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Abstract. In this work, we tackle the problem of fetal electrocardio-
gram (ECG) extraction from a single sensor. The proposed method is
based on non-parametric modelling of the ECG signal described thanks
to its second order statistics. Each assumed source in the mixture is thus
modelled as a second order process thanks to its covariance function.
This modelling allows to reconstruct each source by maximizing the re-
lated posterior distribution. The proposed method is tested on synthetic
data to evaluate its performance behavior to denoise ECG. It is then ap-
plied on real data to extract fetal ECG from a single maternal abdominal
sensor.
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1 Introduction

Fetal electrocardiogram (f-ECG) extraction from maternal abdominal ECG sen-
sors is an old problem. Since the first works of Cremer [1] who produced a very
primitive record of fetal rate activity, this problem is still of interest nowadays
since it is a fascinating issue due to the characteristics of the involved signals.
Indeed, the f-ECG is definitively less powerful than the mother’s ECG (m-ECG),
moreover the recorded signals are also contaminated by noise due to electromyo-
gram (EMG) or to power line interference and they are also influenced by the
fluctuation of the baseline. Among the several approaches used to tackle the
extraction of f-ECG, one can quote methods which require several sensors e.g.,
adaptive filtering [15], blind source separation [2, 16] or quasi-periodic analy-
sis [14].

In this paper, we consider the same issue but assuming that only a single
sensor is available. In this case, one can extract f-ECG by singular value decom-
position [4] or by nonlinear decomposition such as shrinkage wavelet denoising [7]
or nonlinear projections [10]. Moreover, state modelling as Kalman filtering [13]
has been applied to overcome the lack of information provided by a single sensor.
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Fig. 1. Modelling (1) of the amplitude of one beat.

Among these methods, the latter has been shown to be the most efficient [12].
However, Kalman filtering relies on a very strong assumption: the state equation,
which models the dynamical evolution of the unobserved state. As a consequence,
Kalman filtering needs reliable prior about the state to perform accurately. To
overcome the potential lack of prior information about the system, we propose
in this study to model the second order statistics of the signal instead of the
signal itself.

This article is organized as follows. Section 2 presents the proposed approach
to model a signal thanks to its second order statistics. The proposed algorithm
to extract f-ECG is then introduced in Section 3. Numerical experiments and
results are given in Section 4 before conclusion and perspectives in Section 5.

2 Nonparametric modelling of ECG

As already proposed in [13], one can choose a parametric model of ECG: each
beat of an ECG signal is a summation of 5 Gaussian functions, each of them
modelling the P, Q, R, S and T waves as illustrated in Figure 1:

z(θ) =
∑

i∈{P,Q,R,S,T}

ai exp

(
− (θ − θi)2

2σ2
i

)
, (1)

where ai, θi and σi are the amplitude, the position and the width of each wave,
respectively. Note that in this model, the beats are defined in phase θ ∈ [−π, π],
so that each beat is assumed to have a linear variation of phase with respect to
the time, even if each beat has not the same duration. This model can then be
used in an extended Kalman filtering to denoise a single ECG or extract f-ECG
from a mixture of m-ECG and f-ECG [13, 11]. This method is thus a parametric
method since the unknown amplitude z(θ) is explicitly parameterized.

On the other hand, nonparametric methods perform estimation, prediction
or denoising without explicitly parameterizing the unknown amplitude z(θ). For
instance, a well known approach is the spline smoothing [5]. If one considers the
ECG z(θ) as a statistical process, it can be fully described at the second order by
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Fig. 2. Two functions drawn at random from a zero-mean GP with covariance func-
tion (2). The shaded area represents plus and minus two times the standard deviation
for the prior. On the right, the related σ(θ) and ld(θ) functions.

its mean function m(θ) = E[z(θ)] and covariance function k(θ1, θ2)
4
= E[(z(θ1)−

m(θ1))(z(θ2) −m(θ2))] [8]. Obviously, the ECG signal is almost surely a more
complex statistical process than a simple second order one. As a consequence,
considering only its second order statistics, it relies among the Gaussian process
(GP) framework which is widely used in machine learning e.g., [6, 9]. A GP
z(θ) is a distribution over functions denoted as GP(m(θ), k(θ1, θ2)). In this case,
the statistical latent process z(θ) is not directly parameterized as in parametric
model, but its statistics are it thanks to hyper-parameters. This means that one
has to choose a class of semidefinite positive functions k(θ1, θ2) which describes
the expected second order properties of the latent process.

