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ABSTRACT

This study deals with fetal ECG and MCG extraction from a
single-channel recording. A recently proposed nonparametric
model to describe second-order statistical properties of ECG
signal, is simplified in this paper to make it computation-
ally faster and easier to implement. In the proposed method,
an ECG signal is first decomposed to sub-bands, then each
sub-band is modeled separately, so less complex model is re-
quired. There is no assumption about shape of ECG signal
in the model, and experimental results show its high perfor-
mance on extraction of fetal cardiac signals.

Index Terms— Non-parametric modeling, fetal ECG ex-
traction, single sensor extraction

1. INTRODUCTION

Despite of the rich literature in the field of electrocardiogram
(ECG) processing, the extraction of fetal ECG (fECG) from
maternal abdominal ECG sensors remains a difficult problem
for the biomedical engineering community. The basic prob-
lem is to extract the fECG signal from the mixture of mater-
nal ECG (mECG) and fECG signals and other interference
sources. Nevertheless, although fECG is mixed with several
sources of noise and interference, the main contamination is
the mECG, because of its strong power [1].

The fECG extraction methods can be distinguished based
on single or several sensors used in the method. Among
several methods in the latter approach, one can quote blind
source separation [2], semi-blind source separation [3] and
adaptive filtering [4, 5]. In this approach, all the methods ex-
ploit the redundancy of the multichannel ECG recordings to
reduce mECG and other interference sources. However, even
if this reduction has been successful, the exogenous noise
cannot be totally canceled in this way [6].

Single sensor methods mainly utilize the quasi repeatabil-
ity of ECG to extract fECG. A simple solution of the prob-
lem is to construct the mECG beat template and subtract it
from the original signal. In [7], singular value decomposi-
tion of the synchronized maternal beats has been performed
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to find the mECG template that should be subtracted. Another
method [8] is to model the temporal dynamics of mECG sig-
nals by a set of state-space equations. Estimated mECG is
then subtracted from the mixture to achieve a rough estima-
tion of fECG. Finally, fECG is modeled using similar state-
space equations and extracted from the residual signal. As
shown in [8], this method is the most efficient among the
single sensor based methods. However, as it is mentioned
in [9], the method fails to discriminate between the mater-
nal and fetal components when the mECG and fECG waves
fully overlap in time. The reason is that when mECG is being
estimated, fECG and other components are supposed to be
Gaussian noise. However, this assumption is not true. In fact,
Kalman filter relies on very strong assumption about state
equation that models the dynamical evolution of the unob-
served state. Therefore, it demands reliable prior information
about the state to perform accurately.

In order to overcome the potential lack of prior infor-
mation about the system, a preliminary study has recently
been done: a nonparametric method to model the second
order statistics of the signal instead of the signal itself [10]
has been proposed. In other words, the statistical latent
process is not directly parameterized as in parametric mod-
els (e.g., Kalman filter), but its statistics are parameterized
thanks to hyper-parameters. In [10] a very complex class
of positive-semidefinite functions is selected to describe the
expected second order properties of ECG signal. Conversely
in this paper, ECG signal is first decomposed into a few
sub-bands, then for each sub-band a simpler class of positive-
semidefinite functions is selected. This method considerably
simplifies the modeling procedure, while expected second
order properties of the ECG signal are still well described.

The rest of this paper is organized as follows. Section 2
presents the non-parametric approach to model ECG. Sec-
tion 3 describes the proposed algorithm to extract fECG from
a single sensor. Finally, the numerical results are given in
Section 4 and Section 5 concludes this study.

2. NON-PARAMETRIC MODELING OF ECG

In this section, the previous model [10] is briefly recalled be-
fore the description of the proposed modifications for simpli-
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Fig. 1. Typical waveform of one ECG beat.

fying it.

