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Abstract. Active Brain Computer Interfaces (BCIs) allow people to exert vol-
untary control over a computer system: brain signals are captured and imagined 
actions (movements, concepts) are recognized after a training phase (from 10 
minutes to 2 months). BCIs are confined in labs, with only a few dozen people 
using them outside regularly (e.g. assistance for impairments). We propose a 
“Co-learning BCI” (CLBCI) that reduces the amount of training and makes 
BCIs more suitable for recreational applications. We replicate an existing ex-
periment where the BCI controls a drone and compare CLBCI to their Operant 
Conditioning (OC) protocol over three durations of practice (1 day, 1 week, 1 
month). We find that OC works at 80% after a month practice, but the perfor-
mance is between 60 and 70% any earlier. In a week of practice, CLBCI reach-
es a performance of around 75%. We conclude that CLBCI is better suited for 
recreational use. OC should be reserved for users for whom performance is the 
main concern. 
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1 Introduction 

Active Brain Computer Interfaces (BCIs) allow people to exert direct voluntary con-
trol over a computer system: their brain signals are captured and the system recogniz-
es specific imagined actions (movement, images, concepts). Active BCIs and their 
users must undergo training (between 10 minutes and 2 months). This skill is also 
known as BCI training. This makes the signals easier to recognize by the system. This 
acquisition can take from 10 minutes up to 2 months. BCIs can thus be applied to 
many control and interaction scenarios of our everyday lives, especially in relation to 
entertainment [1].  
BCIs have mostly been used in laboratories and in medical applications (e.g. spellers 
for locked-in syndrome patients [1]). A few dozen people at most use BCIs at home, 



as exhibited by the BNCI FP7 roadmap report [2]. Moreover, as an emerging and new 
interaction technology, they offer a good prospect of inspiring people’s imaginations 
and of providing a new and enjoyable way of interaction [3].  

For example, personal drones are a popular phenomenon that takes an increasing 
role in our daily lives. There are “selfie drones”1 that take off from a user’s wrist to 
take a “selfie” photo, such drones can be controlled by BCIs. Recent press coverage 
of a BCI system that controls a drone quadcopter [4] has shown a strong interest in 
the general public of experiencing BCI control.  

 In this particular drone piloting application, the training protocol for the BCI is 
called Operant Conditioning (OC), needs to teach users to harness their brain signals 
and adapt them so that they can be recognized by the computer, which requires one to 
two months of rigorous training. Alternatives to OC for BCIs are training protocols 
based on machine learning that record typical brain signals for a set of mental actions 
or states and build classifiers to recognize those actions or states. Although training is 
shorter (10-20 minutes sessions [5]), the process requires a continuous focus and con-
centration from users, is more error-prone than OC and involves feedback to users [6] 
that is not appealing.  

None of the two training paradigms are entirely adequate to let people test the 
technology in a way that would make them want to try again or even adopt it for en-
joyment.  

In this work we want to gauge the possibility of producing a BCI trained interac-
tively in short sessions and that provides a viable alternative to OC and standard train-
ing protocols.  

We introduce a “Co-learning BCI” (CLBCI) that reduces the initial amount of 
training required before the BCI is functional and that allows an incremental and in-
teractive training process. We want to know if it is better to do one long training ses-
sion with OC before using the BCI altogether or to have a short training session with 
CLBCI before every use of the BCI (a balance of quality versus time versus degree of 
control). We are particularly interested in what happens in the long run by evaluating 
whether OC and CLBCI are compatible with an overly positive user experience. 
Moreover, we want to know when OC should be favored over CLBCI and vice versa.  

To that end, we perform an experiment over three training durations: 1 day, 1 
week, 1 month. We train users in two groups, for all training durations: one group 
with CLBCI and the other using OC training. We want to see whether CLBCI reaches 
an acceptable performance for shorter training periods while maintaining the effect of 
signal variability to a minimum. We also asked users to fill informal questionnaires to 
share their experiences. 

