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Abstract—The phonocardiographic signals (PCG) are of inter-
est for the analysis of the cardiac mechanical function. However,
they are not always directly exploitable because of ambient
interference (gastric noises, breathing noises, etc.). We aim
to denoise PCG signals using another cardiac modality, the
electrocardiographic (ECG) signal. In this paper, we investigate
an informed non-negative matrix factorization to extract signal
components out of the noisy PCG signal, considering synchronous
ECG information. Our approach is applied and evaluated on a
database consisting of real and artificially noisy PCG signals.

I. INTRODUCTION

Cardiac sounds are non-stationary signals recorded and
known as phonocardiogram (PCG) signals. Among these
sounds, two are particularly audible (Fig. 1): S1 (which
corresponds to the closure of the atrial-ventricular valves and
marks the beginning of the ventricular systole) and S2 (which
corresponds to the closure of aortic and pulmonary valves
and marks the onset of the ventricular diastole). The analysis
of these types of sounds brings information on mechanical
function of the heart. However, the raw signals are roughly
exploitable because of ambient interference (voice, cough,
gastric noise, etc.). It is therefore necessary to remove noise
components before interpretation.
Several methods of PCG denoising have been proposed based
on principles of adaptive filtering [1], Kalman filtering [2],
wavelets [3], or Empirical Modal Decomposition (EMD) [4].
In [1], authors have proposed an application of modified
Adaptive Line Enhancement filtering to noisy PCG. This
filtering is based on a recursive least squares algorithm.
Authors of [2] have looked for removing noise from a PCG
signal by considering respiratory sounds as interferences. A
Reduced-Order Kalman Filter based on a second order auto-
regressive process is used. A decomposition in wavelets has
been implemented in [3]: a threshold on transform coefficients
allows to separate the useful signal from noise. A new non-
linear Empirical Denoising Algorithm approach based on
EMD has been proposed in [4] and allows denoising PCG
signals without changing the sounds position. Although these
methods have shown their interest, they do not exploit, or
a little, the important propriety of quasi-periodicity of PCG

signals.
In this paper, in order to denoise PCG, we aim to exploit
the non-negative matrix factorization (NMF) [5][6] and some
derivatives [7][8] in a multimodal context coupling PCG and
the electrocardiogram (ECG) sensor (Fig. 1), giving access to
the electrical cardiac activity.
It is now common to record physiological signals with dif-
ferent types of sensors leading to multimodal recordings
[9][10][11]. Information redundancy and complementarity be-
tween modalities can be used for processing and/or interpre-
tation of physiological behaviors. In cardiac analysis, ECG
and PCG signals are quasi-periodic and quasi-synchronous.
There is always a delay named RS1, which varies from one
heartbeat to another one, between the occurrence of the R
peak, corresponding to the positive wave of the ventricular
depolarization complex (QRS) of the ECG signal, and the first
sound S1 (Fig. 1). This delay and the associate jitter have to
be considered for joint processing of ECG and PCG.

Fig. 1. Synchronous ECG and PCG signals. PCG is a quasi-periodic
succession of two bumps S1 and S2, following the R peak of ECG signal.

The NMF method decomposes a signal in components. It
approximates an observation matrix X ∈ Rm×n of positive
or zero coefficients by a product of two matrices with non-
negative values W ∈ Rm×k and H ∈ Rk×n with k the number
of estimated components: X = V + N where V = WH
and N is the residual error from the approximation. With
no more constraint, the NMF is not necessarily unique, but
under some conditions, it may become unique (for example



with a sparsity constraint) [12]. For physiological signals, the
use of NMF is of interest in time-frequency representations
[13]. Indeed, the NMF algorithm applied to the spectrogram
is well-suited to identify events with particular spectrum and
temporal regularity (quasi-periodicity). In this case, W is
the matrix of frequency patterns and H , the matrix of time
activations.
Preliminary tests of NMF for PCG denoising have been
carried out considering an ECG reference [14]. Satisfactory
results were obtained but the multimodal aspect was just
exploited as a post-processing for the decomposition achieved
by the NMF. Indeed, the ECG modality is only used to select
a posteriori the components related to the cardiac signal based
on a rythm analysis. It may be of interest to take into account
multimodality all along the NMF processing. Hence, we
propose now to adapt some existing derivative methodologies
[7][8] to explore joint NMF. For one speaker identification
during a discussion, [7] proposed to take advantage of both
modalities, video and audio. The proposed NMF approach
aims to minimize the distance between the activation signals
of both modalities. In [8], a general deformation model has
been proposed for audio sources separation. This model
allows to constraint data according to the processing or
interpretation. We aim to investigate these two existing
methods and adapt the algorithms in order to propose a NMF
solution for PCG decomposition, informed by ECG reference.
The proposed method consists then of denoising PCG, using
Wiener filtering as in [14]. Evaluation is carried out on a real
signals database previously proposed to Signal Separation
Evaluation Campaign in 2016 (SiSEC 2016) [15].