In this study, we propose to use the following non-stationary covariance func-
tion

k(θ1, θ2) = σ(θ1)σ(θ2)

√
2ld(θ1)ld(θ2)

ld(θ1)2 + ld(θ2)2
exp

(
−

(
θ1 − θ2

)2
ld(θ1)2 + ld(θ2)2

)
, (2)

with

σ(θ) = am + (aM − am) exp

(
− (θ − θ0)2

2σ2
T

)
,

ld(θ) = lM − (lM − lm) exp

(
− (θ − θ0)2

2σ2
l

)
,

where σ(θ) and ld(θ) allow to have a time-varying power (between am and aM )
and a time-varying length scale correlation (between lm and lM ), respectively.
Indeed, as shown in Fig. 1, an ECG beat can be decomposed into three parts:
the P wave, the QRS complex and the T wave. The P and T waves share the
same kind of second order statistics: a larger length scale and a lower power
than the QRS complex. Fig. 2 shows two functions drawn at random from the
zero-mean GP prior with covariance function (2). This figure illustrates the flex-
ibility of such a representation compared to model (1) since with the same prior
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GP
(
0, k(θ1, θ2)

)
, it can generate a multitude of different shapes with the same

prior.

3 Denoising of ECG and extraction of fetal ECG from a
single sensor

Suppose that the observed values x(t) differ from the ECG, s(t), by additive
noise n(t):

x(t) = s(t) + n(t), (3)

and that this noise is uncorrelated with s(t). The aim of this study is to infer the
values of s(t) from x(t), i.e. to denoise or extract the ECG from the observations.
Moreover, it is assumed that the ECG signal, s(t), is a succession of beats, each
of them following a zero-mean GP defining by (2) and that the additive noise
follows a zero-mean GP whose covariance function kn(t, t′) is given by

kn(t, t′) = σ2
n exp

(
− (t− t′)2

2 l2n

)
+ σ2

wδ(t− t′), (4)

where δ(·) is the delta Dirac function. In this expression, the first term is useful
for instance to model a baseline variation as a stationary process for which
the correlation is almost unity between close samples and decreases as their
distance increases compared to the length scale ln. The second term models a
white Gaussian noise of power σ2

w. From (3) and (4), the covariance function of
observation x(t) is thus expressed as

kx
(
t, t′
)

= ks
(
t, t′
)

+ kn
(
t, t′
)
, (5)

where

ks
(
t, t′
)

=

N∑
n=1

N∑
n′=1

k
(
t− τn, t′ − τn′

)
and {τn}1≤n≤N is the set of R peak instants that can be estimated easily from
the raw signals. From this modelling and assuming that the observed process x(t)
has been recorded at times {Tm}1≤m≤M , the covariance matrix of this process
is thus given by Kx, whose (i, j)th entry is

Kx(i, j) = kx(Ti, Tj). (6)

One can then infer on the value s(t) thanks to the maximization of the a poste-
riori distribution of s(t) given x = [x(T1), · · · , x(TM )]T by

ŝ(t) = kTK−1x x, (7)

where k = [k(t, T1), · · · , k(t, TM )]T . It is interesting to note that as soon as
σ2
w 6= 0, matrix Kx is invertible as the summation of definite positive matrices

and a diagonal matrix σ2
wI. This algorithm needs some comments. First of all,
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the recorded signal, x(t), does not need to be regularly sampled and one can
observe from (7) that the value of the latent process, s(t), can be predicted at any
time t even for t 6= Ti, ∀i ∈ {1, · · · , TM}. Moreover, the hyper-parameters θ =
{am, aM , σ2

T , lm, lM , σ
2
l , θ0, {τk}k, σ2

n, l
2
n, σ

2
w} defining k(·, ·) and kn(·, ·) need to

be estimated. This can be done by maximizing the evidence (or log marginal
likelihood) given by

log p
(
x|{Ti}i,θ

)
= −1

2
xT
(
Ks +Kn

)−1
x− 1

2
log
∣∣Ks +Kn

∣∣− M

2
log(2π). (8)

The optimization of the latter equation is obtained thanks to a gradient ascent
method, assuming that the initial parameter values are not so far from its actual
values.