With this experiment we want verify the following hypotheses: 

• (H.1): For duration of below one month, using CLBCI leads to better task perfor-
mance compared to OC.  

• (H.2): Beyond the one month duration, OC leads to better task performance. 

                                                             
1 http://lightbox.time.com/2014/11/03/selfie-drone-camera/ 



• (H.3): Despite the better performance for OC after a month training, users prefer to 
train for a shorter period whenever they want to use the BCI, rather than spend a 
full month training once.  

For the evaluation, we apply our system to the drone piloting task used in LaFleur 
et al. [4] to pilot an AR.Drone (Figure 1) and we evaluate the task performance of 
CLBCI compared to OC. The task and the OC implementation are a replication of 
LaFleur et al’s experimental protocol. We use the same evaluation measures and 
training protocols.  

We first present background information on BCIs and their application and then 
some related work pertaining to control applications and co-adaptive BCI learning.  
Then, we present the CLBCI system and continue with the experimental protocol and 
the analysis and discussion of the results.  

2 Background Information and Related Work 

In this section we will present background information about BCI systems and then 
go on to study the state of the art and relevant BCI research for human computer in-
teraction and control applications.  

2.1 Brain Computer Interfaces 

A BCI system ! must assign a brain signal !! of a fixed duration (an epoch; e.g. 
1s) at time !, to a class !!! from a set of ! classes !", that correspond to a set of brain 
activity states !!! to recognize. A machine learning classifier ! is trained to that ef-

                  
      a) The drone before takeoff.            b) The drone through the right ring.      

  
c) The drone flies towards the left ring. 

Fig. 1. The experimental environment with two rings four meters apart. The subject is in-
stalled in front of a table in between the targets. The drone must pass through the hoops fol-

lowing an "8" trajectory during 5-minute piloting sessions. 



fect with a set of training examples !(!!!) for each class !!!. A training example is a 
signal epoch of the same duration as !! that was recorded when the user was in the 
desired state !!! for class !!! (Training or Calibration phase). The recording of such a 
training example and the associated protocol is called a training trial. For general 
matters on the processes associated with BCIs, we refer the reader to the state of the 
art presented by Nicolas-Alonso et al. [7]. A recent and extensive survey on BCI clas-
sification techniques is presented by Lotte et al. [8]. 

There is a further distinction between synchronous and asynchronous systems. In 
synchronous systems, stimuli are always shown to the user at fixed intervals of time 
during training, given that activations in the brain usually occur with a consistent 
delay after the stimulus onset. During online use (after training) one must wait for 
stimulation time, before the BCI generates an output command [8]. In an asynchro-
nous system, there is no synchronization of the stimuli during online use and the BCI 
can be used at any moment without having to wait for the stimulus to begin. The addi-
tional difficulty lies in separating the target activity from all the rest of the brain activ-
ity [9]. There are many BCI paradigms, however in this work we use Motor Imagery 
(MI). MI requires users to imagine a motor action (moving their arm left/right, tap-
ping their feet, etc.) without actually moving. This elicits similar activations as though 
they had moved and can be detected by a BCI. MI is an appropriate modality that can 
be applied to direct control applications, as the imagined actions match with the direc-
tions of the control (left/right hand for turning left/right, tapping feet to go down, etc.) 
[1] and thus with the inherent semantics of the control task. 

2.2 BCIs for Control & Recreational Applications 

The first area of application of BCIs was to use them for direct control in HCI sys-
tems [1], but also to combine them in a multimodal setting [10], with more common 
interaction modalities (e.g. Eye-tracking [11]). There are many practical applications: 
video games, e.g. World of Warcraft, serious games [12–14], robotics & prosthetics 
[15, 16]; virtual reality applications [17, 18].  

