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ABSTRACT

Electrocardiogram (ECG) is classically considered for heart
rate (HR) estimation. However in certain conditions, its use
may be difficult and alternative techniques, such as phono-
cardiograhpy (PCG), are investigated. For PCG signals, in
most studies, the challenge is to detect and annotate the heart
sounds S1 and S2, which may become quasi-impossible in
case of noise. In this paper, we present a novel approach of
HR estimation from PCG signals based on non-negative ma-
trix factorization (NMF), applied to the spectrogram of PCG,
considered as a source-filter model. Compared to state of the
art methods, specific considerations based on the signal prop-
erties have been included to ensure the reliability of the de-
composition. HR estimations obtained from noise-free and
noisy real PCG signals are evaluated by comparison to HR
estimation from synchronous ECG.

Index Terms— Phonocardiogram, Heart rate estimation,
Non-Negative Matrix Factorization

1. INTRODUCTION

Electrocardiogram (ECG) is the reference technique for heart
rate (HR) monitoring in adults; the cardiac frequency is usu-
ally estimated according to the detection of prominent R
waves on ECG signals [1]. However, besides the classical
practical limitations such as movement sensibility, the use
of electrodes also appears to be a problem when used on
elderly people. Therefore, due to the population aging and
the increase of health monitoring needs, there is a current
interest in alternative non-invasive techniques to replace ECG
for HR monitoring in different situations. Among others,
Phonocardiography (PCG) is a diagnostic graphical method
of recording echoes that accompany mechanical vibrations
originating in the heart and vessels. It is used to register heart
sounds and murmurs in the diagnosis of heart diseases. It
uses a microphone attached at the surface of the chest wall
to the usual auscultatory points of the heart. Among cardiac
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Fig. 1. Synchronous signals. From top to bottom: ECG, PCG
and noisy PCG.

sounds, two, noted respectively S1 and S2, are particularly
audible and correspond to the closure of respectively the
atrial-ventricular valves (beginning of the ventricular systole)
and the aortic and pulmonary valves (onset of the ventricular
diastole). As shown in Fig.1, a PCG signal is therefore a
succession of two bumps S1 and S2, following the R peak of
a synchronous ECG signal.

S1 and S2 occur in all healthy individuals and are more
or less easy to detect. Therefore, most studies on PCG anal-
ysis deal with the detection of these first two heart sounds
and can be divided according to whether they use a differ-
ent signal than PCG (ECG, carotid / jugular pulse etc.) or the
only PCG. A wide amount of methods uses the signal envelop
detection for analyzing heart sounds. Common used meth-
ods are based on homomorphic filtration, signal energy com-
putation (Square energy, Shannon entropy, Shannon energy)
or Hilbert transform [2, 3, 4, 5]. Other proposed methods
are based on Short Time Fourier transformation and Wavelet
transformation in order to investigate the exact features of the
heart sound [6, 7]. More sophisticated methods include prob-
abilistic models such as Hidden Markov Models for segmen-
tation of heart sounds [8, 9] or neural networks [10, 11].

The amount of proposed methods highlights the difficulty
of detection of heart sounds and this difficulty is further in-
creased in noisy conditions, as illustrated in Figure 1 with
a noisy PCG on which S1 and S2 cannot be identified at
each cardiac cycle. Most of the algorithms will suffer from
a lack of robustness for sounds detection in such conditions.
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Moreover, for HR monitoring, the classification of S1 and S2

sounds is essential to estimate the cardiac beat-to-beat inter-
vals as S1-S1, similarly as R-R intervals on ECG signals.

Therefore, we propose a new method for HR monitoring
from PCG signals which needs the only source PCG, allows
to avoid the distinction between S1 and S2 and is robust to
noise. The method is based on the Non-negative Matrix Fac-
torization (NMF) approach [12, 13, 14] applied on the spec-
trogram of the PCG signal.

2. PROPOSED METHODOLOGY

In this section, we will first detail the reasons why PCG
signals are modelled as source-filter based on their quasi-
harmonic structure. Indeed, this structure carries an impor-
tant information namely heart rate which will be estimated in
a second step using a NMF-based algorithm presented at the
end of the section.

