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ABSTRACT

Hidden Markov models are widely used for recognition
algorithms (speech, writing, gesture, ...). In this paper,
a classical set of models is considered: state space of hid-
den variable is discrete and observation probabilities are
modeled as Gaussian distributions. The models parame-
ters are generally estimated with training sequences and
the Baum-Welch algorithm, i.e. an expectation maxi-
mization algorithm. However this kind of algorithm is
well known to be sensitive to its initialization point. The
problem of this initialization point choice is addressed in
this paper: a model with a very large number of states
which describe training sequences with accuracy is first
constructed. The number of states is then reduced using
a k-mean algorithm on the state. This algorithm is com-
pared to other methods based on a k-mean algorithm on
the data with numerical simulations.

1. INTRODUCTION

Hidden Markov models (HMM) are widely used for sta-
tistical modeling of signals having a temporal structure.
They are based on two statistics processes: the state
variable process and the observation process. The first
one X is the so-called state variable and is a Markov
chain, assumed discrete in this paper. It is not observed
but it is fully characterized by transitions and initial-
ization probabilities. In many recognition algorithms
(e.g., speech [1], writing recognition [2] , gesture recog-
nition [3], ...), this variable is used to describe the tem-
poral structure of the signals to model. In particular if
these signals can be described as sequences of (shorter)
stationary signals, a very particular set of models can
be used: the left-right models; models whose transition
probabilities satisfy the following constraints:

∀(i1, i2), i2 < i1, p (Xt = i2|Xt−1 = i1) = 0,

which means that the state variable can only be a, in-
creased sequence. The second process Y is the so-called
observation process and is assumed to be an indepen-
dent process conditionally to X [1]. For each state
n ∈ {0, · · · , N−1} a probability density function (p.d.f.)
p (Y |X = n) is defined, where N is the number of differ-
ent values taken by X or the number of hidden states.
Y is assumed to be a continuous variable and its p.d.f
is modeled for each state as a Gaussian distribution.

The following notations will be used in the rest of
this paper:
• the initial probability of state is denoted πi =

p (X0 = i), ∀i ∈ {0, · · · , N − 1},
• the transition probability ai1,i2 between states i1

and i2 is defined by ai1,i2 = p (Xt = i2|Xt−1 = i1),
∀(i1, i2) ∈ {0, · · · , N − 1}× {0, · · · , N − 1}.

The observation probabilities are described, for state #i

with two variables µi (mean vector) and Σi (covariance
matrix). Finally the whole set of parameters of a HMM
with N states is denoted as λN :

λN =
�
{πi}i, {ai1,i2}i1,i2 , {µi,Σi}i

�
.

In general λN is estimated using training sequences.
GivenK observation sequences of length Tk, Yk,0:Tk−1 =
{Yk,0 · · · , Yk,Tk−1}, the optimal set of parameters λN is
defined as:

λ̂N = argmax
λN

�
K−1�

k=0

p

�
Yk,0:Tk−1|λN

��
.

Without additional assumptions, this problem can not
be solved analytically. The mainly used technique to es-
timate λN is the expectation maximization (EM) algo-
rithm [4] trough the forward-backward method so-called
Baum-Welch algorithm [5]. Starting from a preliminary

set of parameters λ
(0)
N , the algorithm estimates the set

of parameters in an iterative manner - denoted as λ
(s)
N

at step #s - such as
�K−1

k=0 p

�
Yk,0:Tk−1|λ(s)

N

�
increases

with respect to s. λ̂N is then estimated as:

λ̂N = lim
s→∞

λ
(s)
N .

However convergence to a global maxima is not en-
sured and this algorithm is well known to be very sen-

sitive to its initialization point λ
(0)
N [6]. Several initial-

ization methods have hence been proposed in the lit-
erature. A k-mean algorithm on the data can be used
to cluster observations Yk,0:Tk−1 [1, 7] or several sets of
parameters to perform the training can be used [8]. For
left-right models, constrained clustering techniques can
also be used with a k-mean algorithm on the observation
data [9].



In this paper, an alternative approach is proposed to

estimate a first set λ(0)
N . A set of parameters is first esti-

mated with a very large number of states (M � N)
to describe all training sequences in a very accurate
way. However, this set of parameters can not be used
in practice due to over-learning problems and compu-
tational time issues. As a consequence, the number of
states has to be reduced to a much smaller number to
overcome these difficulties. An unsupervised clustering
algorithm (based on the k-mean algorithm) on the ob-
servation p.d.f is hence proposed to do this operation
while keeping the training signals description accuracy.
Transition and initialization probabilities remain to be
estimated with the Baum-Welch algorithm. The pro-
posed method is derived in two cases: unconstrained
and left-right models.