II. SIGNALS DATABASE

Acquisitions were performed on three healthy volunteers
at TIMC-IMAG laboratory as part of MAPO − RCV Q
protocol (CHU of Grenoble promoter). PCG were recorded
with a cardiac microphone (MLT201) put on the skin in
front of the heart and maintained by a thoracic belt. D2
lead ECG signals were simultaneously conditioned with a
BioAmp amplifier. All signals were synchronously acquired
with a PowerLab data acquisition system (ADInstruments)
and sampled at 1kHz. PCG signals were band-pass filtered
between 15 and 300Hz. Sixteen samples with a duration
varying from 10 to 70 seconds have been artificially created
from the filtered PCG and different real interference signals
(radio, cough, pseudo-periodic noises of breath type, etc.),
recorded separately. The database is composed of sixteen
samples, each composed of the filtered PCG s(t), the
interference signal n(t), the noisy PCG x(t) = s(t) + n(t)
and the synchronous ECG ecg(t).

III. PROPOSED METHODOLOGY

In this section, before presenting our work related to our
application in Section III-B, the basics of NMF are recalled

(Section III-A). Finally, the proposed informed NMF is intro-
duced in Section III-C.

A. NMF based on beta divergences
The derivative NMF [7][8] are based on computation of cost

functions better known as β-divergences [16]. Such functions
quantify the dissimilarity or divergence between the observa-
tion (the spectrogram in our case) X and its approximated
decomposition V = WH under the constraints of positivity,
leading to the following cost function

C(W,H) = Dβ(X | V ), (1)

Dβ is the β−divergence.
To identify the components W and H , multiplicative updates
are considered. To ensure the decrease of the β-divergence,
an alternative algorithm based on Minimization-Maximization
(MM) is applied [16]. In what follows, β is chosen equal to
2, i.e. the β-divergence is simply the Euclidian distance. This
leads to estimate W knowing H as :

W ←W ⊗ [(WH)⊗ V ]HT

[(WH)]HT
, (2)

and H knowing W as :

H ← H ⊗ WT [(WH)⊗ V ]

WT [(WH)]
, (3)

where ⊗ and the division are the element-wise multiplication
and division, respectively and T is the transpose operator.

The spectrogram of the noisy PCG x(t) is modeled as X =
WH+N = W1H1+W2H2+N , where W1H1 (resp. W2H2)
corresponds to the signal part, i.e. essentially clean PCG, (resp.
the noise part, i.e. composed of interferences).

Compared to a classical NMF for which W and H are
first estimated by (2) and (3), respectively and then sorted to
identify W1, W2 and H1, H2 based on prior knowledge, the
proposed methodology aims at using another modality (here
the ECG) as reference to inform the NMF so that W1, W2 and
H1, H2 are directly identified. To this end, some constraints
on H1 based on a NMF of the ECG signal are used since the
PCG signal s(t) and the ECG one share the same origin: the
heart beats.

In our approach, the ECG components out of NMF will not
be modified but used as reference for updating the compo-
nents estimated from the noisy PCG. We will thus speak of
”informed” NMF instead of joint-NMF.

B. Related work: penalised NMF
The spectrogram of the ECG reference is modeled as :

Xref = WrefHref +Nref . The idea in this section, as in [7],
is to constraint the activation signals H1 to be like the Href

ones. Indeed, the ECG and PCG share the same origin so that
activation patterns Href and H1 should also share the same
behavior.

Following [7], one can optimize the following cost function

C1(W1, H1,W2, H2) =

D2(X |W1H1 +W2H2) + δ P (Wref , Href ,W1, H1), (4)



where P is the penalization function defined by

P =‖ ΛrefHref − SΛ1H1 ‖2F , (5)

with Λref and Λ1 two diagonal matrices whose diagonal
elements are the sum of each column of Wref and W1. S is
a diagonal matrix for scaling H1 in order to compare it with
Href . Wref , Href and initial values of W1, H1, W2 and H2

are given by the classic NMF [5] on the ECG and the noisy
PCG spectrograms. The number of templates for ECG and
PCG are mandatorily the same (k1 = kref ). The penalization
term P forces the activation signals H1 to be superimposed
on the Href ones (up to some scaling factors).