2.1. Previous non-parametric modeling

By considering the ECG amplitude of a beat z(θ) as a sec-
ond order random process, it can be fully described by its
mean function m(θ) = E[z(θ)] and covariance function
k(θ1, θ2) = E[(z(θ1) − m(θ1))(z(θ2) − m(θ2))] [11]. As
a consequence, the ECG beat z(θ) is a Gaussian process
(GP) GP(m(θ), k(θ1, θ2)). Since a ECG beat can be de-
composed (mainly) into three parts (Fig. 1), the P wave, the
QRS complex and the T wave, which have different charac-
teristics (e.g., temporal correlation and power), the following
covariance function has been proposed

k(θ1, θ2) = σ(θ1)σ(θ2)

√
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×

exp

(
−

(
θ1 − θ2

)2
ld(θ1)2 + ld(θ2)2

)
, (1)

with

σ(θ) = am + (aM − am) exp

(
− (θ − θ0)2

2σ2
T

)
,

ld(θ) = lM − (lM − lm) exp

(
− (θ − θ0)2

2σ2
l

)
,

where σ(θ) and ld(θ) allow to have a time-varying power (be-
tween am and aM ) and a time-varying length scale correlation
(between lm and lM ), respectively. The full ECG is modeled
as a repetition of beats and is thus also a Gaussian process,
whose covariance function is given by

ks
(
t, t′
)
=

N∑
n=1

N∑
n′=1

k
(
t− τn, t′ − τn′

)
, (2)

where {τn}1≤n≤N is the set of R peak instants that can be
estimated easily from the raw signals.

Even if this model has been shown to be efficient [10], it
suffers from several drawbacks. Indeed, to fit well the speci-
fications of an ECG beat, it requires many parameters leading
thus to a quite complicated model, particularly a time varying
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Fig. 2. Illustration of the time wrapping: each heart beat is
linearly wrapped into a 2π interval.

length scale correlation ld(θ). As a consequence, it is tricky
to optimize all the parameters. Moreover, from a computa-
tional point of view, the double summation into (2) is quite
CPU intensive.

2.2. Proposed modeling of ECG

To overcome the drawbacks of the previously proposed
model (2), some modifications are proposed both to simplify
the model and to lead to a less computationally intensive
algorithm.

The model is thus modified in two ways. Firstly, to avoid
a time varying length scale, the recordings are decomposed
into several parts thanks to a filter-bank: in each sub-band, the
length scale correlation is considered as a constant. Secondly,
to avoid too large computational cost, the R peak detection
is then used to wrap the time into a linear phase from 0 to
2π for each heart beat: θ(t) is defined such that each interval
[τk, τk+1) is mapped into interval [2(k − 1)π, 2kπ) (Fig. 2).
The ECG signal s(t) is then decomposed by a filter bank into
several signals si(t). Each of them can then be wrapped to 2π
quasi-periodic signals zi(θ) thanks to θ(t). In each sub-band,
i, this wrapping allows to use the periodic covariance function
defined by the following expression

k(i)s (t, t′) = γ2(i) exp

(
−

sin2
((
θ(t)− θ(t′)

)
/2
)

l2d(i)

)
, (3)

where i refers to the i-th sub-band, γ2(i) and ld(i) are the
power, and the length scale of the sub-signal si(t), respec-
tively. It is worth noting that this covariance function allows
to fit well quasi-periodic signals as ECG thanks to the linear
wrapping θ(t). Moreover, using such a nonparametric model,
no assumption is made about the shape of the ECG signals but
its (quasi-) periodicity and its smoothness which are defined
by θ(t) and ld(i), respectively.



3. FETAL EXTRACTION FROM A SINGLE SENSOR

Suppose that the observed signal x(t) is the superposition of
the mECG sm(t), the fECG sf (t) and an additive noise n(t):

x(t) = sm(t) + sf (t) + n(t). (4)

Moreover, assume that these three signals are all pairwise un-
correlated. Finally, thanks to the proposed modeling of ECG
signals (Section 2.2), maternal and fetal ECGs are modeled
as GPs GP(0, k(i)m (t, t′)) and GP(0, k(i)f (t, t′)) in each sub-
band, respectively, where covariance functions are defined
by (3). The additive noise is modeled as a zero-mean GP
whose covariance function k(i)n (t, t′) is given by

k(i)n (t, t′) = σ2
n(i) exp

(
− (t− t′)2

2l2n(i)

)
+ σ2

w(i)δ(t− t′), (5)

where δ(·) is the delta Dirac function, σ2
n(i) and ln(i) are used

to model a smooth baseline and σ2
w(i) is the power of a white

Gaussian noise.
In each sub-band, the set of hyper-parameters φ(i) =

{σ2
n(i), ln(i), σ

2
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2
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mated by maximizing the evidence (log marginal likelihood)
given by
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where {Tk}k is the set of recording times, K
(i)
· is the

covariance matrix whose (p, q)-th entry is k
(i)
· (Tp, Tq),

xi = [xi(T1), · · · , xi(TM )]T and M is the number of
recorded samples. The estimation of mECG in the i-th sub-
band is then given by
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m
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n
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where k
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way, fECG in the i-th sub-band is estimated by
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where k
(i)
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(i)
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Finally, the full estimation of signals are given by the sum-
mation over sub-bands