The paper is structured as follows. Section 2 de-
scribes the mainlines of the algorithm. The k-mean al-
gorithm operations are detailed in section 3. The pro-
posed method performance is compared to other meth-
ods’s based on simulations in section 4. Finally, Sec-
tion 5 concludes this paper.

2. INITIALIZATION ALGORITHM
DESCRIPTION

The aim of the algorithm is to provide an initialization

set of parameters λ
(0)
N close enough to λ̂N to ensure a

good convergence of the learning algorithm.
It only focuses on the observation probabilities pa-

rameters, which aims at finding N sets of observation

probabilities parameters {µ(c)
i ,Σ(c)

i }i∈{1,··· ,N}, i.e. N

Gaussian distributions, to describe in an accurate way
the training sequences. It is worth noting that transition
probabilities ai1,i2 and initialization probabilities πi are
not estimated (although constrained for the left-right
models), this operation being done by the Baum-Welch
algorithm. The following values are hence used:
• for unconstrained models, transition probabilities

are set to ai,i = 0.8, ∀i ∈ {0, · · · , N−1} and ∀i1 �= i2,
ai1,i2 = 0.2/(N − 1), and initialization probabilities
πi = 1/N , ∀i ∈ {0, · · · , N − 1};

• for left-right models, transition probabilities are set
to ai,i = 0.8, ∀i ∈ {0, · · · , N−2} and aN−1,N−1 = 1,
ai,i+1 = 0.2 and other values are set to 0, finally ini-
tialization probabilities π0 = 1 and ∀i ∈ {1, · · · , N−
1},πi = 0.
Concerning the N p.d.f. of hidden states, the es-

timation is performed in two steps: first M p.d.f. are
estimated which accurately describe the signal (Subsec-
tion 2.1). These M distributions are then reduced to N

(Subsection 2.2).

2.1 Initialization step

Given a set of K training sequences, Yk,0:Tk−1, k ∈
{1, · · · ,K}, M Gaussian distributions which accurately
describe data can be estimated as follows. Each train-
ing sequence Yk is split into several segments of length
P , overlapping or not and covering its time support.
Each segment is then modeled as a Gaussian signal
which parameters

�
µk,j ,Σk,j

�
are estimated using clas-

sical methods: µk,j being the mean of the related signal

segment and Σk,j its covariance matrix. Without re-
striction, it is assumed that the distributions are sorted
with respect to the Yk segment delay. For instance,
with non-overlapping segments, each couple of values
(0 ≤ k ≤ K − 1 and 0 ≤ j < Tk/P ) can be estimated
as:

µk,j =
1

P

P−1�

p=0

Yk,jP+p,

Σk,j =
1

P

P−1�

p=0

�
Yk,jP+p − µk,j

� �
Yk,jP+p − µk,j

�T
,

where .
T is the transpose operator. P should be chosen

small enough so that each signal segment can be consid-
ered as stationary, and large enough to ensure a good
estimation of mean vector and covariance matrix.

It is possible after this step to collect all these values

to build the initial set of parameters λ
(0)
M . It is worth

noting that this initial set λ(0)
M describes in a very accu-

rate way the training sequences: indeed, each training
signal segment being described by one of the M states.
However, and as already mentioned in the introduction
section, this model can not be used in practice because
of over-learning problems and of computational time is-
sues.

2.2 Clustering step

The second step of the algorithm is hence to approx-
imate these M Gaussian distributions with N ones
(N � M). This operation is performed using a k-mean
algorithm on these Gaussian distributions.

Let N
�
µk,j ,Σk,j

�
denotes the Gaussian distribution

p.d.f. with mean vector µk,j and covariance matrix Σk,j .
Moreover, let us refer as ‘center’ the distribution which
characterizes a cluster, of which parameters are labelled

by (c): N
�
µ(c)

i ,Σ(c)
i

�
.

The k-mean algorithm works iteratively as
follows. Given an initial set of N centers�
N

�
µ(c)

i,0 ,Σ
(c)
i,0

��

1≤i≤N
, the following two steps

are performed at each iteration #s:
1. Association: each distribution N

�
µk,j ,Σk,j

�
is asso-

ciated to a center in the set
�
N

�
µ(c)

i,s ,Σ
(c)
i,s

��

1≤i≤N
;

2. Center update: based on the previous as-
sociation, updated centers are estimated�
N

�
µ(c)

i,s+1,Σ
(c)
i,s+1

��

1≤i≤N
.