2.1. Signal modelling

To model a PCG signal x(t), which is a succession of heart
beats, one can write that

x(t) =
∑
i

si(t− τi), (1)

where τi are the cardiac beats instants and si is the shape of S1

and S2 bumps succession at the ith heart beat. This expression
can be rewritten as

x(t) =
∑
i

si(t) ∗ δ(t− τi), (2)

which is nothing else but a time-varying filtering of an input
signal e(t) =

∑
i δ(t− τi) by a time-varying filter whose im-

pulse response si(t) depends on the considered time. Indeed,
due to the non-stationarity of physiological signals, both the
duration, ∆i = τi+1 − τi, and the shape, si(t), of each beat
can be different from one beat to an other one. Consequently,
the PCG signal can be modelled as a source-(time-varying)
filter model. To study such non-stationary signals, it is com-
mon to apply a time-frequency representation like the spec-
trogram. It is expected that the spectrogram of the signal (2)
exhibits an harmonic structure due to the excitation term (i.e.
the input signal e(t)) whose fundamental frequency is time-
varying and whose amplitude is modulated by a time-varying
envelop due to the shape of each heart beat. As shown in
Fig. 2, the quasi-harmonic structure is clearly shown and the
fluctuation of the fundamental frequency represents the evo-
lution of the heart rate that has to be estimated.

2.2. Estimation of heart rate by NMF
In time-frequency domain, the short-time Fourier transform
(STFT) X(f, t) of x(t) is expressed as

∀(f, t), X(f, t) = X(e)(f, t)X(ϕ)(f, t), (3)

Fig. 2. Spectrogram of a noisy-free PCG (Fs= 1kHz, window
= 4s , noverlap = 64ms , nfft = 8s )

where X(e)(f, t) (resp. X(ϕ)(f, t)) is the STFT of the excita-
tion (resp. the filter). This equation can be recast into matrix
form to model the spectrogram as

X = X(e) �X(ϕ), (4)

X ∈ RF×N , X(e) ∈ RF×N and X(ϕ) ∈ RF×N , with F the
number of frequency bins and N the number of time win-
dows, whose (f, t)th elements are |X(f, t)|2, |X(e)(f, t)|2
and |X(ϕ)(f, t)|2, respectively. � is the Hadamard product
(i.e. the element-wise multiplication).

An efficient way to analyze a spectrogram A is the
NMF [12, 13] which allows to factorize it as a product of
two non-negative matrices WH of lower rank than the rank
of A. Applied on the source-filter model, this leads to [14]

X '
(
W(e)H(e)

)
�
(
W(ϕ)H(ϕ)

)
, (5)

where W(e) and W(ϕ) are the spectral templates of the ex-
citation and filter, respectively and H(e) and H(ϕ) are their
related temporal amplitudes.

However, this NMF decomposition (5) suffers from a
problematic ambiguity: without any constraint, the two terms
W(e)H(e) and W(ϕ)H(ϕ) are perfectly interchangeable due
to the element-wise multiplication. One way to overcome
this identifiability issue is to add some constraints on both
excitation and filter parts. The two proposed constraints are
firstly to fix W(e) such that each column is a Dirac comb
with different fundamental frequencies. Consequently, the
role of H(e) is to rightly select one consistent cardiac fre-
quency among all these present in W(e) at each time. And
secondly to ensure that W(ϕ) is used to model the spectral
envelop of the PCG beats and H(ϕ) is their temporal evo-
lution, a smoothness constraint is added on the columns of
W(ϕ) which models the spectral envelop of each PCG beat.
Contrary to [14], this smoothness property is not ensured
by decomposing W(ϕ) on a dictionary of smooth functions
but by adding a constraint term into the criterion as detailed
in the next section. This allows us to reduce the number of
parameters to be estimated and thus speed up the algorithm.

1294

Authorized licensed use limited to: University of Grenoble Alpes. Downloaded on September 27,2020 at 11:27:12 UTC from IEEE Xplore.  Restrictions apply. 



2.3. Algorithm based on NMF

To estimate the excitation and filter parts by NMF, the follow-
ing cost function is minimized1

C
(
H(e),W(ϕ),H(ϕ)

)
= D2(X|V) + γsS

(
W(ϕ)

)
, (6)

where V =
(
W(e)H(e)

)
�
(
W(ϕ)H(ϕ)

)
, D2(·|·) is the

Frobenius norm between X and V

D2

(
X|V

)
=

1

2
‖ X−V ‖2F (7)

and S
(
W(ϕ)

)
is a smoothness constraint on the columns of

W(ϕ)

S(W(ϕ)) =

Kϕ∑
kϕ=1

F∑
f=2

(
W

(ϕ)
f,kϕ
−W (ϕ)

f−1,kϕ

)2
, (8)

where Kϕ is the number of filter components. S
(
W(ϕ)

)
constrains the spectral templates of the filter to have small
variations with respect to the frequency. However some
scaling factor ambiguities also affect the decomposition (5):
indeed substituting W(e) and H(e) by D(W )W(e)D(e) and(
D(e)

)−1
H(e)D(H), respectively and W(ϕ) and H(ϕ) by(

D(W )
)−1

W(ϕ)D(ϕ) and
(
D(ϕ)