ŝm(t) =

I∑
i=1

ŝm,i(t), (9)

ŝf (t) =

I∑
i=1

ŝf,i(t). (10)

The full algorithm is described in Fig. 3.

x(t)

Decomposition
!lter bank

Maternal R peaks
detection

Fetal R peaks
detection

Time wrapping Time wrapping
✓f (t) ✓m(t)

Extraction
(7) or (8)

Extraction
(7) or (8)

...

Reconstruction (9) and (10)

x1(t) xI(t)

Fig. 3. Algorithm to extract fetal ECG from a single sensor.

4. RESULTS

4.1. Fetal ECG extraction

The DaISy fetal ECG database [12] has been used to ex-
amine the performance of the method on actual data. The
database consists of five abdominal and three thoracic chan-
nels recorded from the abdomen and chest of a pregnant
woman with a sampling rate of 250 Hz. In this work, only
the first channel of this dataset is used and decomposed in
0-30 Hz, 30-60 Hz and 60-125 Hz sub-bands to apply pro-
posed method. Fig. 4 shows results of the sequential Kalman
filtering method [9, Ch. 5, p. 50] and the proposed method
for mECG and fECG extraction on this dataset. In the se-
quential Kalman filtering method, a synthetic dynamic ECG
model within an Extended Kalman Filtering (EKF) frame-
work has been used. This framework has been applied in two
steps on the mixture of mECG and fECG to extract fECG.
The first step is extraction of mECG, considering fECG and
other noises as a unique Gaussian noise and the second step
is subtraction of mECG from original signal and extraction
of fECG from the residual signal. As it is seen in Fig. 4,
unlike sequential Kalman filtering method, proposed method
does not fail when mECG and fECG waves fully overlap in
time. It can be seen in Fig. 4(a) that between t = 6s and t =
7s, sequential Kalman filtering method fails to discriminate
between maternal and fetal components. Therefore, some
parts of fECG signal have been deteriorated during mECG
extraction. Whereas, temporal overlapping did not lead to
deteriorating desired signals in the proposed method, because
unlike Kalman filtering method which directly parameter-
izes ECG signals, in the proposed method statistics of ECG
signals are parameterized.

4.2. Twin fetal MCG extraction

In this section, twin fetal cardiac magnetic signals recorded
by a SQUID Biomagnetometer system are extracted. The
dataset has been recorded in the Biomagnetic Center of the
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Fig. 4. Fetal ECG extraction from a single sensor.
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Fig. 5. Twin fetal MCG extraction from a single sensor.



Department of Neurology, in Friedrich Schiller University,
Jena, Germany 1. It consists of several sets of magnetocar-
diogram (MCG) and other signals, in arrays of 208 channels
recorded over 30 minutes, with a sampling rate of 1025 Hz.
The current results have been achieved on the ninety sec-
ond channel of one of the available datasets, namely the
q00002252 dataset. The signal is first resampled using re-
sample MATLAB function, then decomposed to 0-30 Hz,
30-60 Hz and 60-125 Hz sub-bands. Fig. 5 shows results of
the sequential Kalman filtering method and proposed method
on the first 10000 samples of the data. Comparison be-
tween Fig. 5(a) and Fig. 5(b) shows that here again sequential
Kalman filtering method fails when maternal and twin MCG
waves overlap in time (e.g. between t = 1s and t = 2s, and
between t = 6s and t = 7s), while the proposed method does
not fail.

5. CONCLUSIONS AND PERSPECTIVES

In this study, a simpler nonparametric model has been pro-
posed to describe second-order statistical properties of ECG
signal. This model, which is in fact simplified version of a
recently proposed nonparametric model, leads to a less com-
plex optimization problem with less number of parameters.
Therefore, it is computationally faster and easier to imple-
ment. This nonparametric method models the second order
statistics of the signal instead of the signal itself. In other
words, since the statistical latent process is not directly pa-
rameterized, there is no assumption about shape of desired
signals. Therefore, it can effectively be used even if signals
overlap in time. Future work is further modification of the
model and performance comparison with multichannel meth-
ods.
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