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ABSTRACT
In this paper, we are interested in optimal sensor placement
for signal extraction. Recently, a new criterion based on out-
put signal to noise ratio has been proposed for sensor place-
ment. However, to solve the optimization problem, a greedy
approach is used over a grid, which is not optimal. To im-
prove this method, we present an optimization approach to
locate all the sensors at once. We further add a constraint
to the problem that controls the average distances between
the sensors. To solve our problem, we use an alternating op-
timization penalty method. As the associated cost function
is non-convex, the proposed algorithm should be carefully
initialized. We propose to initialize it with the result of the
greedy method. Experimental results show the superiority of
the proposed method over the greedy approach.

Index Terms— Sensor placement, Signal extraction, Sig-
nal to noise ratio, Alternating optimization, Penalty method.

1. INTRODUCTION

Whenever a physical phenomenon is under study, it is re-
quired to collect some data using specified number of sen-
sors. Several considerations, including reduction of expenses,
having ergonomic design, and reducing computational costs,
make it necessary to limit the number of sensors. As such, it
is essential to place as minimum sensors as possible in those
positions that maximize information gathered by the sensors.
This is called optimal sensor placement, which has been stud-
ied in various domains, with different solutions depending on
the application, see, e.g., [1–7].

One specific application of the optimal sensor placement
problem is to extract a source signal given some measure-
ments obtained from a limited number of sensors. In the clas-
sical kriging approaches [8–10], this problem is studied in two
steps. In the first step, the optimal sensor placement problem
is solved such that the sensor recordings provide a good esti-
mation of the spatial map. Afterwards, in the second step, an
extraction approach such as a linear extraction model is used
to extract the source signal from the sensor measurements.

Recently, by assuming a stochastic model, a robust sensor
placement criterion based on the maximization of the aver-

age signal to noise ratio (SNR) has been proposed [11]. This
method works by maximizing the average SNR of the desired
source, and has shown a significant improvement compared to
the classical kriging approaches in terms of the output SNR.
To solve the maximization problem, a greedy approach is
used in which the sensors are added one by one from a fixed
grid of candidate sensor positions. Two limitations can be ob-
served: first the sensor location are restricted to be on a prede-
fined grid and secondly the greedy approach is sub-optimal.
Consequently, to be precise, the grid should be fine enough
leading to a high computation cost. To solve these issues, we
propose a first order optimization-based approach that in con-
trast to the one-by-one strategy adopted by the greedy method
on a grid, optimizes all the sensor positions at once and does
not discretize the search space. Finally, since placing 2 sen-
sors very close to each other may not be feasible, e.g., due to
the physical size of the sensors, a regularizing term is added to
avoid to choose too close sensor positions. As the cost func-
tion is non-convex, to avoid sub optimal local minima, the
proposed algorithm is initialized by the solution of the greedy
approach.

The rest of this paper is organized as follows: in Sec-
tion 2 a review on the problem of optimal sensor placement
for source extraction, as well as the criterion suggested in [11]
are presented. The details of the proposed method are dis-
cussed in Section 3. Section 4 presents the performance of
the proposed method and compares it with greedy approach,
before the conclusion in Section 5.

2. BACKGROUND

In this section we present an overview on signal extraction
for optimal sensor placement suggested in [11]. Let y(x, t)
denote the observation recorded at location x and at time t
which is modelled as

y(x, t) = a(x)s(t) + n(x, t), (1)

where a(x) is the spatial gain between the signal of inter-
est s(t) and the sensor at location x ∈ RD, and n(x, t) is
a spatially correlated additive noise. The noise is assumed
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to be uncorrelated with the source. Assuming that M sen-
sors are located at positions XM = {xi}i∈{1,···,M}, linear
source extraction amounts to design a vector f ∈ RM to esti-
mate the source as ŝ(t) = fTy(XM , t), where y(XM , t) =
[y(x1, t), . . . , y(xM , t)]

T . To find the best f , a classical crite-
rion is the output signal-to-noise ratio (SNR) defined by [11]

SNR(f) = E[(fTaMs(t))2] / E[(fTnM (t))
2
], (2)

where aM = [a(x1), . . . , a(xM )]T denotes the vector of spa-
tial gains and nM (t) = [n(x1, t), . . . , n(xM , t)]

T the vector
of noise. The spatial gain a(x) of the source of interest is
modelled as a stochastic Gaussian process to take into account
the uncertain knowledge on it:

â(x) ∼ GP(ma(x), ka(x,x′)), (3)

wherema(x) is the mean function and ka(x,x′) is the covari-
ance function. Furthermore, we consider a zero mean Gaus-
sian process with covariance matrix kn(x,x′) to model the
noise. The criterion to optimize is then obtained as [11]:

J(XM ) = (ma
M )

T
(Rn

M )
−1

ma
M +Tr((Rn

M )
−1

Ra
M ), (4)

where Ra
M ∈ RM×M and Rn

M ∈ RM×M are the covari-
ance matrices of the spatial gain and the noise respectively,
whose (i, j)th elements are ka(xi,xj) and kn(xi,xj). Also,
mM = {ma

i }i∈{1,···,M} is the set of means at locations
{xi}i∈{1,···,M}, and Tr(·) is the trace operator. The optimal
sensor locations are finally obtained as

X̂M = argmax
XM

J(XM ). (5)

Directly maximizing (4) in a grid requires a combinatorial
search, which leads to a high computational cost. Therefore,
a greedy approach has been introduced in [11] that selects
the M sensors by sequentially selecting N < M sensors at
a time. Assuming that K sensors have already been placed,
to choose the locations of the next N sensors, the following
criterion is optimized:

J(XN |XK) = E[âTK+N (Rn
K+N )

−1
âK+N |XK ], (6)

where K+N means {XN

⋃
XK} and thus âK+N ∈ RK+N

can be divided as âK+N = [âTK , â
T
N ]T . Once the sensor loca-

tions X̂M are obtained, the source of interest is extracted by
using the following separation vector [11]

f̂M = (Rn
M )
−1

ma
M . (7)

3. PROPOSED METHOD

In this section we present our proposed framework to solve
the optimization problem for sensor placement. Unlike the
greedy approach, our proposed method directly provides the
positions of all the required number of sensors. By con-
sidering a one dimensional situation, we want to minimize

f(xM ) = −J(xM ). In order to control the average distances
between each pair of the sensors, we constrain the sum of the
squared distances to be greater than a threshold. Furthermore,
due to the spatial constraints of the boundaries, we consider a
normalized case where 0 ≤ xi ≤ 1. Therefore, we study the
following minimization problem:

min
xM

f(xM ) s.t.

{
‖Dx‖22≥ ε
0 ≤ xi ≤ 1 i ∈ {1, 2, . . . ,M}

, (8)

where D ∈ R
M(M−1)

2 ×M is a matrix that enumerates all the
possible combinations of positions in pairs of size two. For
instance, if the number of sensors is M = 3, then

Dx =

1 −1 0
1 0 −1
0 1 −1

x1x2
x3

 =

x1 − x2x1 − x3
x2 − x3

 .

To solve (8), we define an auxiliary variable zM = DxM ,
and reformulate (8) as the following problem:

min
xM ,zM

f(xM ) s.t.


zM ∈ Aε,
zM = DxM ,

0 ≤ xi ≤ 1 i ∈ {1, . . . ,M},
(9)

where Aε =
{
zM ∈ RM

∣∣∣ ‖zM‖22≥ ε
}

. To solve (9),
we use the penalty method [12], by adding the constraint
zM = DxM as a penalty to the target function with the
penalty parameter α:

min
xM ,zM∈Aε

{
f(xM ) +

1

2α
‖zM −DxM‖22

}
s.t. 0 ≤ xi ≤ 1 i ∈ {1, . . . ,M}. (10)

To solve (10), we do the minimization over xM and zM al-
ternately. At iteration l, first, the cost is optimized over zM ,
fixing xM to its current estimate x

(l)
M . That is:

z
(l)
M = argmin

zM∈Aε

1

2α
‖zM −Dx

(l)
M ‖

2
2. (11)

The solution to the above minimization is a projection onto
the set Aε as follows:

z
(l)
M =

Dx
(l)
M , if ‖Dx

(l)
M ‖22≥ ε

Dx
(l)
M

‖Dx
(l)
M ‖22

ε , otherwise.
(12)

For the second step, the variable zM is fixed as in (12), and
we do the minimization over xM as follows:

x
(l+1)
M = argmin

xM

{
f(xM ) +

1

2α
‖z(l)M −DxM‖22

}
s.t. 0 ≤ xi ≤ 1, i ∈ {1, . . . ,M}. (13)