Fetal ECG extraction from a single abdominal sensor is then a direct exten-
sion of the proposed method by modelling the recorded signal x(t) as

x(t) = sm(t) + sf (t) + n(t), (9)

where sm(t) is the signal related to the mother, sf (t) is related to the fetus
and n(t) is the additive noise. All these signals are modelled by zero-mean GPs
with covariance functions km(·, ·) and kf (·, ·) defined by (2) and kn(·, ·) obtained
from (4), respectively. In this case, the estimation of sf (t) is given by

ŝf (t) = kT
f

(
Km +Kf +Kn

)−1
x, (10)

where kf = [kf (t, T1), · · · , kf (t, TM )]T .

4 Numerical experiments

In this section we first investigate the performance of the proposed method on
synthetic data to denoise ECG (Section 4.1). An illustration of f-ECG extraction
is then provided on real data (Section 4.2).

4.1 Synthetic data: ECG denoising

The performance of the proposed algorithm to denoise ECG is assessed. In the
first experiment, each beat of the ECG signal is generated by model (1). To mimic
the variability presented in a real ECG, the waves amplitudes and P-R and R-
T intervals are randomly changed (3%) around their average values. The ECG
signal is then obtained as the summation of several beats with random global
amplitudes and random R-R intervals. To ensure the consistency of the results,
the whole procedure has been repeated one thousand times by regenerating all
random parameters of the signal and noise samples. In this experiment, 1500
samples are used with 15 heart beats simulated at 100Hz sampled frequency. It
is worth noting that the proposed method does not assume that the maxima
of the R peaks are located at observed samples but can also appear in between
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Fig. 3. ECG denoising: output SNRs vs. the input SNR without Fig. 3(a) and with
Fig. 3(b) parameters variability. In the two figures, the black line corresponds to the
same input and output SNRs. In each case, the median are plotted, as well as the first
and last quartiles as error bars.

samples. The proposed method is compared to the extended Kalman filtering
(EKF) and smoothing (EKS) [13]. The state model is chosen equal to (1) (i.e.
the same model than the one used to generate data) whose parameters are equal
to average values.

Quantitative results are shown in Fig. 3 which compares the output signal-to-
noise ratio (SNR) achieved after denoising versus different input SNRs. As one
can see (Fig. 3(b)), the proposed method increases the SNR with a gain between
3dB to 18dB. Contrary to extended Kalman filtering, the proposed method al-
ways improves the SNR. Indeed, in the case of high input SNR, EKS and EKF
deteriorate the SNR: this can be explained by the variability of the simulated
ECG as confirmed by Fig. 3(a), since this phenomenon is not observed with-
out variability. Moreover, one can see that the variability decreases the overall
performance, but the proposed method keeps the best performance by a smaller
decrease than EKS or EKF.

4.2 Real data: f-ECG extraction

In this section, we illustrate (Fig. 4) the proposed method to extract f-ECG
from a single sensor on the well-known DaISy fetal ECG database [3]. As one
can see, the proposed method provides suitable estimations of both maternal
and fetal ECG even when mother’s and fetus’s R peaks are concomitant (e.g.,
the fourth, seventh and tenth mother’s beats). Moreover, a visual inspection
of the residual noise n̂(t) = x(t) − ŝm(t) − ŝf (t) confirms the validity of the
assumed modelling (9). Indeed, this residual noise is effectively composed of a
smooth varying baseline (dark curve) related to the first term of covariance func-
tion (4) plus a quasi white noise (validated by its covariance function empirical
estimation). Moreover, both contributions are decorrelated with the mother’s
and fetus’s ECG signals.
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Fig. 4. Fetal ECG extraction. Top to bottom: recorded signal x(t), estimated mother’s
ECG ŝm(t), estimated fetal’s ECG ŝf (t) and residual noise n̂(t) (light gray curve) with
estimated baseline (dark curve), respectively.

5 Conclusions and perspectives

In this paper, a non-parametric model of ECG signals is derived. By considering
them as second order processes, which are fully defined by their mean and covari-
ance functions, one can model a large class of signals with few hyper-parameters.
From this modelling, denoising or extraction methods are directly obtained as
the maximization of the posterior distribution. Numerical experiments show that
the proposed method outperforms an extended Kalman filtering especially in
presence of slightly random state parameters. Indeed, Gaussian processes real-
ize a tradeoff between the suitable description of the signal by its second order
statistics and its intrinsic variabilities. Finally, the main advantage of the pro-
posed method is its flexibility and it provides a mix between purely data based
methods as principal component analysis and parametric model based methods
as Kalman filtering.

Future work will deal with a computationally efficient implementation of
hyper-parameters estimation of the proposed method as well as an online imple-
mentation.
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