There are two types of possible control paradigms: event-based control, where the 
BCI is used to trigger discrete events in an interface; continuous control, where the 
BCI is used to directly control the movement of an object or element of the interface 
(e.g. the movements of a pointer). 
One particular continuous control application for BCIs of interest for this article is 3D 
navigation for the purpose of piloting a drone. Royer et al. [19] first evaluate the fea-
sibility of the 2D control of an helicopter in a virtual environment, followed by Doud 
et al. for 3D control [20] with the motivation of achieving a means for telepresence. 
Finally LaFleur et al. [4] apply this technique for the 3D control of a real AR.Drone, 
with good success by using an Operant Conditioning training for 2 months on 5 users. 
More recently, a practical 2D control BCI system was demonstrated [21, 22]. The 
system allows to control an AR.Drone and that is operational within minutes (turning 
left/right or taking off and landing). This type of system is asynchronous and uses co-
adaptation techniques between the classifier and the user, which are the main current 
focus of research efforts that aim at bringing BCIs out of the lab. The system present-



ed in this work also falls in the category and we will thus review some of the related 
work on BCI co-adaptation. 

2.3 Co-adaptation for Asynchronous BCIs 

Scherer et al [23] propose an asynchronous BCI for the control of a virtual environ-
ment with three MI classes + a non-control state. They found it difficult to obtain a 
reliable classification in the asynchronous context. To remediate this problem several 
approaches have been proposed. One is to add a form of feature selection process to 
the BCI by performing co-adaptation from the EEG signals, for example the work of 
[24, 25] that extends Scherer et al. An initial synchronous calibration phase captures 
artifact free trials from each class whereby one feature out of six possible features is 
selected to train a classifier. Subsequently during the online phase, feedback is pro-
vided to enable periodical recalibrations when new artifact-free trials become availa-
ble.  
To the contrary of other state of the art approaches, in our system, CLBCI, the co-
adaptation is driven by the user through a feedback loop rather than by the system 
through automatic adaptation (we call this co-learning rather than co-adaptation). 
Given the BCI also relies on machine learning and the feedback is based on incremen-
tally capturing new training examples for the classifier from the user’s signal. As such 
CLBCI lies at the intersection of BCI co-adaption and interactive machine learning 
[26], where the interaction drives the training of a classifier. The motivation for this 
approach is to provide a more engaging training period to users, as a long monotonous 
session of merely following instructions at fixed intervals lead to boredom and to a 
loss of attention and concentration. This view is inspired by the application of educa-
tional science research to BCIs [12] and in improving training protocols for BCIs 
[6].While other state of the art co-learning approaches tackle the reduction of training 
time and the minimization of errors the user still remains passive: they do not rely on 
the ability of the human to learn to use the BCI.  
In light of the fact that what we want to evaluate in the experiments is the human 
learning component, we chose not to make a comparison to these methods in our ex-
periment. 

3 CLBCI System and Architecture 

The architecture of the CLBCI system is based on minimum distance classification. 
The Minimum Distance Classifier (MDC) is a simple classification technique that 
stems from the pattern recognition literature, where it is used extensively (e.g. image 
recognition) [27]. It was among the first classifiers applied for BCIs but was mostly 
supplanted by classifiers such as LDA Linear Discriminant Analysis (LDA) or Sup-
port Vector Machine (SVM) [8]. The weakness of MDCs is that they are sensitive to 
noise and when signal sources are not well separated, however they were successfully 
applied to BCIs in combination with divergences based on Riemannian geometry and 
was shown to reach state of the art performance [28]. In this work we use Independent 



Component Analysis (ICA) in its FastICA implementation to separate signal sources 
in an unsupervised setting and then apply the distance measures on the identified in-
dependent components [29].  

3.1 Signal Processing and Acquisition 

We applied the following signal processing pipeline in the raw signals in order: 

• The Butterworth filter allows selecting the appropriate frequencies for Motor Im-
agery and discarding unwanted frequencies. We selected a 8-25Hz pass band with 
a filter of magnitude 4 and with a ripple of 0.5db. 

