the rest of the updating procedure as soon as
DIS(|V1|2‖Wt+1

1 Ht+1
1 ) ≤ DIS(|V1|2‖Wt

1H
t
1) is violated.

4 Experimental results

In this section, the effectiveness of the proposed algorithm is investigated. In the
first simulation, the quality of the proposed algorithm in estimating the variance
is investigated. The matrices W1 ∈ <100×10 and H1 ∈ <10×100 are produced
with random nonnegative elements and the data matrix (V2) is produced by
multiplying W1 and H1. H2 is produced by adding Gaussian noise to H1 as
p(H1|H2) = N (H2, σ) where N (H2, σ) is the Gaussian noise with mean of H2

and variance of σ which is unknown. β is set to 0.1.
The result for estimating σ is shown in Fig. 1. It is clear from the results

that the algorithm has the ability to estimate the variance of the model. It is
also clear that the estimated variance is decreasing by decreasing the actual
variance (σ). The estimation error of H1 is calculated as ‖H1− Ĥ1‖2F where Ĥ1

is the estimation of H1. The estimation error for the proposed algorithm and
for the situation when the variance is known is presented in Fig. 2. The results
show that except for some large values of σ, the proposed algorithm and the
situation in which the variance is known has nearly the same estimation errors.
Note that when the variance is known, only W1 and H1 are updated using (4)
and Algorithm 1.

The decreasing property of the proposed cost function under the proposed
update rules is shown in Fig. 3. The proposed algorithm is executed for the
actual σ equal to 0.1 and β = 10−3. It is clear that the cost function decreases
during the update procedure.

In Table 1, the estimation error of the proposed algorithm is compared to
the hard coupling algorithm. It is clear from the results that the proposed algo-
rithm has a lower estimation error comparing to the hard coupling algorithm,
especially for greater variances. But by decreasing the variance the estimation
errors become closer to each other.
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Fig. 2. Comparing the estimation errors using the proposed algorithm (continuous line)
and the situation when the variance is known (dashed line).

Table 1. Estimation error of H1 for the proposed and hard coupling algorithms.

actual σ 1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

Proposed algorithm 0.073 0.055 0.041 0.031 0.024 0.019 0.016 0.0134 0.0111 0.0099

Hard coupling 0.087 0.062 0.045 0.034 0.026 0.021 0.017 0.0139 0.0116 0.0099

Table 2. Estimation error of H1 for the proposed algorithm and when the variance is
chosen arbitrarily.

actual σ
chosen σ

proposed algorithm
3 1 0.3 0.1 0.03

0.3 0.0733 0.0308 0.0481 0.0714 0.0794 0.0471

0.1 0.0731 0.0131 0.0112 0.0113 0.0121 0.0102

0 0.0769 0.00070 0.0032 1.0289× 10−7 5.3682× 10−10 3.389× 10−21

And finally, we have compared the proposed algorithm with the algorithm
when the variance is not estimated but chosen arbitrarily (not necessarily equal
to the actual variance) for several amounts of the actual σ. The estimation
errors are presented in Table 2 (the estimation errors of the proposed algorithm
is presented in the last column). It is clear from the results that choosing an
incorrect variance especially when the actual σ = 0, can result in a significant
estimation error. But this error is reduced by using the proposed algorithm.

5 Conclusion

In this paper, we have proposed an algorithm for soft coupling of the shared
factors based on the Bayesian framework. As mentioned before, in soft coupling
based on the Bayesian framework the statistical dependency between the shared
factors should be known. But this assumption does not always hold. In this pa-
per, it is assumed that the general statistical dependency between the shared
factors (Gaussian distribution) is known but the variance of the model is un-
known. So the proposed algorithm estimates the variance of the model along
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Fig. 3. Decreasing property of the proposed cost function.

with the estimation of the factorization parameters. The presented results show
the ability of the proposed algorithm in estimating the model variance and also
the decreasing property of the proposed algorithm.
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