However, this approach has several drawbacks for the
considered application. First, the physiological delay between
events in both modalities ECG and PCG is not considered in
this method. Nevertheless, this may be corrected by integrating
a mean delay to readjust positions. In addition, an ECG
beat is mainly modeled by the R-peak while a PCG beat is
mainly modeled by S1 and S2 sounds. Consequently, a direct
comparison between Href and H1 will surely fail. Therefore
the shapes of PCG time activations H1 are not accurate.
Finally, there is a lack of flexibility as the approach imposes to
work with the same number of templates for both modalities.
This constraint is not suitable with the physiological properties
of ECG and PCG signals.

C. Proposed Informed NMF with ECG reference and trans-
formation matrix

To bypass these limits, we investigate the proposition de-
scribed in [8] in our context. Thus, the considered model is
the joint equations:

Xref = WrefHref +Nref (6)
X = W1HrefT1 +W2H2 +N, (7)

where T1 is a transformation matrix that aims at transforming
the activation patterns Href of the ECG into the activation
ones H1 ' HrefT1 of the PCG by constraining these latter
ones. Indeed, in particular, we intend to consider the succes-
sion of two bumps S1 , S2 of the PCG in a quasi-periodic
manner, as well as the delays between R peaks and S1 and
S2 sounds (named RS1 and RS2 intervals) Fig. 1. To this
end, T1 is defined as a “bidiagonal” and sparse matrix where
the first diagonal is centered at RS1 value and the second
diagonal at RS2 value (Fig. 2). It is worth noting that the
“diagonals” should have some widths to take into account the
fact that the delays between R peaks and sounds S1 and S2

are not constant. Wref , Href and initial values of W and H
are computed by NMF considering kref and k = k1 + k2
numbers of templates, with k1 = kref . The estimation of the
components is thus achieved by the minimization of:

C2(W1, T1,W2, H2) =‖ X −W1HrefT1 −W2H2) ‖2F (8)

Finally, based on MM algorithm, components are iteratively
computed by multiplicative updates. We propose two types
of structure for the transformation matrix T1, illustrated in

(a) T1 based on literature (b) T1 based on signals

Fig. 2. Illustration of T1 structures

Fig. 2 and described in the following.

1) T1 based on the literature (T1,lit): With this choice, the
“diagonals” defining T1 are chosen based on prior knowledge
of average RS1 and S1S2 intervals. According to [17], RS1

is well modeled by a Gaussian distribution

RS1 ∼ N (µ1, σ) = N (70, 20)[ms]. (9)

Moreover, in [18], the S1S2 interval is estimated to about
300ms. The combination of these results leads to the following
distribution of RS2

RS2 ∼ N (µ2, σ) = N (370, 20)[ms]. (10)

The bandwidths RS1 ± σ and RS2 ± σ are chosen large
enough to take into account the intra- and inter-subject vari-
ability; this introduces a too large number of degrees of
freedom leading thus to a lack of constraints between Href

and H1 ' HrefT1.
2) T1 based on the signals themselves (T1,sig): With this

choice, to overcome the lack of constraints of the prior choice
described in the previous paragraph, the two “diagonals” of
T1 will be defined from the signal themselves.
RS1 and RS2 intervals are estimated beat by beat for each

sample based on two standard NMF [5] with 12 components
on noisy PCG and one component on ECG noted Hecg . Let
H∗ denotes the PCG component that is the most correlated to
Hecg . R peaks are first detected on the ECG time activation
Hecg , then S1 and S2 sounds are detected as local maxima
on H∗. The RS1 and RS2 values are used to initialize the
transformation matrix putting thus more constraints on signal
components structure since the width of each diagonal is
smaller than in the method described in the previous para-
graph.

Finally, the proposed algorithm is summarized in Algo-
rithm 1.

Algorithm 1 Proposed informed NMF
Inputs: Href , structure of T1
while stopping criterion not reach do

Update W1 and W2 assuming T1 and H2 based on (2)
Update T1 and H2 assuming W1 and W2 based on (3)

Outputs: W1, W2, T1 and H2



D. PCG Reconstruction with Wiener filtering

Considering the signal and noise components obtained from
the proposed algorithm, an estimated PCG reconstruction ŝ(t),
is provided by applying a Wiener filtering. This classic filter is
based on the spectral densities W1HrefT1, denoted Ps(t, f),
and W2H2, denoted Pn(t, f). The impulse response of the
filter is :

Hwiener(t, f) =
Ps(t, f)

Ps(t, f) + Pn(t, f)
. (11)

The estimated short term Fourier transform (STFT) of the
estimated PCG Ŝ(t, f) is thus expressed as

Ŝ(t, f) = Hwiener(t, f)X(t, f), (12)

where X(t, f) is the STFT of the noisy PCG x(t). The
denoised PCG ŝ(t) is computed as the inverse STFT of Ŝ(t, f).