• We make 1s epochs from the band passed signals with a .75s overlap (.25s sliding 
window), we average them 5 by 5 so as to obtain 2 average epochs/s.  

• Then FastICA is computed on each average epoch in an unsupervised manner in 
order to separate noise from target activity and make the distance-based classifier’s 
job easier. The FastICA [29] algorithm projects the signal data in a space where 
data points are maximally independent, essentially separating task related sources 
from noise sources and other interference. The difference with other ICA algo-
rithms is that FastICA uses a fast algorithm based on fixed-point calculations. We 
applied the variant of FastICA with symmetric orthogonalization and using a hy-
perbolic tangent contrast function. We computed 10 components. We used a GPL 
Java implementation of the original algorithm as described by Hyvärinen and Oja 
[29]. 

• We then produce average epochs that allow us to smooth the signal and remove 
some of the variability.  The system thus produces an average epoch every second, 
which is then used for feature extraction and for classification. Thus, the classifier 
will yield one classification per second. Given that ICA is rather costly to compute, 
anything less than one second led to sub real-time performance on the machine we 
performed the processing on (2012 MacBook Air, i7@2.9GHz).  

• Given the sensitivity to noise and to variability in minimum distance based classi-
fication, ICA or other similar processes separate noise source from authentic sig-
nals and make it easier for the distance measure to accurately capture relevant dif-
ferences in EEG patterns. Our classifier only requires minimal training data to start 
functioning, as our aim was to reduce that training time to a single calibration trial 
per class. In our system, reference average epochs are captured for each BCI class. 

3.2 Feature Extraction and Classification 

For each classification, we take the current average epoch and compute the distance 
between this current epoch and the reference signals for each of the class references. 
The classification outcome is where the distance to the current epoch is the shortest. 
However our distance measures are not stable under a noisy signal. Right after cali-
bration, there is a single reference signal per class, however when feedback is given, 
more reference signals are added for each class. When there are several references per 
class, there will be several distance measurements, in which case the classification 



will be decided by a majority vote on classification outputs resulting from the indi-
vidual distance measurements.  

Similarly, given that several EEG channels are used, if we use single variable dis-
tance measures (as opposed to multivariate measures), we obtain one distance value 
per channel, which is handled the same way as in the multiple reference setting. In 
fact, when there are more than one distance measurements, the minimum distance 
classifier becomes similar to a k nearest neighbors (kNN) classifier. We can also con-
sider using several different distance measures at the same time, much to the same 
effect. This work extends the work [30]. All the details about the system, its interface 
and its implementation are available in [30]. 

4 Experiments 

The objective of the task is of user to fly an AR.Drone and make it pass through large 
rings continuously in a 5 minutes session (Figure 2). We want to reproduce the exper-
iments of LaFleur et al. [4] in order to compare the performance of OC (good perfor-
mance, slow training) to CLBCI. We want to observe how user learning and perfor-
mance evolve over increasingly long training durations (1 day, 1 week, 1 month) for 
both approaches to training. We consider that flying a quadcopter, all the more so 

with a BCI, is an entertaining activity that is appreciated by users as shown by the 
affluence to previous demos and exhibitions [21, 22].  

4.1 Experimental Setup 

We used a g.tec USBAmp EEG amplifier2 with 16 electrodes over the motor cortex, 
with an acquisition rate of 512 Hz. The electrodes were placed over the channels: 
FCz, C5, C3, C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, Pz (Figure 
3). We used the TOBI TiA3 signal server on a Win. XP VM  and then connected into 
our java BCI application trough our own Java implementation of the TiA protocol.  

                                                             
2 http://www.gtec.at/Products/Hardware-and-Accessories/ g.USBamp-Specs-Features 
3 http://sourceforge.net/projects/tools4bci/ 

 
Fig. 2. The experimental environment. 