The N centers are finally estimated as:

∀i , N
�
µ(c)

i ,Σ(c)
i

�
= lim

s→∞
N

�
µ(c)

i,s ,Σ
(c)
i,s

�
.

The initial set of N centers depends on the type of
HMM (unconstrained or left-right models). For uncon-
strained models, the M distributions are sorted accord-
ing to the first component of their mean vector. The
set of M distributions is split into N consecutive sets
and a center is estimated for each set according to the
k-mean algorithm second step as described above. For



left-right models, each training sequence distributions
are split into N disjointed segments. First segment is
then associated to center #0, second one to center #1,
and so on. Initialization centers are also estimated using
the k-mean algorithm second step.

It is worth noting that the first step requires to adapt
the Euclidian distance to associate each distribution to a
cluster. This point is discussed in Section 3.1 for uncon-
strained models and in Section 3.2 for left-right models.
Furthermore, the second step is described in Section 3.3.

3. MODIFIED K-MEAN ALGORITHM

This section details the practical proposed considera-
tions of the proposed modified k-mean clustering algo-
rithm.

3.1 State to center distance computation for un-
constrained models

The unconstrained model case is first considered: each
Gaussian distribution is associated to a center in an in-
dependent way. As both distribution and center are
Gaussian distributions, the Kullback-Leibler divergence
is proposed to estimate the distance between both p.d.f..
This divergence is defined as:

DKL

�
p1(u)�p2(u)

�
=

�
p1(u) log

�
p1(u)

p2(u)

�
du.

For Gaussian distributions, this latter expression is pro-
portional to

DKL

�
N
�
µk,j ,Σk,j

�����N
�
µ(c)

i ,Σ(c)
i

��
∝

ln
detΣ(c)

i

detΣk,j
+Tr

��
Σ(c)

i

�−1
Σk,j

�
+

�
µ(c)

i − µk,j

�T�
Σ(c)

i

�−1�
µ(c)

i − µk,j

�
, (1)

where Tr is the trace operator and det is classically the
determinant. Finally, ∀(k, j), the related distribution
N
�
µk,j ,Σk,j

�
is associated to the closest center i∗ which

satisfies:

i∗ = argmin
i

DKL

�
N
�
µk,j ,Σk,j

�����N
�
µ(c)

i ,Σ(c)
i

��
.

3.2 State to center distance computation for
left-right models

Compared to previous unconstrained model, left-right
assumption sets an additional constraint. For all k,
if distribution N

�
µk,j0 ,Σk,j0

�
is associated with cen-

ter #i0, then for all j1 > j0, N
�
µk,j1 ,Σk,j1

�
cannot be

associated to any center #i, i < i0. In other words, the
distribution – center association has to be jointly done
for each training sequence (rather than in an indepen-
dent way).

For sequence #k, let consider therefore the set ofN+
1 break indices Ik(0), · · · , Ik(N), defining the N states.
This set must verify due to the left-right constrain that

Ik(0) = 0, Ik(N) = M − 1 and for two states i1 and
i2, ∀ i1 < i2 ∈ {0, · · · , N}× {0, · · · , N}, Ik(i1) < Ik(i2).
Finally, ∀ (k, j), the related distribution N

�
µk,j ,Σk,j

�

is associated to the closest center i∗ which satisfies:

i∗ = i

��� Ik(i) ≤ j < Ik(i+ 1).

The set of break indices is previously estimated as

�
Îk(1), · · · , Îk(N − 1)

�
=

argmin
Ik(1),··· ,Ik(N−1)

D
�
Ik(1), · · · , Ik(N − 1)

�
,

where

D
�
Ik(1), · · · , Ik(N − 1)

�
=

N−1�

i=0

�

j∈Ik(i)

DKL

�
N
�
µk,j ,Σk,j

�����N
�
µ(c)

i ,Σ(c)
i

��
,

with Ik(i) = {Ik(i), · · · , Ik(i + 1) − 1} and DKL(·�·)
defined by (1). Note that the two extrema Ik(0) and
Ik(N) do not require to be optimized since Ik(0) = 0
and Ik(N) = M − 1.

3.3 Center estimation

The third and last issue to solve is the computation of
the updated center parameters once each distributions
have been associated to one cluster. Consider therefore
the center #i and I

(c)
i the associated set of distributions.

