
SINGLE SENSOR AUDIOVISUAL SPEECH SOURCE SEPARATION

Pierre Narvor, Bertrand Rivet, Christian Jutten

Univ. Grenoble Alpes, Gipsa-Lab, F-38000 Grenoble, France
CNRS, GIPSA-Lab, F-38000 Grenoble France

ABSTRACT

The Kernel Additive Modeling (KAM) is a recent promising

framework for the separation of underdetermined convolutive

mixture of audio signal. The principle of this method is to

estimate the short term Power Spectral Densities (PSD) of the

sources directly from the mixture by taking advantage of re-

dundant features in the PSD of the source, such as periodicity

or smoothness. The separation itself is then performed with a

generalized Wiener filter. This preliminary study aims to eval-

uate the improvement of using the video of the speaker’s face

to directly detect such redundancies in the speech that could

be used in the KAM framework to perform the extraction of

the speech signal.

Index Terms— Multimodality, Convolutive Informed

Source Separation, Audiovisual, Wiener Filtering

1. INTRODUCTION

The problem of Convolutive Blind Source Separation (CBSS)

of audio signals is still a challenging task [1]. Many methods

have been developed in the last decades using as many or

more microphone than the sources, e.g. independent com-

ponent analysis (ICA) [2] or independent vector analysis

(IVA) [3]. On the other hand, underdetermined audio source

separation is mainly based on Wiener filters [4] estimating

e.g., in a Bayesian framework [5] or by non-negative matrix

factorization [6].

Recently, a new framework has given promising results

when applied to underdetermined convolutive mixtures [7].

The Power Spectral Densities (PSD) of the sources used by

the Wiener filter are estimated directly from the mixture. The

source separation problem is therefore transformed into a

source parameter estimation problem. The Kernel Additive

Modelling (KAM) approach for source separation presented

in [8] is based on this framework. This study partly focuses

on the extraction of lead voice from stereo recordings of

music, in which features like smoothness or periodicity are

strongly present in the PSD of the instrumental signals. The

main goal of this approach is to take advantage of the so
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called “local dynamics” of the PSD of audio signals to esti-

mate their parameters. The source features allow an efficient

modelling of the different PSD structures via a source specific

proximity kernel based on some redundancy. For instance,

in the time-frequency domain, such redundancy can be based

on local smoothness of the PSD (e.g., speech) or due to its

periodicity (e.g., percussions in music).

When dealing with speech signals, it is well-known that

there exist strong links between the audio signal and the face

of the speaker (e.g., the movements of the lips’ speaker) [9,

10]. Such redundancies have already be applied to a source

extraction problem [11]: based on spectral subtraction, on

ICA or IVA, on audiovisual dictionary decomposition or time-

frequency masking. However, the relationship between the

audio and video signals is complex and does not allow an easy

translation from the lip movements to the audio speech signal.

This contribution is a preliminary study in which we aim at as-

sessing that if using the video of the face of the speaker as an

extra modality to detect more redundancy in the speech PSD

could effectively help the separation by extending the KAM

framework into a multimodal one.

The remaining of this paper is organized as follows. Sec-

tion 2 described the proposed multimodal KAM algorithm.

The results are presented in Section 3 before conclusions and

perspectives in Section 4.

2. METHOD

In this section, the modelling of the tackled problem is de-

fined in subsection 2.1, then the separation principle of KAM

presented in [8] is recalled in subsection 2.2, and our contri-

bution is presented in subsection 2.3.

2.1. Modelling of the source separation problem

In this paper, the considered recorded signal x(t) is assumed

to be a linear mixture of latent sources si(t):

x(t) =

I∑
i=1

si(t), (1)

where I is the number of sources. The extraction of the ith
source si(t) is then achieved in the time-frequency domain
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by a time-varying Wiener filter. Let X(t, f) denotes the short

term Fourier transform (STFT) of x(t). The estimation of

si(t) is thus provided by the inverse short term Fourier trans-

form of

Ŝi(t, f) = Hi(t, f)X(t, f), (2)

with Hi(t, f) the Wiener filter defined by

Hi(t, f) =
Pi(t, f)∑I
j=1 Pj(t, f)

, (3)

where Pj(t, f) is the PSD of the jth source sj(t). In practice,

the PSD in (3) are substituted by their estimates that must be

computed from X(t, f) using some prior knowledge on the

sources properties.