We keep the same BCI paradigm based on Motor Imagery used LaFleur et al. [4], 
with the same controls:  

• Rise up/Top Target (for 1D/2D cursor tasks): Both hands imagined movement; 
• Go down/Bottom target: Both Feet imagined movement; 
• Go Left/Left Target: Left hand imagined movement; 
• Go Right/Right Target: Right hand imagined movement; 
• Resting state: constant forward motion. 

For left and right turns, the drone was programmed to make a 90 degree turn while 
moving forward at constant speed (to achieve a smooth turn).  

The operator makes the drone takes off at the start of the experiment and land at 
the end of the experiment. Figure 4 illustrates the commands for the drone4. 

4.2 Protocol 

We compare user learning (progression in performance over multiple sessions) for 
both an OC training setting inspired by LaFleur et al [4] and our CLBCI architecture 

                                                             
4 The figure is taken from the Minnesotta paper by Lafleur et al. 2012 [4] and is made available 

in the open access article under a Creative Commons Attribution 3.0 license.  

 
Fig. 4 The motor imagery drone control scheme 

 
Fig. 3. Electrode placement for Motor Imagery according to the extended 10-20 electrode 

placement system. 



over three different durations: 1 day, 1 week and 1 month. As such we are not precise-
ly replicating the experiments of LaFleur et al. [4] as we are considering shorter dura-
tions.  

With this experiment we want verify the following hypotheses: 

• (H.1): For duration of below one month, using CLBCI leads to better task perfor-
mance compared to OC.  

• (H.2): Beyond the one-month duration, OC leads to better task performance. 
• (H.3): Despite the better performance for OC after a month training, users prefer to 

train for 5 minutes prior to every time they pilot the drone rather than spend a full 
month before being able to pilot the drone for the first time.  

We made groups of users who follow the same training protocol over three differ-
ent durations for OC and CLBCI (6 groups). 24 healthy subjects aged between 23 and 
44 and novices with BCIs participated in the experiments, and thus we distributed 
them in groups of 4 for each Duration x System pair: 

• 1 day training (1.d): (1.d.CLBCI) CLBCI – 4 subjects; (1.d.oc) OC – 4 subjects;  
• 1 week training (1.w): (1.w.CLBCI) CLBCI – 4 subjects; (1.w.oc) OC – 4 subjects;  
• 1 month training (1.m): (1.m.CLBCI) CLBCI – 4 subjects; (1.m.oc) OC – 4 sub-

jects. 

In their paper, for operant conditioning, LaFleur et al. followed a precise training 
protocol. First users performed 1D cursor tasks for the left/right directions and the top 
down directions, until they could achieve a performance of at least 80%. Then users 
performed a 2D cursor task for left, right, top and down combined until 80% perfor-
mance was achieved. Then their users were performed training sessions on a drone 
simulator, before actually flying the drone. Their training sessions were spread over 2 
months and could last up to 50 minutes. The rationale for choosing 80% is that it is a 

 
Fig. 5. Experimental Schedule 



task performance that clearly lies above the performance and acceptable task perfor-
mance of 60%. The rationale for 60% being considered as usable is that it is well 
above the empirical random classification performance by at least 10% (45% for 4 
classes, like in this paper, Müller-Putz et al. [31]).  

For our experiment, for the OC condition, we replicate the same type of training 
sessions where users must complete 1D Left/Right cursor (1D L/R) and Up/Down 
cursor (1D U/D) sessions, 2D cursor sessions, drone simulator sessions (DS) and a 
drone piloting session through a ring course (RS).  

With CLBCI, instead of following the progressive training paradigm for OC, we 
ask users to perform a single training session over 4 trials for all classes at once and 
then follow with a test session. The test session is the phase that directly includes user 
involvement: 

• We explain to the user how to cycle through the three distance measures: 
so that they can determine the measure that leads to the largest amount of 
perceived self-control by informally evaluating the resulting classification 
accuracy.  

• We offer the possibility of adjusting the decision margin of the classifier 
in the same fashion to find equilibrium between classification speed and 
accuracy. 

