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ABSTRACT

We propose in this paper a new technique to investigate the
Event-Related Potentials, or Evoked-Response Potentials, in
the electroencephalographic signal. The multidimensional
electroencephalographic signal is first spatially filtered to
enhance the Evoked-Response Potentials using the xDAWN
algorithm and, second, the single trial latencies (whatever
their origins: physiological or electronical) are estimated by
maximizing a cross correlation without any a priori model.
The performance of this approach is illustrated on two clas-
sical P300-Speller electroencephalographic databases (BCI
Competition II and III). The single-trial distribution of P300
Evoked-Response Potential is deblurred using the proposed
resynchronization algorithm for applications in particular to
Brain Computer interfaces.

Index Terms— Brain Computer Interface, spatial filter,
jitter compensation, single trial, Event-related potential

1. INTRODUCTION

Brain Computer Interfaces (BCI) allow a subject to control a
device without any muscular activity [1]. They are generally
based on the acquisition and the analysis of scalp recorded
electroencephalography signals (EEG). In several BCIs sys-
tems, the subject is submitted to different classes of stimula-
tions generating corresponding cerebral responses referred as
event-related potentials (ERP) or evoked potentials [2]. The
subject is asked to choose one class of stimuli called the tar-
get stimuli. Then the BCI system provides the subject with
a mixture of target and non-target stimulations, records ev-
ery cerebral responses and detects which is the target class
that had been intentionally chosen by the subject. This de-
tection is based on the fact that the ERP related to a target
stimulation, the well-known P300 ERP, is different from the
response related to non-target stimulations. This is the princi-
ple of the famous P300-Speller BCI [3, 4]. More specifically
in the P300-Speller case, the subject is watching a screen with
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a 6-by-6 grid of 36 letters and figures and the stimulation con-
sists in highlighting randomly one row or one column of this
grid. The subject chooses one symbol and is asked to focus on
its brightness. Each time the chosen symbol column or row
is highlighted one P300 ERP is generated by the brain. P300
or P3 means that the ERP is positive and emitted roughly 300
millliseconds after the target stimulation.

Obviously, the ERP detection algorithms take advantage
of the synchronization between the stimulus and the evoked
potential. Nevertheless, the 300 milliseconds latency is not
constant and can be affected by different kinds of variabil-
ity. Firstly, the “natural” latency between the stimulus percep-
tion and the ERP depends for instance on the current cerebral
work load. Secondly, the delay is also affected by any jitter
between the stimulation device clock and the EEG recording
device clock. This “electronic” delay can be minimized by
using specific synchronization hardware but this is complex
and not commonly done in practice. Both jitter amplitude are
often similar to the P300 temporal width (i.e. several tenth
of milliseconds). Consequently, it is clear that such a jitter
amplitude significantly reduces the relevance of the estimated
ERP shapes for neuroscience/cognitive interpretations or the
global performance of many classification algorithms and the
corresponding ERP-based synchronous BCIs. It prevents also
from merging different EEG recording sessions in one homo-
geneous data set and can create a discrepancy between the
training and test data sets.

A solution to this problem is to resynchronize the stimu-
lations and EEG timescales. We propose to do it by achieving
a single-trial detection and resynchronization of each ERPs.
This resynchronization has several applications: assess the
jitters affecting an existing database and reduce them, merge
several EEG databases affected by inhomogeneous jitter dis-
tributions, evaluate the jitter amplitude of a given BCI device
and minimize it by tuning electronic parameters, improve
the target/non-target classification performance, improve the
characterization of the ERP distribution, detect unknown
ERPs that so far had remained hidden due to desynchro-
nization. Of course, this method can be generalized to any
detectable ERP, and any other areas where a system is char-



acterized by investigating the responses to short stimulations.
The paper is organized as follow: the resynchronization

method using xDAWN is described in the second section.
Section 3 shows the performance of the proposed method on
actual BCI data. Finally, Section 4 concludes this paper by a
discussion and perspectives.

2. ERP ENHANCEMENT AND LATENCY
ESTIMATION

The proposed method is based on two steps: the ERPs are first
enhanced by one-dimensional spatial filtering (Section 2.1)
and then the latency of each single trial ERP is estimated by
intercorrelation with a mean ERP profile (Section 2.2).

2.1. The xDAWN algorithm

With P300 speller BCI paradigm, the multidimensional EEG
signal is modeled as the sum of

• the target-ERP component,

• other ERP components also related to the stimulations
(non-target ERP or the union of target and non-target
ERP for instance), and

• the remaining EEG independent of any stimulations.

Each ERP component is assumed to be also the superposi-
tion of one multi-dimensional pattern (i.e. a matrix) at the
rhythm of the corresponding stimulations. The xDAWN al-
gorithm [5, 6] provides an estimation of each ERP pattern
and the spatial filters which maximize the relative power of
the ERP component of interest versus the other ERPs and the
remaining stimulation independent EEG.