Since the constraint is a quite simple convex set, to solve (13),
a projected gradient descent is used: after a gradient descent
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(GD) update, the result is projected onto [0, 1]. That is, by
defining the cost function as follows:

g(xM ) = f(xM ) +
1

2α
‖z(l)M −DxM‖22, (14)

the gradient step to optimize (13) is

x
(l+1)
M = x

(l)
M − µ∇xM g(x

(l)
M ), (15)

where,∇g(x(l)
M ) is the gradient of the smooth function g(.) at

the previously updated point x(l)
M , and µ > 0 is a step size. To

derive the gradient of g(.), we can write:

∇xM g(x
(l)
M ) = ∇xM f(x

(l)
M )− α−1DT (z

(l)
M −Dx

(l)
M ). (16)

We use the chain rule to calculate∇f(x(l)
M ) as follows:

∂f(x
(l)
M )

∂xi
= Tr

[(
∂f(ma

M )

∂ma
M

)T
∂ma

M

∂xi

]
+Tr

[(
∂f(Ra

M )

∂Ra
M

)T
∂Ra

M

∂xi

]
+ Tr

[(
∂f(Rn

M )

∂Rn
M

)T
∂Rn

M

∂xi

]
.

where xi is the ith element of xM . The above expression is
simplified to the following:

∂f(x
(l)
M )

∂xi
= Tr

[
−2(ma

M )T (Rn
M )−1

∂ma
M

∂xi
−(Rn

M )−1
∂Ra

M

∂xi

+ (Rn
M )−1(ma

Mma
M
T +Ra

M )(Rn
M )−1

∂Rn
M

∂xi

]
,

where ∂ma
M

∂xi
= [∂ma

j /∂xi]j , and ∂C
∂xi

= [∂Cij/∂xi](i,j) in
which C represents any covariance matrix, and Cij corre-
sponds to its (i, j)th entry. This way, we have computed the
gradient of f(x(l)

M ) over the ith sensor position, providing thus
the expression of the gradient vector∇xM f(x

(l)
M ).

To determine µ in (15), we use a backtracking line search
strategy [12]. After updating xM using (15), any element of
x
(l+1)
M is projected into [0, 1].

Finally, to solve (10) we start with an initial point and al-
ternate between the projection step (12) and the GD step (15).
As done in standard penalty methods [12], the problem (10)
should be solved for a decreasing sequence of α, e.g., as
{α0, α1, . . .} where αk+1 = ηαj , with 0 < η < 1. For
each fixed value of α, we perform a few iterations between
(12), (15) projecting x. Moreover, iterations corresponding to
αj+1 are initialized by the final estimate found for αj . The
final algorithm to solve (8) is summarized in Algorithm 1.

Since the problem (9) is non-convex, its initialization
is important to find an appropriate minimizer. We propose
to initialize the algorithm with the solution obtained by the
greedy approach [11]. In this way, the algorithm is more
likely to end up with a good local minimum.

Algorithm 1 Alternating minimization (AM) for solving (9)

1: Inputs:
{
x(0), z(0)

}
, µ0, α0, Q

2: Initialization: Set µ = µ0, l = 0
3: for j = 1, 2, · · · , Q do
4: while stopping criterion not met do
5: t(l) = ‖∇g(x(l))‖22
6: while g(x(l) − µ∇g(x(l))) > g(x(l))− µ

2 t
(l) do

7: µ← β · µ
8: end while
9: x(l+1) = x(l) − µ∇g(x(l))

10: Project x(l+1) into [0, 1]
11: Perform projection (12) to obtain z(l+1)

12: l← l + 1
13: end while
14: αj+1 = η · αj
15: end for
16: Output: x(l)

4. NUMERICAL EXPERIMENTS

In this section, the numerical setup is first presented. Then
the influence of the initialization, the effect of the regulariza-
tion based on the sensors distances and of the smoothness of
the spatial gain are presented in Subsections 4.2, 4.3 and 4.4,
respectively.

4.1. Numerical setup
Synthetic data are generated in a 1D space, where the range
of the sensor locations is normalized between 0 and 1. We
consider a prior on the spatial gain and noise to be generated
from GP(m(x), C(x, x′)), with a square exponential covari-
ance function C(x, x′) = σ2 exp(−(x − x′)2/(2ρ2)). The
mean of the noise is set to be 0. The mean of the gain is
given by ma(x) =

∑5
i=1 γi sin

di(wiπx), where, γi, di and
wi are the ith elements of the vectors G = [0.1, 0.2, · · · , 0.9],
D = [1, 1, 3, 1, 2], and W = [25, 26, · · · , 29], respectively.
The smoothness parameters ρn, and ρa, and the variances σn
and σa as well as the size of the spatial grid for greedy initial-
ization take different values for each experiment. Also, we set
α0 = 1, Q = 50, η = 0.5, µ0 = 1, and β = 0.5.