• If some of the training trials are faulty (the users report they were distract-
ed or that they moved), we can remove the individual training trails in re-
al-time. 

Once these settings are determined in the first few sessions, users remember them 
and start off with a customized BCI.  

After the training sessions, the users still perform the simulator sessions (DS) and 
the ring course sessions (RS). We fixed all session lengths to 15 minutes and the pi-
loting session length to 5 minutes. Within the experimental durations (1 day, 1 week, 
1 month) we distributed each session type evenly with equal numbers of sessions, 
following the order: 1D L/R, 1D U/B, 2D, DS, RS for OC and the interface only ses-
sion for CLBCI followed by DS and RS. The exact schedule for the experimental 
sessions is presented in Figure 5. 

4.3 Evaluation 

We evaluate the performance of each user intrinsically like La Fleur et al. through 
task related measures: Number of rings acquired (number of rings the drone has suc-
cessfully passed through) – RA; Number of wall collisions, when the drone collides 
with the walls of the rooms or with objects other than the rings – WC; Number of ring 
collision, RC; Flight time, the time between ring acquisition – FT; Session length, the 
total flight time during a session – SL. From the above measurements we can derive 
several performance indices that will allow us to evaluate different aspects of task 
performance.  



• Average Rings per maximum flight or ARMF, the average number of rings ac-
quired during one session by users. This allows us to measure the absolute task 
performance without directly considering errors. The higher the ARMF the better. 

• Average ring acquisition Time or ARAT in ms, the average of FT across a group. 
The lower the ARAT, the better the performance. 

• Percent Total Correct or PTC, the percentage of ring acquisition compared to the 
sum of the number of ring collisions, the number of wall collisions and the number 
of ring acquisitions. PTC = RA/(RA+RC + WC). 

• Percent Valid Correct or PVC, the percentage of Ring Acquisition compared to the 
sum of the number of wall collisions and ring acquisitions. Thus a valid ring acqui-
sition is a ring acquisition that was not directly preceded by a wall collision. PVC 
= RA/(RA+ WC). 

• Percent Partial Correct or PPC. Here we consider that a ring collision is a partial 

ring acquisition, and thus PPC is the percentage of the sum of the number of ring 
acquisition and of ring collisions over the sum of the number of ring collisions, 
wall collisions and ring acquisition. PPC = (RA+RC)/(RA+RC+WC). 

4.4 BCI Validation 

We performed a simple validation that consisted classifying a set of unlabeled signals 
and comparing them to a set of reference signals for each class using 10-fold cross-
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 Accuracy 
Subject A 

Accuracy 
Subject B 

Maha. 71.24% (2.54%) 70.35% (1.42%) 

Riem. 70.45% (1.51%) 71.26% (2.97%) 
Corr. 69.92% (2.10%) 72.34% (1.23%) 

Table 1. 10-fold cross-validated accuracy of our BCI system on two subjects over 10 sessi-
ons for Motor Imagery with three different distance measures: Mahalanobis Distance (Ma-

ha.), Riemannian Distance (Riem.) and Spearman rank correlation distance (Corr.). 

 

Fig. 6 Averaged IC Activation Map 



validation. We used the three distance measures that can be used with our system in 
order to see what is the best distance, if there is one. The analysis was done over the 
signals of two subjects captured over the course of 10 sessions. We can now look at 
the cross-validation results from the off-line analysis to validate the BCI system de-
pending on the distance measure used in Table 1. In bold is the best result for each 
measure and each subject. We did not find that any of the distances had an absolute 
advantage over the others: it varies from subject to subject. Thus we decided to add a 
control that allows dynamically switching the distance measure used during the online 
phase so that it could be easily adapted to each user. 
Moreover, we compute ICA dipole activation maps for the ICA components that ex-
plained 99% of the variance, to check that activations are not due to artifacts (Figure 

 
Fig. 7. The results of the study in the form of the 5 indicators for CLBCI and OC for all 

three durations (1D = 1 day; 1W = 1 week; 1M = 1 month. Group differences are all signif-
icant (ANOVA) as well as pairwise post-hoc tests with a student t-test with p<0.05. The 

equality of variance and normality preconditions were both met.  