)−1
H(e)

(
D(H)

)−1
, respec-

tively, where all D matrices are diagonal with positive entries,
leads to the same approximation. To overcome these scaling
ambiguities, the smoothness constraint is changed to

S
(
W(ϕ),H(e),W(ϕ)

)
=∑

ke,kϕ,n

(
H

(e)
ke,n

)2(
H

(ϕ)
kϕ,n

)2 F∑
f=2

(
W

(ϕ)
f,kϕ
−W (ϕ)

(f−2),kϕ

)2
, (9)

To optimize (6) with the smoothness constraint (9), H(e),
W(ϕ) and H(ϕ) components are updated alternatively using
a majoration minimization (MM) algorithm. Due to the lack
of space, the detail of the auxiliary functions are omitted but
are based on the Févotte et al. paper [15]. This leads to the
following multiplicative updates of H(e),W(ϕ),H(ϕ)

H(e) ← H(e) �
(

[W(e)]T (V(ϕ) �X)
)

�
(

[W(e)]T (V(ϕ) �V) + γsH
(e) � (1Ke

cn)
)
,

with 1Ke a vector of ones of length Ke and cn a row vector
whose l-th entry is cn(l) =

∑
f (W

(ϕ)
f,kϕ
−W (ϕ)

(f−2),kϕ
)2
(
h
(ϕ)
l

).2
,

where h
(e)
l is the l-th column of H(e) and (·).2 is the element

wise square power.

H(ϕ) ← H(ϕ) �
(

[W(ϕ)]T (V(e) �X)
)

�
(

[W(ϕ)]T (V(e)�V)+γsDiag(δW(e))
(
1KϕβH(e)

)
�H(ϕ)

)
,

1Recall that as discussed into the previous section, W(e) is kept fixed
during the estimation process.

with Diag
(
δW(e)

)
a diagonal matrix whose kϕ-th entry is∑

f (W
(ϕ)
f,kϕ
−W (ϕ)

f−1,kϕ
)2 and βH(e) a row vector whose l-th

entry is
∑

ke
(H

(e)
ke,l

)2.
The equations to update W(ϕ) depend on the index of the

row as follows:

∀f, W
(ϕ)
f,: ←W

(ϕ)
f,: �

((
X�V(e)

)
f,:

(
H(ϕ)

)T
+γsΛ

(ϕ)
f,:

)
�
((

V�V(e)
)
f,:

(
H(ϕ)

)T
+ γsΓ

(ϕ)
f,:

)
,

where (.)f,: corresponds to the f -th row of the related matrix,
with if f = 1

Λ
(ϕ)
1,: =

(
W

(ϕ)
1,: + W

(ϕ)
2,:

)
∆H and Γ

(ϕ)
1,: = 2 W

(ϕ)
1,: ∆H ,

if 2 ≤ f ≤ F − 1

Λ
(ϕ)
f,: =

(
2W

(ϕ)
f,: + W

(ϕ)
(f−1),: + W

(ϕ)
(f+1),:

)
∆H

Γ
(ϕ)
f,: = 4 W

(ϕ)
f,: ∆H ,

and if f = F

Λ
(ϕ)
F,: =

(
W

(ϕ)
F,: + W

(ϕ)
(F−1),:

)
∆H and Γ

(ϕ)
F,: = 2 W

(ϕ)
F,: ∆H

with ∆H =
∑

n(βH(e)

∑
kϕ

βH(ϕ)) where βH(e) a row vec-

tor whose l-th entry is
∑

ke
(H

(e)
ke,l

)2 and βH(ϕ) = (H(ϕ)).2.
The initialization of this iterative algorithm is crucial. To

this end, some physiological considerations are taken into ac-
count to both simplify the choice of the initial matrices H(e),
W(ϕ) and H(ϕ) and to speed up the convergence. Each col-
umn of W(e) is a Dirac comb with fundamental frequencies
from 30 bpm (i.e 0.5Hz) to 180 bpm (i.e 3Hz), withKe=100,
modulated by an average PCG signal envelop. The choice of
a modulated dictionary W(e) leads to an easier initialization
of W(ϕ). Indeed, theKϕ=2 components of W(ϕ) model thus
the departure from the average PCG envelop instead of itself.
Consequently, W(ϕ) is initialized around 1 and the number
of iterations in the NMF can be reduced. Finally, H(e) is ini-
tialized around 1 as the cardiac frequency to be selected is
unknown and H(ϕ) is also initialized around 1 since the tem-
poral evolution of the PCG is unknown.