A random variable Z in this set can be written as:

Z =
�

(k,j)∈I(c)
i

δ(H − (k, j))Nk,j

where Nk,j is a Gaussian random variable with mean
and variance {µk,j ,Σk,j}, δ(u) the Dirac delta function
and H is a hidden variable equal to (k, j) if Z shares
Nk,j distribution.

The i-th center parameters
�
µ(c)

i ,Σ(c)
i

�
are esti-

mated as mean and covariance of Z. It is straightfor-
ward to check that:

µ(c)
i =

1

card
�
I
(c)
i

�
�

(k,j)∈I(c)
i

µk,j

and

Σ(c)
i =

1

card
�
I
(c)
i

�
�

(k,j)∈I(c)
i

�
Σk,j + µk,jµ

T
k,j

�
−µ(c)

i µ(c)
i

T

where card
�
I
(c)
i

�
is the number of elements in set I(c)i .

4. NUMERICAL RESULTS

This section presents the results achieved by the pro-
posed method with several kind of configurations: toy
example and simulated signals.



Scenario µ0, Σ0 µ1, Σ1 µ2, Σ2 µ3, Σ3

#1 [ 22 ], [
1 0
0 2 ] [ 66 ], [

2 0
0 1 ] [ 11 ], [

1 0
0 2 ] [ 55 ], [

2 0
0 1 ]

#2 [ 11 ], [
5 0
0 5 ] [ 33 ], [

1 0
0 1 ] [ 66 ], [

5 0
0 5 ] [ 55 ], [

1 0
0 1 ]

#3 [ 11 ], [
5 0
0 5 ] [ 22 ], [

1 0
0 1 ] [ 33 ], [

5 0
0 5 ] [ 44 ], [

1 0
0 1 ]

Table 1: Simulation scenarios.

4.1 Evaluation method

The proposed algorithm performance (denoted “k-mean
on Gaussian laws”) have been estimated using numeri-
cal simulations and are compared to the performance of
the classical k-mean algorithm applied directly on data
(denoted “k-mean on data”). Moreover, the influence of
the left-right constrain is investigated (referred as “no
constrained” or “left-right”). Nevertheless, constrained
k-mean on data for left-right models has not been tested
because the number of sets of break indices to test is pro-
hibitive leading thus to an excessive computational time.
As mentioned in the introduction, the aim of these algo-

rithms is to estimate a set of parameters λ̂(0)
N so that the

convergence of the Baum-Welch algorithm is improved.
This latter algorithm is an iterative algorithm comput-

ing in an iterative manner the set of parameters λ(s)
N at

step #s such as
�K−1

k=0 p

�
Yk,0:Tk−1|λ(s)

N

�
increases with

respect to s.
For a given set of training sequences

�
Yk,0:Tk−1

�
k
,

the sets of parameters λ̂(0)
N estimated with the different

initialization algorithms are hence compared with the
value reached and the convergence rate of the following
likelihood function

�(s) = log

�
K−1�

k=0

p

�
Yk,0:Tk−1|λ(s)

N

��
.

4.2 Toy example

Signals have been generated as the concate-
nation of 4 segments signals so that Y0:T =

{Y (0)
0:T0−1 , Y (1)

0:T1−1 , Y (2)
0:T2−1 , Y (3)

0:T3−1}. Each of these
four signals is generated using a Gaussian distribution:
for the p−th signal, with mean vector µp and covariance
matrix Σp. Their time lengths Tp, ∀p are randomly
chosen using a truncated Gaussian distribution of mean
500 and standard deviation 100 (keeping only positive
value).

Three sets of parameters {µp,Σp}p have been tested
corresponding to 3 scenarios resumed in Table 1. As
one can see, these three scenario vary from these dif-
ficulty. Indeed, scenario #1 is the easiest since the 4
states are quite separated. Scenario #2 is a little bit
more complex than scenario #1 since states 1 and 2,
and 3 and 4 overlap. Finally, scenario #3 is the more
confusing model since all the state largely overlap. For
each scenario, 100 realizations have been generated, and
for each realization 5 sequences have been used for the
initialization and the training algorithms. P = 20 has
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(b) Scenario #2
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(c) Scenario #3

Figure 1: Performance evaluation achieved on the toy
example.

been used for estimation of M Gaussian distributions
prior to k-mean algorithm.