6). We can see that components 1-2 correspond to left-hand MI, while 4-6 correspond 
to right-hand MI, although components 5 and 6 seem slightly contaminated by eye 
movement artifacts, however the cumulative percentage of variance explained for 
both of the is only 5%. 

4.5 Results 

Given the number of subjects for each condition, we used the Shapiro-Wilk test and 
found a p value of p=0.234, which means there is insufficient evidence to accept that 
the null hypothesis of the normality of the distribution of the data is valid. Conse-
quently, we use the Kriskal-Wallis test to measure for significant group effects and 
then use the Mann-Whitney-U test for post-hoc pairwise analysis with an FDR p val-
ue adjustment for multiple comparisons. 

Figure 7 shows the results in the form of a bar chart for each of the five indicators. 
The error bars represent the sample standard variance. The general trend for all three 
percentage indicators is that CLBCI is better than OC. Overall for training durations 
of one day and one week CLBCI was better by about 8%. However, OC performs 
better after a one-month training (~3% difference, 87% for OC and 84 for CLBCI). 
Although the difference is small, more training (e.g. 1-2 months) could give edge to 
OC, however, it is likely that performance will not increase significantly. We observe 
a similar trend for ARAT (lower ARAT for CLBCI for 1D and 1W and then a lower 
ARAT for OC) and ARMF. A single day of training leads to low PVC and PTC but 
acceptable PPC for CLBCI. This means that the system is not very usable. After one 
week of training the performance improves for OC and CLBCI by the same amount, 
so that they maintain an 8% difference. With above 75% task performance, CLBCI is 
already usable after a week. 
We asked our users informally what their impression of the experience was. Most 
found the experiment and experience interesting and enjoyable: it made them very 
motivated to perform well. One user said: “It was really a lot of fun! The control was 
not perfect, but even the part where I bumped into things was quite entertaining and 
thrilling to say the least.” The main concern raised is that the BCI classification rate is 
slow and makes a smooth movement of the quadcopter difficult to achieve, moreover 
due to the automatic balancing systems of the drone user felt that the lateral move-
ments of the drone were sometimes sudden, “the drone acted strangely sometimes”. 
Users from the OC groups complained that the training tasks were somewhat boring 
and that they would have liked to be able to pilot the drone sooner. They found it very 
difficult to concentrate towards the end of training sessions. On the other hand users 
from the CLBCI group were quite surprised that they could pilot the drone so quickly 
and pointed out that it motivated them to go further and to improve their performance.  

5 General Public CLBCI Demonstration  

The CLBCI system has been demonstrated publicly and tested by over 60 people 
during several events with the objective of introducing new technologies and interac-



tion modalities to users. The session performed by each user was around 10-15 
minutes in total (explanation, installation, training, piloting). Most people achieved 
control and enjoyed themselves greatly even for those that had performed the test 
several times. Even users who did not achieve control had a lot of fun trying to con-
trol it and understand how it works. This attracted media attention and showed that 
people are inclined to having access to this sort of technology. 