3. RESULTS: HR ESTIMATION FROM PCG

In this part, synchronous ECG and PCG signals considered
for performances evaluation will be presented. Then, HR es-
timation results from H(e) will be depicted.

3.1. Signals database
A real signals database previously proposed to Signal Separa-
tion Evaluation Campaign in 2016 (SiSEC 2016) [16] is con-
sidered for evaluation. Acquisitions at 1kHz were performed
on three healthy volunteers at TIMC-IMAG laboratory. PCG
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Fig. 3. Estimation of the HR from a clean PCG (sample 9).
Left: H(e) from proposed NMF. Right: HRPCG (red line) is
estimated from H(e) and compared to HRECG (black line).

signals were recorded with a cardiac microphone (MLT201)
put on the skin in front of the heart and band-pass filtered be-
tween 15 and 300Hz. Noisy PCG signals were then artificially
created from the filtered PCG and different real interference
signals (pseudoperiodic noises of breath type, cough, radio,
etc.), recorded separately. Synchronous D2 lead ECG signals
were also recorded. The database finally consists of 16 sam-
ples with a duration from 10 to 70 seconds, each composed of
a clean filtered PCG pcg(t), an artificially noisy PCG pcgn(t)
and the synchronous ECG ecg(t).
The classical algorithm of Pan-Tomkins [1] was applied on
each ECG to detect R-waves, compute R-R intervals and es-
timate the heart rate. This HR estimation is noted HRECG.

3.2. HR estimation from H(e)

The proposed NMF approach is applied on PCG signals. For
an easier use of the source-filter modelling and to keep the
excitation spectral template W(e) as simple as described in
Section 2, we consider the rectified PCG signals.

The algorithm allows to estimate the temporal amplitudes
of the excitation and filter, as well as the spectral template
of the filter. For HR estimation, we focus on the excitation
temporal amplitude H(e). One example can be observed on
Fig. 3 for sample 9. A time-varying fundamental frequency
is emerging and corresponds to the instantaneous cardiac fre-
quency detected on PCG. Thereby, instantaneous heart rate
from PCG is estimated from H(e), as the frequency of max-
imum power at each column of H(e).This estimation is then
downsampled so as to associate one PCG cardiac frequency
to each R-wave of the ECG signal. The resulting HR esti-
mation on clean filtered PCG signals pcg(t) (respectively on
artificially noisy PCG signals pcgn(t)) is noted HRPCG (re-
spectively HRnPCG). These estimations are compared with
the one obtained from the reference ECG HRECG.

3.3. Performances of the proposed method

The performance of the proposed method is evaluated through-
out the quality of HR estimation from PCG signals. First,
considering the clean PCG signals, the relative error be-
tween HRECG and HRPCG is computed for each sample,
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Fig. 4. Performance of HR estimation for noise-free PCG and
noisy PCG signals for 16 samples. Relative error between
HRECG and HRECG (top) or HRnPCG (bottom).

as ε = (HRPCG − HRECG)/HRECG. Results are pre-
sented in Fig.4 as boxplots, which represent the parameters
distribution: red lines correspond to the median, the boxlimits
represent the first and the third quartiles, whiskers highlight
extreme values and red x-marks correspond to outliers.

For most of samples, HR estimation from clean filtered
PCG signals is very similar to HR estimation from ECG. In-
deed, the median of the relative error for all samples is 0.1%
and 770 heart cycles over 812 lead to a relative error lower
than 5%. This is confirmed by the global histogram which
highlights a peaky distribution around 0. Considering the
noisy PCG signals, a similarly good behavior is observed.
The median of the error is 0.1% for the overall set of noisy
samples. The related histogram shows a slight higher spread
of the relative errors. However, more than 84% (686 over
812) of heart cycles are detected with an error lower than 5%.

4. CONCLUSION

In this study, an improvement of a NMF decomposition based
on a source-filter model has been proposed to estimate the
HR from PCG in real conditions from noisy signals. Based
on signal properties, constraints have been added to avoid
identifiabilities issues. The proposed approach prevents from
the difficult detection of S1 and S2 cardiac sounds as most
often considered in PCG analysis (see Section 1) and allows a
very satisfactory HR estimation from noise-free PCG signals.
The origins of estimation errors mainly lie on the transition
from H(e) to the HR computation. Some properties of HR
may be introduced for a more robust estimation.
In case of noisy signals, for which the sounds detection and
the cardiac frequency estimation are quasi-impossible on tem-
poral signals, the HR estimation obtained with our methodol-
ogy is promising. We intend to add several improvements to
the method, considering on one hand the sparse property of
the excitation temporal amplitude H(e), and on the other hand
a joint NMF of synchronous noisy ECG and PCG signals.
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