IV. RESULTS

In this section, we analyze the performances of our pro-
posed solution by comparison with a standard NMF approach.
Evaluation was carried out on the PCG database proposed to
SiSEC 2016 [15]. ECG and PCG spectrograms are computed
using Hamming window of length 64ms and a shift of one
ms, with zero-padding of 512 samples.

A. Evaluation settings

As we focus on two representative physiological events (S1

and S2 sounds) in noisy PCG signals, we consider k1 = 2 for
the signal components. Moreover, we choose a limited number
of noise components (k2 = 2 ) to force the constraints on the
signal time activations. Therefore kref = 2 and k = 4.

The results of our informed NMF are compared with a
standard NMF [5], using the same number of components.
The standard NMF is computed on ECG signal ecg(t) with
kref components and on noisy PCG x(t) with k components.
We consider as signal the kref PCG components whose time
activations are the most correlated to the time activation of
the first ECG component. The remaining PCG components
are considered as noise. The Wiener filtering is applied, as
in Section III-D, to reconstruct a PCG denoised estimation,
noted s̃(t).

B. Observation of denoised signals

Fig. 3(a) and 3(b) present examples of PCG denoising after
NMF and Wiener filtering and compare results of standard
NMF and informed NMF for 2 different samples of the
database. The T1 structure is based on the signals themselves
(T1,sig).

In these examples, informed NMF is able to remove specific
noises better than standard NMF. Indeed, in Fig. 3 (a), the
impulse noises around 12s and 14s do not appear anymore in
the denoised PCG ŝ(t) with informed NMF, which is not the
case for s̃(t) obtained after standard NMF. In Fig. 3 (b), the
main noise is stochastic with a quasi-periodic power variation
and representative of respiratory interference. Most of these
interference are still present in s̃(t) whereas they have been

quite well removed in ŝ(t). These two examples show that it
is of interest to link the activation profiles H1 with the ones
of the ECG to better estimate the PCG components from the
noisy signal.

(a) Sample 1

(b) Sample 6

Fig. 3. Signals examples for samples 1 and 6. x(t): noisy PCG, s(t): original
PCG, ŝ(t): denoised PCG by informed NMF with T1,sig , s̃(t): denoised PCG
by standard NMF

C. Global performance of the proposed methodology

Quality of PCG estimation was quantified by using BSS
Eval Toolbox [19]. We consider the Signal to Distortion
Ratio (SDR) that globally estimates the Signal-to-Noise Ratio
(SNR). The difference, expressed in dB, between the SDR
computed on the estimation and on the noisy signal repre-
sents the performance gain. Boxplots represent the parameters
distribution: the line inside the box corresponds to the median
value, the boxlimits represent the first and the third quartiles
and whiskers highlight extreme values.
The SDR gain is computed on all sixteen samples of the
SiSEC database for standard and informed NMF, for both T1
structures T1,lit and T1,sig .

One can see on Fig. 4 that the overall performances are
comparable between the standard NMF and informed NMF



with transformation matrix T1,lit, and slightly better using
the informed NMF with T1,sig than using the standard NMF,
as also shown in the previous paragraph. Indeed, the median
values of SDR gain are 3.2 dB for standard NMF, 4.1 dB for
informed NMF T1,lit and 6.8 dB for informed NMF T1,sig .

Moreover, as expected, the best performances are obtained
with the T1 structure driven by the data. Limiting the ’di-
agonals’ bandwidth of T1 improves the signal and noise
components separation and therefore the PCG denoising.

Fig. 4. SDR gain in dB for standard NMF, informed NMF with T1 based on
literature and informed NMF with T1 based on the signals themselves.

V. CONCLUSION

In this paper, we have proposed a method of PCG denoising
based on NMF informed by constraining the activation profiles
of the PCG to be similar to those of the ECG up to a limited
transformation. This informed NMF exploits the multimodality
better than in our previous work [14]. The results obtained
from actual recordings are promising since they allow to re-
move some specific interference occurring in daily situations.

In perspective, an in-depth analysis of the parameter choices
will be investigated. Some issues are noted. In particular
it should be possible to constraint each signal component
by a different transformation matrix considering thus the
specific structure of the different components. Moreover, the
quasi-periodic aspect of physiological signals is not taken
into account in the informed NMF yet.
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