More specifically, let’s denote NE the number of elec-
trodes, NS the number of EEG time samples and X the NS ×
NE EEG signal matrix (one column by electrode). If the ERP
pattern is a NP × NE matrix denoted A then we assume the
one-ERP EEG model

X = DA+N (1)

where D is Toeplitz NS × NP whose entries are 0 or 1; the
first column entries are 1 if the time index is the starting time
(i.e. onset) of one occurrence of the corresponding ERP, and
0 otherwise. In the case of several superimposed ERPs of
respective patterns A1, A2, etc. we have

X = D1A1 +D2A2 + . . .+N = DA+N (2)

with the same definition of the Toeplitz matrices D1, D2,
etc. and, with D the horizontal concatenation of the D1, D2,
etc. and A the vertical concatenation of A1, A2, etc. A least
squares estimation of the concatenated ERP patterns gives

Â =
(
DTD

)−1
DTX (3)

Each ERP pattern Â1, Â2, etc. is obtained as the correspond-
ing horizontal slice of Â.

As a matter of fact, we noted that the target ERPs estima-
tions Â1 are often corrupted by the periodic rythm of flashes
(every 175 milliseconds in the data sets that are used below).
Therefore, we postulate that a second ERP A2 is generated
synchronized to each row or column highlighting. We ob-
served in practice that this two patterns modelization and the
corresponding enhancement with the xDAWN spatial filters
yield an estimation of A1 that is acceptably immune to the
flashes steady-state visual evoked potential.

The spatial filter v1 for enhancing the target-ERP of pat-
tern A1 and Toeplitz matrix D1 are computed as the first gen-
eralized eigenvectors which maximize the Rayleigh quotient
(a kind of target-ERP to EEG ratio)

v1 = argmax
v

vT ÂT
1 D

T
1 D1Â1v

vTRXv
(4)

RX is the covariance matrix of the whole EEG signal X .

2.2. Single-trial ERP delays estimation

The spatial filter v1 which yields the highest ERP enhance-
ment is generally efficient enough for allowing a single-trial
detection of most of the P300 ERPs. The latency of each ERP
is estimated by maximizing the intercorrelation between the
ERP-enhanced EEG (i.e. Xv1) and the ERP template profile
after the same spatial filtering of the ERP pattern (i.e. Â1v1).

Note that the estimation of optimal spatial filters for ERP
enhancement (Section 2.1) is based on the a priori knowledge
of the ERP latency via the D Toeplitz matrix. Therefore, the
proposed estimation of the ERPs jitter allows a correction of
the D matrix by adjusting the stimuli onsets and the compu-
tation of corrected spatial filters. As a consequence, the full
procedure iterates the two described steps

• spatial filter enhancing the ERPs for a given set of stim-
uli onsets

• correction of the stimuli onsets by estimating the la-
tency of each ERP.

Based on our tests (Section 3), only few iterations are neces-
sary to converge (typically two to three).

3. RESULTS ON ACTUAL P300-SPELLER EEG DATA

The efficiency of the proposed ERP resynchronization tech-
nique is validated on two P300-Speller databases available
online: the training data set IIb of the BCI Competition II [7]
(which is generally considered as an easy set), and the more
challenging training data set II of the BCI Competition III [8].



(a) BCI II (b) BCI III

Fig. 1. Intercorrelation as a function of time for all the target
ERP trials of BCI II (Fig. 1(a)) and BCI III (Fig. 1(b))

3.1. Databases

Both EEG data sets have been recorded at 240Hz with NE =
64 electrodes. The P300-Speller paradigm has been imple-
mented with 15 repetitions of 2 target stimulations (the right
row or the right column of the grid is highlighted) and 10 non-
target stimulations (wrong rows or columns). The training
data set IIb of the BCI Competition II contains two sessions
(10 and 11) and several runs; all the runs of both sessions have
been concatenated to create a unique EEG signal matrix X .
The training data set II of the BCI Competition III contains
two subjects (A and B) and 85 blocks each corresponding to
85 symbols. We discarded the EEG blocks that are visually
extremely corrupted by artifacts (8 for subject A and 10 for
subject B) and concatenated the remaining 152 blocks.

3.2. Estimation of the ERP jitters

Figure 1 shows the color coded intercorrelation amplitude as a
function of the time on the x-axis and the target stimulation on
the y-axis. The different sessions, runs and/or subjects have
been separated by black lines. The target ERP jitters are very
clearly correlated to the run and the session in Figure 1(a).
Figure 1(b) shows a more discrete but systematic difference
of timing between subject A and subject B. Both figures give
an idea of the dispersion of the delays between the stimulation
and the actual generation of the target ERP.

3.3. Convergence of the proposed method

In this section, we show that the proposed iterative two steps
estimation procedure converges for the two data sets in very
few iterations. Figure 2 shows the histograms of the estimated
target ERP times of occurrence after one and two iterations.
Both first iteration histograms (left plots) show the amplitude
of the latency jitter (the width of the distribution) and the side
bins amplitude allow to evaluate the probability of finding
a maximum to the intercorrelation function in the necessary
limited interval of research (here from -30 to +30 and -50 to
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Fig. 2. Histograms of P300 ERP jitter latencies after the first
(left plots) and second (right plots) iterations.