2.2. Kernel Additive Modeling

2.2.1. Modelization and estimation of the PSD of the sources

The KAM framework [8] provides a convenient model to es-

timate the PSD of the sources sj(t) from the PSD of the mix-

ture x(t). For each frequency bin f and time t, Sj(t, f) is

assumed independent of each other, and distributed with re-

spect to a centered Gaussian distribution:

∀(t, f), Sj(t, f) ∼ N
(
0, Pj(t, f)

)
, (4)

where Pj(t, f) ≥ 0 is the PSD of the source j at STFT bin

(t, f). Being the sum of I independent Gaussian random vari-

ables, X(t, f) also follows a Gaussian distribution defined as:

∀(t, f), X(t, f) ∼ N
(
0,

I∑
i=1

Pi(t, f)

)
. (5)

To estimate the PSD Pj(t, f), the KAM assumes that at the

time-frequency (TF) coordinates (t, f), a specific set Ij(t, f)
of pair (t′, f ′) can be defined, for which the PSD Pj(t

′, f ′)
has a value close to Pj(t, f):

∀(t′, f ′) ∈ Ij(t, f), Pj(t
′, f ′) ≈ Pj(t, f). (6)

The set Ij(t, f) actually defines a proximity kernel in the

form of a binary mask. The shape of this binary mask is

chosen accordingly to the structure of the PSD of the consid-

ered source. For example, if the PSD is known to be periodic

of period T0 with respect to time, the proximity kernel can

be defined as a periodic set of time-frequency coordinates:

Ij(t, f) = {(t+ kT0, f) | k ∈ K ⊂ Z}. The estimation can

then be achieved by minimizing the absolute deviation:

P̂j(t, f) = argmin
P

∑
(t′,f ′)∈Ij(t,f)

|Zj(t
′, f ′)− P |, (7)

where Zj(t
′, f ′) is the observed value of Pj(t

′, f ′). The min-

imization is achieved by:

P̂j(t, f) = median
(
Zj(t

′, f ′) | (t′, f ′) ∈ Ij(t, f)
)
. (8)

2.2.2. Separation algorithm

The extraction is performed by an iterative algorithm based on

some chosen proximity kernels for each source defined from

their properties.

Let Ŝ
(k)
i (t, f) be the estimate of the SFTF of the ith

source at kth iteration . Each iteration is decomposed in three

steps:

• compute the observed source PSD Zj(t, f) as

∀i, Z
(k)
i (t′, f ′) =

∣∣Ŝ(k−1)
i (t, f)

∣∣2, (9)

• estimate the PSD of each source P̂
(k)
i (t, f) by (8),

• estimate the STFT of each source Ŝ
(k)
i (t, f) by (2)

with the Wiener filter (3) using the estimated PSD

P̂
(k)
i (t, f).

Without any prior knowledge on the sources other than their

kernels, their STFT are initialized as Ŝi(t, f) = X(t, f)/I .

This process is then repeated a fixed number of iterations, typ-

ically 5.

2.3. Multimodal KAM

The KAM framework has been shown very efficient on the

separation of sources of different PSD structures, as with the

extraction of lead vocals from a stereo recording of music [8].

However, its main drawback is that it cannot separate two

sources which follow the same kind of time-frequency struc-

ture, as for example two speech sources. The main idea of

this paper is to discriminate a target speech source form the

others by using redundancy in the contents of the speech that

would be detected with the video of the speaker’s face using

a visual speech redundancy detector (VSRD).

2.3.1. Principle of the method

The proposed multimodal KAM (MM-KAM) is an extension

of the KAM framework based on a simple speech redundancy

detector using video as detailed in subsection 2.3.2. Here the

proximity kernels are not only defined on the assumed struc-

ture of the speech signal but also on repetition of words de-

tected by the video. Let T (t) be the set of time frames that

have been detected by the VSRD as a repetition of the frame

at time t. In other words, at a given time t, the set T (t) con-

tains all time indexes of frames similar to the one at time t.
Then the multimodal proximity kernel to use for the separa-

tion of the repeated words is defined as:

Ir(t, f) =
⋃

t0∈T (t)

I0(t0, f), (10)

where I0 is a proximity kernel well suited to speech signals.