Fig. 1 presents the achieved results as the averaged
values of �(s) over the 100 realizations. For the first sce-
nario (Fig. 1(a)), the 3 tested algorithms (‘left-right k-
mean on Gaussian distributions’, ‘unconstrained k-mean
on Gaussian distributions’ and ‘on data’) converge to
the same value, but k-mean on Gaussian distributions



Conf. #1 Conf. #2

DTW 77.1 59.5

HMM 88.1 69.9

Table 2: Classification accuracy in percentage [%].

algorithms converge much faster than classical k-mean
initialization. For the second scenario (Fig. 1(b)), the
two proposed k-mean on Gaussian distributions algo-
rithms (left-right and unconstrained) converge to the
same point with a few iterations whereas the classi-
cal k-mean on data algorithm fails into a local max-
ima. Finally for the most complex scenario (Fig. 1(c)),
the constrained left-right proposed k-mean algorithm on
Gaussian distribution has better performance than both
other algorithms.

The proposed method hence improves the estimation
of the set of parameters used to initiate the Baum Welch
algorithm: a better and a faster convergence is shown
by simulations.

4.3 Recognition problem

In a second set of numerical experiments (Tab. 2) classi-
fication accuracy (CA) of the proposed method is com-
pared to CA achieved by the reference ‘dynamic time
warping’ method (DTW) [10]. Two configurations are
compared, and for each of them 50 bi-dimensional ob-
servations (Yk,i ∈ R2) are generated from 25 different
models. Each model is composed from the concatena-
tion of 2 to 4 states (Configuration #1) and of 4 to 8
states (Configuration #2). In all this experiment (con-
figurations #1 and #2), a 5-state left-right HMM with
the proposed initialization procedure is considered (re-
ferred as HMM). As one can see, the proposed method
outperforms the classical DTW by about 10% of classi-
fication accuracy computed in a 10-fold cross validation
procedure: i.e. the 50 observations sequences are parti-
tioned into 10 sets and each of them is sequentially used
as the test database while the other 9 sets are used to
train the HMM parameters. It is worth noting that the
good behavior of proposed method is achieved without
optimization of the number of states. As a consequence
it is not surprising that the best CA is obtained on the
simplest configuration (Conf. #1), however the gap be-
tween the two detection method remains of about 10%
even with the more complex configuration (Conf. #2).

5. CONCLUSION

In this study, an initialization of the Baum-Welch train-
ing algorithm based on a modified k-mean clustering
method of HMM states is presented. The proposed pro-
cedure differs from classical implementations by a clus-
tering of the states rather than on the training data.
The simulations results have shown that the proposed
method improves the initialization of the Baum-Welch
algorithm since the value of the log-likelihood achieved
by our method is higher than value achieved by the
classical initialization. Moreover, in a recognition prob-

lem, the proposed method outperforms the reference dy-
namic time warping method showing its good behavior.

Future works will include a deeper analysis of this
method as well as an automatic procedure to adjust
jointly the number of hidden states.
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[5] Olivier Cappé, Eric Moulines, and Tobias Rydén,
Eds., Inference in Hidden Markov Model, Springer
Series in Statistics, 2005.

[6] L. R. Rabiner, B. H. Juang, S. E. Levinson, and
M. M. Sondhi, “Some properties of continuous hid-
den markov model representations,” AT&T techni-

cal journal, 1985.

[7] K. Nathan, A. Senior, and J. Subrahmonia, “Ini-
tialization of hidden markov models for uncon-
strained on-line handwriting recognition,” in Proc.

IEEE Int. Conf. on Acoustics, Speech, and Signal

Processing (ICASSP), May 1996, vol. 6, pp. 3502–
3505.

[8] Md. Huda, Ranadhir Ghosh, and John Yearwood,
“A variable initialization approach to the EM al-
gorithm for better estimation of the parameters of
hidden markov model based acoustic modeling of
speech signals,” in Advances in Data Mining, Lec-
ture Notes in Computer Science. 2006.

[9] S. Huda, J. Yearwood, and R. Togneri, “A
constraint-based evolutionary learning approach to
the expectation maximization for optimal estima-
tion of the hidden markov model for speech signal
modeling,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B: Cybernetics, vol. 39, no.
1, pp. 182–197, February 2009.

[10] H. Sakoe and S. Chiba, “Dynamic programming al-
gorithm optimization for spoken word recognition,”
IEEE Transactions on Acoustics, Speech and Signal

Processing, vol. 26, no. 1, pp. 43–49, 1978.