+50 sampling periods of roughly 4 milliseconds). The second
iteration histograms (right plots) show the convergence of the
proposed two steps procedure since the jitter latencies after
the second iterations are mainly concentrated around 0.

3.4. ERP distributions characterization

The ERPs are classically identified by averaging separately
target and non-target one-dimensional EEG epochs (one elec-
trode of interest) and detecting by comparison a difference
between these temporal profiles [2]. Averaging epochs yields
the ERPs enhancement by a kind of temporal filtering. This
temporal enhancement is very efficient but the individual
ERPs are lost; single-trial characterization is no longer pos-
sible. The main interest of ERPs enhancement by spatial
filtering is that it allows the characterization of the ERPs dis-
tribution (the detection of individual ERPs are even possible
in favorable situations). This section investigates these ERP
distributions and the deblurring effect of the proposed resyn-
chronization method. The distribution of general P300 ERPs
and the specific case of two successive P300 ERPs (close
target stimulations) are shown.

In all this article, the figures presenting the distributions of
ERPs are built in the same way. All the epochs of the ERP of
interest are selected in the enhanced channel (i.e. Xv1), then
these epochs are superimposed and histograms are computed
on each column. In few words, the distribution figures show
the color-coded density of ERP trajectories in each pixel.

Figure 3(a) shows the general P300 ERP distribution in
the data set IIb of the BCI Competition II without resyn-
chronization (bottom plot) and with resynchronization (top
plot). The P300 ERP variability and its ability to be detected
by thresholding can be evaluated on these figures. Figure
3(b) shows the same distributions but using the data set II
of the BCI Competition III without and with resynchroniza-
tion, which illustrates the variability of the P300 ERP from



(a) BCI II (b) BCI III

Fig. 3. P300 ERP distribution without (bottom plots) and with
(top plots) resynchronization, data set IIb BCI II Fig. 3(a)) and
data set II BCI III (Fig. 3(b)).

(a) Without resynchronization (b) With resynchronization

Fig. 4. Successive P300 ERP distributions without resynchro-
nization, data set IIb BCI II. From top to bottom plots, the tar-
get stimulations are separating of 175, 350, 525, 700, 875ms.

one data set to another and from one subject to another.
When two successive target stimulations are very close

in time (here 175 milliseconds) the second ERPs is slightly
delayed and of lower amplitude. Figures 4 and 5 illustrate this
physiologic phenomenon by showing the corresponding ERP
distributions. In this case too, the resynchronization deblurs
the distribution by compensating latency jitters.

4. RELATION TO PRIOR WORK & DISCUSSION

The latency jitter estimation is an old issue in neuroscience
and its estimation dates back to the late sixties. Woody [9]
estimates the single trial P300 latencies by maximizing the
cross-correlation between the one dimensional EEG signal
(one electrode) and a P300 template (generally a sine wave).
Jaskowski [10] proposes to jointly estimate the single trial la-
tency and amplitude of P300 via maximum likekihood ap-
proach used by Pham [11] for other ERPs. More recently, Li
et al. [12] uses spatial filtering to improve the signal (P300)

(a) Without resynchronization (b) With resynchronization

Fig. 5. Successive P300 ERP distribution without resynchro-
nization, data set II BCI III. From top to bottom plots, the tar-
get stimulations are separating of 175, 350, 525, 700, 875ms.

to EEG ratio; latencies and amplitude are also estimated by
maximizing cross correlation between the trial and a model
of P300 involving gamma functions. On the contrary, our
approach is only based on the EEG data and makes no as-
sumption on the P300 profile (i.e. no parametric model as
gamma functions), which is directly estimated from the data
using the xDAWN algorithm. It allows in particular to pro-
vide an estimation of the ERPs distribution instead of a priori
model parameters. The proposed method base on the xDAWN
algorithm also takes into account the possible inter-classes
overlapping when estimating the ERP profile used for the
resynchronization. Finally, the resynchronization step pro-
vides more accurate spatial filters since the output signal to
noise ratio (4) is higher after few iterations than without la-
tencies jitter estimations.

A new method for compensating the latency jitter between
a stimulation event and the corresponding EEG event-related
potential (ERP) is proposed. This iterative technique shows
its good convergence behavior since only a few number of it-
erations (typically one or two) are necessary. Coupled with
the ERP enhancing spatial filtering algorithm xDAWN, it al-
lows to deblur efficiently the ERP distributions. Several ERPs
are investigated: the P300 and two successive P300 with sev-
eral delays between them. The performance of the method
are shown on two classical P300-Speller EEG databases of
different difficulty. The proposed technique have only been
illustrated here on training data sets but it can be extended to
the test sets for dealing with classification problems; we will
investigate this question in a future article.
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