The separation algorithm is then performed with a similar

algorithm than the one described in Section 2.2.2. The PSD
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of the redundancies are supposed to be equal to each other

and are thus estimated as:

P̂r(t, f) = median
(
Zj(t

′, f ′) | (t′, f ′) ∈ Ir(t, f)
)
, (11)

where Ir(t, f) is defined by (10).

2.3.2. Visual speech redundancy detector

The VSRD is based on the optical flow of the video previously

centered on the speaker’s face. This feature is be a good can-

didate to detect redundancies in the video signal since it has

been recently shown to be efficient to discriminate visemes

[12], even between different speakers. It is also immune to

conditions of illumination of the face and does not require the

same level of precision of segmentation than lip segmentation

based recognition. However, the indeterminacies between lip

movements and speech signal shall prevent to make a per-

fect speech redundancy detector. To increase the accuracy,

it is possible to compare longer speech segments. This gives

more information to compare two segments but at the expense

of the redundancy density. For these reasons, the figures pre-

sented in Section 3 where computed using 750ms long speech

segment, which is around the time scale of a word. Finally,

a video segment is the concatenation of 37 frames of optical

flow. The similarity measure is the normalized dot product.

The occurrences are then detected with the local maxima of

a normalized correlation between a reference speech segment

and the entire optical flow data.

2.3.3. Limitations of the MM-KAM

The MM-KAM method suffers from several drawbacks in-

trinsic to lip reading. The first one is the non-bijective rela-

tionship between the movements of the lip and the contents

of the speech. It is not guaranteed that a match in the VSRD

correspond to speech segments with the same content. This

is a major problem that is not tackled in this paper. However,

even with a proper detection of redundancies in the speech,

there are other potential limitations to the use of this method.

The first one is the density of the redundancies. If the density

of redundancies is not high enough, the VSRD will not find

enough matches for the MM-KAM to be efficient. Also, even

if a proper repetition is detected, the speech segments can dif-

fer in rate of locution, tone of the voice, and a delay caused

by the frame rate of the video which is usually low compared

to the speech signal rate of variations. The difference in rate

of locution is not considered in this study because the VRSD

described in this paper should consider that the two segments

are not repetitions. A possible improvement of the method

would be to handle the difference in rates of locution directly

with the VSRD by a time warping [13].

3. RESULTS

In this section, the behaviour of the proposed MM-KAM is

assessed on three experiments (subsection 3.2) after the defi-

nition of the performance index (subsection 3.1).

3.1. Performance Measure

The extraction performance was evaluated using the Signal to

Distortion Ratio (SDR) [14]. The SDR represents a signal to

noise ratio where the signal is the best estimate of a source

that could be obtain by the extraction algorithm if all of the

separation parameters, in this case the sources PSDs, have

been perfectly estimated. In a simulation case, these parame-

ters are given by an oracle. The noise in the SDR definition is

the difference between the estimated source ŷ and the oracle

source y. The SDR is then defined as:

SDR = 10 log10
‖ y ‖2

‖ y − ŷ ‖2 (12)

The SDR is expressed in decibel (dB), and the higher it is, the

better is the extraction quality.

3.2. Experiements

The results are averaged over 76 trials. For each trial, a ran-

dom mixture is generated containing (i) a target speech signal

with known repetitions, (ii) another speech signal, and (iii)

a music recording containing several instruments and a lead

voice. The SDR of the desired speech signal is -0.5 dB at the

initialization. The audio signals where sampled at 16kHz and

STFT of the sources where computed on 50ms long windows

with an overlap of 90%.

For the target speech signal, the kernel I0 is a cross-like

kernel with a bandwidth of 20Hz and a duration of 25ms such

as the one used in [8]. Another cross-like kernel is used to

define another potential speech source, or another source with

a similar structure, like a piano. The bandwidth of the kernel

is 40Hz and its duration is 45ms. A last kernel is defined to

represent a nearly stationary source, like a synthesizer in a

music recording or a background constant white noise. This

kernel is a rectangle of bandwidth 20Hz and duration 750ms.