4.2. Influence of the initialization
We set the size of the spatial grid to be 100. Two different
values of the uncertainty on the spatial gain are considered,
σa = 1 and σa = 3. The noise variance σn is accordingly
set such that the SNR becomes 0.8 dB. The smoothness of
the uncertainty on the spatial gain (ρa) is set to ρa = 0.001,
which corresponds to an uncertainty with almost no spatial
correlation. The spatial smoothness of the noise ρn is set to
ρn = 0.01ρa. The lower bound ε on ‖Dx‖22 is also consid-
ered to be ε = M(M−1)

2 × 10−3.
The true value of the output SNR (2) computed with esti-

mated extraction vector f̂M (7) versus the number of desired
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Fig. 1. Influence of the initialization. Output SNR vs. the
number of sensors. left: σa = 1, right: σa = 3.

sensors M are depicted in Fig. 1. If no prior information is
used for the initialization, one can initialize the sensor loca-
tions regularly-spaced between 0 and 1. On the contrary, one
can use the previously proposed greedy approach, where each
sensor are added one by one [11], to initialize the sensor loca-
tions. Firstly, one can see that the greedy initialization leads
to a better extraction of the source s(t) than using regularly-
spaced initial locations for the sensors before applying our
proposed method to adjust the sensor locations. Indeed, the
difference of output SNRs varies between 10dB for a single
sensor and 5dB for 25 sensors.

Moreover, the proposed method to adjust the sensor loca-
tions leads to improve the SNR of about 3dB to 5dB compared
to the greedy approach. Indeed, this result is expected since
the proposed method tackles the optimization of the sensor
locations all at the same time instead of one after the other
as in the greedy method. It is also worth noting that the out-
put SNR is worse by applying the proposed method with a
regularly-spaced initialization than by just choosing the sen-
sor locations by the greedy method proposed in [11] with no
additional adjustment.

4.3. Regularizing sensors distances
Figure 2 shows the effect of regularizing sensor distances and
how it can help to control the average distances between pairs
of sensors. In this part, all the parameters are set as in the
previous section with σa = 1, except that here we consider a
tighter grid of size 320. Also, the number of desired sensors
are set to be M = 15. For the proposed method, two different
values for the lower bound are considered: ε = 0.5 and ε = 1.

The second and the third sub-figures demonstrate the ef-
fect of ε in tuning the average distances between the sensors.
The final SNR values for each approach, from top to bottom,
are 29.22 dB (initial SNR), 32.22 dB (ε = .5), and 31.53 dB
(ε = 1), respectively. However, increasing ε leads to only a
slight decrease of the output SNR while increasing the aver-
age distance between the sensors.

4.4. Effect of the smoothness parameter ρa

In this part we study the performance for different smoothness
levels of the uncertainty on the spatial gain (ρa). We consider
an almost difficult situation with the uncertainty parameter of
the spatial gain to be σa = 5. We also considered SNR to be
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Fig. 2. Effect of the regularization parameter ε to control the
sensor distances. Top: initial sensors localisation, middle and
bottom final sensors localisation for ε = .5 and ε = 1, respec-
tively.
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Fig. 3. Effect of the smoothness parameter of spatial gain ρa.

2 dB to set σn. The rest of the parameters are set similarly as
in subsection 4.2. In Fig. 3, the output SNR versus the degree
of the spatial gain smoothness is depicted. We can see that as
the signal becomes more non-smooth, the performance of the
greedy approach deteriorates much faster than the proposed
method. This is due to the presence of highly informative sen-
sor positions in between grid points, which cannot be chosen
by the greedy approach.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we addressed optimal sensor placement for sig-
nal extraction by maximizing output signal to noise ratio. In
contrast to the greedy approach proposed in [11], the pro-
posed method adjust all the sensors locations at once instead
of choosing them one at a time. To this end, a gradient-based
method is proposed to search for the sensor locations over
the whole space. A constraint, controlling the average dis-
tances between sensors, is also considered to avoid to choose
too close sensors (e.g., depending of their size). Due to the
non-convexity of the cost function, the proposed algorithm is
initialized with the solution of the greedy approach. Experi-
mental results demonstrate that the proposed method provides
about 3 dB improvements over the greedy approach. Also,
thanks to the new constraint, the proposed method is shown
to be able to control the average distances between the sen-
sors. In future works, an explicit constraint on each distance
between pair of sensors will be studied as well as other global
optimization algorithms to avoid convergence to a local opti-
mum.
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