6 Discussion 

According to all indicators, CLBCI performs better for training durations up to a 
month (H1), while the OC training slightly outperforms CLBCI after a month of train-
ing (H2). This validated both hypotheses 1 and 2 within the confines of our experi-
mental setting. However, in a broader scope of actual usage by users, we do not have 
sufficient evidence to suggest whether for longer training periods, the performance of 
OC is likely to remain better than with a continuous use of CLBCI or whether CLBCI 
overtakes OC for much longer durations. This means that only a very long-term study 
in-situ is required to really ascertain the best training practices. 
CLBCI reaches a usable performance after about a week of use on average, however, 
by increasing the amount of training for each session when the user starts using the 
system, we can achieve a better performance for immediate use. 
 In consequence, we can further hypothesize that over time, if we are satisfied with 
the classification performance for a particular application, we can reduce the training 
time proportionally to the increase in performance in order to obtain a constant per-
formance with an increasing comfort use due to the shortening of the training times. 
In this regard, the integration of implicit error potential detection from other state of 
the art co-adaptation techniques would be beneficial and complimentary with our own 
approach. Naturally, we can never go below a single training trial, which amount to a 
few seconds of training. This point is fundamental because it implies that CLBCI and 
OC could potentially converge towards the same signal modulation in users. The dif-
ference of course lies in the long training period, where CLBCI would allow having a 
usable system already whereas with OC the user would have to wait until the end of 
the long period.  
In critical application areas (reeducation, prosthesis control, etc.) it would be unac-
ceptable to have anything less than the best achievable performance, and thus a sys-
tem such as CLBCI would not be robust before it converged to the same level of 
modulation in users as with OC. However for non critical tasks where user experi-
ence, comfort and enjoyment are criteria, then systems like CLBCI are doubtless 
preferable. Based on informal user feedback from both CLBCI and OC groups, we 
have some evidence that our third hypothesis (H.3) is true, however a definite proof 
of its correctness would have required a within-subjects experimental design and a 
formal questionnaire evaluation, that are incompatible with a between-subjects design 
aimed at evaluating the temporal evolution of performance.  



7 Limitations and Future Work 

The main limitation is signal variability. With CLBCI we need supplemental filtering 
to minimize noise: our training is shorter than for supervised systems. The processing 
is costly: we can classify twice per second, which is limiting for continuous control. 
The limitation on training time constrains us to around four actions for realistically 
usable systems. Additionally, the low count of electrodes is not ideal for ICA, further 
studies should have a full 10-20 electrode coverage are required to better perform the 
validation of the CLBCI system. 

Building signal databases (database of EEG signals built offline from a large num-
ber of subject for a given paradigm that can serve to produce training-free BCIs) [32] 
may help to obtain BCI systems that require no training. 

Moving on from technical limitations, we have discussed that this work is prelimi-
nary in the sense that the evaluation is in-vitro (controlled environment) and over a 
relatively short duration. Experiments in-situ over long periods of time are required in 
order to truly determine whether the hypothesis of the convergence of CLBCI and OC 
training is actually possible. Another limitation is the absence of the study of the 
quantitative user experience through a formal questionnaire. Follow-up in-situ studies 
should include a detailed questionnaire to precisely gauge how users perceive the 
training protocols. Finally, recruiting more subjects and a comparison to synchronous 
supervised systems would be beneficial in future experiments. 

Conclusion 

We propose a “Co-learning BCI” (CLBCI) that reduces the initial amount of training 
and makes BCIs more suitable for recreational applications. We replicate an existing 
experiment where the BCI controls a drone and compare CLBCI to their protocol 
(OC) over three durations of practice (1 day, 1 week, 1 month). We find that OC 
works at 80% after a month practice, but the performance is between 60 and 70% any 
earlier. In a week of practice, CLBCI reaches a performance of around 75%. We con-
clude that CLBCI is better suited for recreational use. OC should be reserved for users 
for whom performance is the main concern. The experiment is performed in a con-
trolled environment over a relatively short-term period, we need to carry out further 
studies in-situ in the long term (1+ years) in order to have a more accurate picture. 
Given our observations, it is likely that CLBCI (but more generally co-adaptive asyn-
chronous BCIs) and OC eventually converge to the same performance where users 
have learned to modulate their signals correctly. In summary, the challenges and ap-
proaches presented and discussed in this paper show that there are many opportunities 
for further research. We have identified promising directions and actionable ideas 
(shorter initial training, co-learning) for researchers in this field. We thereby hope to 
inspire work that will unlock the full potential of BCIs in everyday applications. 
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