3.2.1. Number of occurrences of a speech segment

This experiment investigates the impact of using redundancy

in the proposed MM-KAM compared to the KAM that does

not use them. As reported in Tab. 1, a dramatic increase in

SDR is obtained when using at least two occurrences instead

of only one. Indeed, the mixture consists of several speech-

like sources and without using at least one repetition, there

Table 1: Maximum obtained SDR in the ideal case with re-

spect to the number of occurrences

Number of occurences 1 2 3 4 5

SDR [dB] -1.3 7.66 9.85 11.5 11.9
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Fig. 1: Evolution of SDR with respect to the half width of the

distribution of the delay error between repetitions. Caption

reports the number of occurrences used in the MM-KAM.

is no information to discriminate these sources while the pro-

posed MM-KAM can. It is worth noting that the SDR of the

target source decreases from -0.5dB to -1.3dB when the re-

dundancies are not taken into account (i.e. KAM). This could

seems strange at first but since only three kernels have been

defined for this separation so only three sources are estimated.

A lesser SDR at the end only means that the estimated source

remains a mixture of several sources and that an other source

is more predominant than the target one. Finally, the quality

of separation increases with the number of used occurrences,

but the gain in SDR is small when using more than 4 occur-

rences.

3.2.2. Synchrony issue

To evaluate the error induced by synchrony issues between

the audio and video, the separation is performed by the MM-

KAM after adding a shift from their actual positions of the

redundancy kernels. The shifts are randomly chosen by sam-

pling a centered uniform distribution. Ten widths of uniform

distribution were chosen from 0ms to 150ms. As expected,

it can be seen on Fig. 1 that the higher is the error in delays

between modalities, the lesser the SDR is. Moreover, when

less occurrences are used, the method is less sensitive to the

delay: the decreases of SDR with a maximum delay of 75ms

are 5.4dB and 11dB when using 2 or 5 occurrences, respec-

tively, compared to the case with a perfect synchrony (i.e. no

delay). Indeed, a misalignment in the definition of the MM-

kernel (10) leads to a less accurate estimation of the PSD (11).

Nevertheless, the proposed method is still efficient when the

delay between occurrences is above 20ms, which is the time

between frames in a video sampled at 50Hz. However a loss

of SDR of around 3dB is still observed.

3.2.3. Diversity in fundamental frequency

To objectively measure the loss of SDR induced by a variation

on tone of the voice, it is needed to control the fundamental

frequency of the vowels. A shift in fundamental frequency

is performed using a simple phase vocoder. This treatment is
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Fig. 2: Evolution of SDR with respect to the half width of the

distribution of f0 relative error between repetitions. Caption

reports the number of occurrences used in the MM-KAM.

performed in the frequency domain. To dilate or shrink the

fundamental frequency, some time frequency bin are added

to or deleted from the spectrum before resampling it back to

its original size. The formants are kept at the same location

with the help of an estimation of the envelope of the spec-

trum based on a linear prediction coding (LPC) procedure.

It is worth noting that this simple vocoder induces some dis-

tortions on the signal: it explains that even with no f0 shift

the results are lower than in the ideal case presented in pre-

vious section. The f0 where shifted from a value sampled

from a uniform centered distribution. Ten width of distribu-

tion where chosen from 0% to 100% of the original f0 value.

Fig. 2 shows that the larger is variations of f0, the worst the

performance are. It is worth noting that the lost quality is

greater when more occurrences are used. Indeed, a misalign-

ment of f0 leads to misaligned observed source PSD (9) and

thus to a less accurate PSD estimated by (11). However, there

are still an improvement compared to the KAM.

4. CONCLUSIONS AND PERSPECTIVE

In this study, a multimodal extension of the KAM frame-

work has been proposed as MM-KAM. Based on the redun-

dancy of speech between the audio signals and the video

of the speaker’s face, a specific multimodal kernel of “local

smoothness” has been defined from the VSRD. The numerical

experiments show the advantage of the proposed MM-KAM

compared to an audio only KAM to extract a specific speech,

especially if several speech signals are mixed. However, one

of the main drawbacks of this method is that long speech seg-

ments around the length of a word have to be used to detect

accurately speech redundancies. This drastically reduces the

number of used redundancies and therefore the efficiency of

the method with natural speech.

Future work will focus on bringing down the needed

length of the audiovisual segment with more refined tech-

niques based on both the video and the sound mixture to

detect the redundancies. The field of Automated Lip Reading

shall be of a great help to achieve this objective.
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